1
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
2
|
Chen Z, Wang S, Shu T, Xia S, He Y, Yang Y. Progress in Research on Regulated Cell Death in Cerebral Ischaemic Injury After Cardiac Arrest. J Cell Mol Med 2025; 29:e70404. [PMID: 39936900 PMCID: PMC11816164 DOI: 10.1111/jcmm.70404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Ischaemic damage to the brain is the main cause of brain injury after cardiac arrest. The current treatment focuses on early reperfusion, but reperfusion tends to cause reperfusion injury, which is a significant problem. Cell death is an irreversible and normal end to cell life, playing key roles in maintaining the homeostasis and development of multicellular organisms. To date, cell death can be classified into two categories: accidental cell death (ACD) and regulated cell death (RCD). Cell death plays an indispensable role in cerebral ischaemia injury. An increasing number of scholars are exploring the mechanisms and sites of cell death during targeted inhibition of cerebral ischaemia to treat cerebral ischaemia injury. In addition to the established cell death pathways, namely, the apoptosis, pyroptosis and necroptosis pathways, ferroptosis and cuproptosis pathways have been discovered. This article reviews the cell death pathways involved in ischaemic brain injury, discusses the roles played by these death modalities, and suggests therapeutic directions for future targeting of cell death sites.
Collapse
Affiliation(s)
- Zumin Chen
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Shuangwei Wang
- Guangdong Engineering Technology Research Center of Emergency and Life Support Medical Equipment, Ambulanc (Shenzhen) Tech. Co., Ltd., Shenzhen, China
| | - Tian Shu
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Senlin Xia
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Yanmei He
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Yanhan Yang
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| |
Collapse
|
3
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2025; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
5
|
Chen F, Tang H, Cai X, Lin J, Xiang L, Kang R, Liu J, Tang D. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 2024; 31:349-363. [PMID: 38177306 DOI: 10.1038/s41417-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Chin HK, Lu MC, Hsu KC, El-Shazly M, Tsai TN, Lin TY, Shih SP, Lin TE, Wen ZH, Yang YCSH, Liu YC. Exploration of anti-leukemic effect of soft coral-derived 13-acetoxysarcocrassolide: Induction of apoptosis via oxidative stress as a potent inhibitor of heat shock protein 90 and topoisomerase II. Kaohsiung J Med Sci 2023. [PMID: 37052190 DOI: 10.1002/kjm2.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential. The use of N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuated the cytotoxic effect induced by 13-AC. Molecular docking and thermal shift assay indicated that the cytotoxic mechanism of action of 13-AC involved the inhibition of heat shock protein 90 (Hsp 90) activity by eliciting the level of Hsp 70 and topoisomerase IIα in Molt4 cells. 13-AC also exhibited potent antitumor activity by reducing the tumor volume (48.3%) and weight (72.5%) in the in vivo Molt4 xenograft mice model. Our findings suggested that the marine cembranoid, 13-AC, acted as a dual inhibitor of Hsp 90 and topoisomerase IIα, exerting more potent apoptotic activity via the enhancement of ROS generation.
Collapse
Affiliation(s)
- Hsien-Kuo Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsen-Ni Tsai
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tzu-Yung Lin
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cellular Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Lin P, Hu XL, Hu YY, Liu MY, Wang QY, Ding Y, Ye JC. Prognostic value of CD247 in patients with head and neck squamous cell carcinoma: bioinformatic analysis of TCGA database. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:923. [PMID: 36172089 PMCID: PMC9511182 DOI: 10.21037/atm-22-1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is the 7th most common type of cancer in the world. Through the advantages of The Cancer Genome Atlas (TCGA) large-scale sequencing-based genome analysis technology, we can explore the potential molecular mechanisms that can improve the prognosis of HNSC patients. Methods The HNSC transcriptome and clinical data were downloaded from TCGA database. A univariate survival analysis and differential expression analysis were conducted to obtain the intersection gene set. A protein-protein interaction (PPI) analysis, modular analysis, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were then conducted to identify the hub genes. Clinical correlation analysis, univariate and multivariate Cox regression analyses were performed on the identified hub genes to determine the prognostic impact of hub genes on HNSC patients. Results In total, 601 intersecting gene sets were obtained. A modular analysis was conducted, and the highest scoring module was 19.304. Based on the GO/KEGG enrichment analysis results, CD247 molecule (CD247) was ultimately selected as the gene for this study. The CD247 were divided into a high-expression group and a low-expression group. The Kaplan-Meier survival curve analysis showed that there was a significant difference between the 2 groups (P<0.0001). The median survival time of the low-expression CD247 group was 30.9 months, and the 5-year survival rate was 36.4%. While the median survival time of the high-expression CD247 group was 68.8 months, and the 5-year survival rate was 52.3%. The clinical correlation analysis showed that CD247 was significantly negatively correlated with pathological tumor stage (pT) and pathological nodal extracapsular spread. Gene Set Enrichment Analysis (GSEA) showed that CD247 activating KEGG pathway hsa04650 and hsa04660. Conclusions CD247 is an independent protective factor in the prognosis of HNSC patients. By activating the hsa04650 and hsa04660 pathways, the expression of interferon gamma, interleukin (IL)-2, and IL-10 is promoted, which in turn improves the tumor immune monitoring ability of the body, induces tumor cell apoptosis, and inhibits tumor cell growth. CD247 is a potential target for improving the clinical treatment effect of HNSC and the prognosis of patients.
Collapse
Affiliation(s)
- Peng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Hu
- Department of Ultrasound, Nanning Maternity and Child Health Hospital, Nanning, China
| | - Yuan-Yuan Hu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mai-Ying Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Qian-Yu Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Ding
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jia-Cai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Cell death mechanisms in head and neck cancer cells in response to low and high-LET radiation. Expert Rev Mol Med 2022. [DOI: 10.1017/erm.2021.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractHead and neck squamous cell carcinoma (HNSCC) is a common malignancy that develops in or around the throat, larynx, nose, sinuses and mouth, and is mostly treated with a combination of chemo- and radiotherapy (RT). The main goal of RT is to kill enough of the cancer cell population, whilst preserving the surrounding normal and healthy tissue. The mechanisms by which conventional photon RT achieves this have been extensively studied over several decades, but little is known about the cell death pathways that are activated in response to RT of increasing linear energy transfer (LET), including proton beam therapy and heavy ions. Here, we provide an up-to-date review on the observed radiobiological effects of low- versus high-LET RT in HNSCC cell models, particularly in the context of specific cell death mechanisms, including apoptosis, necrosis, autophagy, senescence and mitotic death. We also detail some of the current therapeutic strategies targeting cell death pathways that have been investigated to enhance the radiosensitivity of HNSCC cells in response to RT, including those that may present with clinical opportunities for eventual patient benefit.
Collapse
|
10
|
Quarleri J, Cevallos C, Delpino MV. Apoptosis in infectious diseases as a mechanism of immune evasion and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:1-24. [PMID: 33931136 DOI: 10.1016/bs.apcsb.2021.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In pluricellular organisms, apoptosis is indispensable for the development and homeostasis. During infection, apoptosis plays the main role in the elimination of infected cells. Infectious diseases control apoptosis, and this contributes to disease pathogenesis. Increased apoptosis may participate in two different ways. It can assist the dissemination of intracellular pathogens or induce immunosuppression to favor pathogen dissemination. In other conditions, apoptosis can benefit eradicate infectious agents from the host. Accordingly, bacteria, viruses, fungi, and parasites have developed strategies to inhibit host cell death by apoptosis to allow intracellular survival and persistence of the pathogen. The clarification of the intracellular signaling pathways, the receptors involved and the pathogen factors that interfere with apoptosis could disclose new therapeutic targets for blocking microbial actions on apoptotic pathways. In this review, we summarize the current knowledge on pathogen anti-apoptotic and apoptotic approaches and the mechanisms involving in disease.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Briuglia S, Calabrò M, Capra AP, Briguori S, La Rosa MA, Crisafulli C. Molecular Pathways within Autism Spectrum Disorder Endophenotypes. J Mol Neurosci 2021; 71:1357-1367. [PMID: 33492615 DOI: 10.1007/s12031-020-01782-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a condition that includes a number of neurodevelopmental mental disorders. Recent genetic/genomic investigations have reported an increased prevalence of copy number variations (CNVs) in individuals with autism. Despite the extensive evidence of a genetic component, the genes involved are not known and the background is heterogeneous among subjects. As such, it is highly likely that multiple events (molecular cascades) are implicated in the development of autism. The aim of this work was to shed some light on the biological background behind this condition. We hypothesized that the heterogeneous alterations found within different individuals may converge into one or more specific biological functions (pathways) linked to the heterogeneous phenotypes commonly observed in subjects with ASD. We analyzed a sample of 107 individuals for CNV alterations and checked the genes located within the altered loci (1366). Then, we characterized the subjects for distinct phenotypes. After creating subsamples based on symptoms, the CNVs related to each specific symptom were used to create distinct networks associated with each phenotype (18 in total in the sample under analysis). These networks were independently clustered and enriched to identify potential common pathways involved in autism and variably combined with the clinical phenotype. The first 10 pathways of the analysis are discussed.
Collapse
Affiliation(s)
- Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Anna Paola Capra
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Sara Briguori
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Maria Angela La Rosa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy.
| |
Collapse
|
12
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
13
|
Tammaro A, Kers J, Scantlebery AML, Florquin S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front Immunol 2020; 11:1346. [PMID: 32733450 PMCID: PMC7358591 DOI: 10.3389/fimmu.2020.01346] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI), a common event after renal transplantation, causes acute kidney injury (AKI), increases the risk of delayed graft function (DGF), primes the donor kidney for rejection, and contributes to the long-term risk of graft loss. In the last decade, epidemiological studies have linked even mild episodes of AKI to chronic kidney disease (CKD) progression, and innate immunity seems to play a crucial role. The ischemic insult triggers an acute inflammatory reaction that is elicited by Pattern Recognition Receptors (PRRs), expressed on both infiltrating immune cells as well as tubular epithelial cells (TECs). Among the PRRs, Toll-like receptors (TLRs), their synergistic receptors, Nod-like receptors (NLRs), and the inflammasomes, play a pivotal role in shaping inflammation and TEC repair, in response to renal IRI. These receptors represent promising targets to modulate the extent of inflammation, but also function as gatekeepers of tissue repair, protecting against AKI-to-CKD progression. Despite the important considerations on timely use of therapeutics, in the context of IRI, treatment options are limited by a lack of understanding of the intra- and intercellular mechanisms associated with the activation of innate immune receptors and their impact on adaptive tubular repair. Accumulating evidence suggests that TEC-associated innate immunity shapes the tubular response to stress through the regulation of immunometabolism. Engagement of innate immune receptors provides TECs with the metabolic flexibility necessary for their plasticity during injury and repair. This could significantly affect pathogenic processes within TECs, such as cell death, mitochondrial damage, senescence, and pro-fibrotic cytokine secretion, well-known to exacerbate inflammation and fibrosis. This article provides an overview of the past 5 years of research on the role of innate immunity in experimental and human IRI, with a focus on the cascade of events activated by hypoxic damage in TECs: from programmed cell death (PCD) and mitochondrial dysfunction-mediated metabolic rewiring of TECs to maladaptive repair and progression to fibrosis. Finally, we will discuss the important crosstalk between metabolism and innate immunity observed in TECs and their therapeutic potential in both experimental and clinical research.
Collapse
Affiliation(s)
- Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.,Biomolecular Systems Analytics, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019; 29:347-364. [PMID: 30948788 PMCID: PMC6796845 DOI: 10.1038/s41422-019-0164-5] [Citation(s) in RCA: 1655] [Impact Index Per Article: 275.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Methusalem program, Ghent University, 9000, Ghent, Belgium
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
15
|
Chen J, Shifman MI. Inhibition of neogenin promotes neuronal survival and improved behavior recovery after spinal cord injury. Neuroscience 2019; 408:430-447. [PMID: 30943435 DOI: 10.1016/j.neuroscience.2019.03.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Following spinal cord trauma, axonal regeneration in the mammalian spinal cord does not occur and functional recovery may be further impeded by retrograde neuronal death. By contrast, lampreys recover after spinal cord injury (SCI) and axons re-connected to their targets in spinal cord. However, the identified reticulospinal (RS) neurons located in the lamprey brain differ in their regenerative capacities - some are good regenerators, and others are bad regenerators - despite the fact that they have analogous projection pathways. Previously, we reported that axonal guidance receptor Neogenin involved in regulation of axonal regeneration after SCI and downregulation of Neogenin synthesis by morpholino oligonucleotides (MO) enhanced the regeneration of RS neurons. Incidentally, the bad regenerating RS neurons often undergo a late retrograde apoptosis after SCI. Here we report that, after SCI, expression of RGMa mRNA was upregulated around the transection site, while its receptor Neogenin continued to be synthesized almost inclusively in the "bad-regenerating" RS neurons. Inhibition of Neogenin by MO prohibited activation of caspases and improved the survival of RS neurons at 10 weeks after SCI. These data provide new evidence in vivo that Neogenin is involved in retrograde neuronal death and failure of axonal regeneration after SCI.
Collapse
Affiliation(s)
- Jie Chen
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Targeting ALK in Cancer: Therapeutic Potential of Proapoptotic Peptides. Cancers (Basel) 2019; 11:cancers11030275. [PMID: 30813562 PMCID: PMC6468335 DOI: 10.3390/cancers11030275] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/30/2023] Open
Abstract
ALK is a receptor tyrosine kinase, associated with many tumor types as diverse as anaplastic large cell lymphomas, inflammatory myofibroblastic tumors, breast and renal cell carcinomas, non-small cell lung cancer, neuroblastomas, and more. This makes ALK an attractive target for cancer therapy. Since ALK–driven tumors are dependent for their proliferation on the constitutively activated ALK kinase, a number of tyrosine kinase inhibitors have been developed to block tumor growth. While some inhibitors are under investigation in clinical trials, others are now approved for treatment, notably in ALK-positive lung cancer. Their efficacy is remarkable, however limited in time, as the tumors escape and become resistant to the treatment through different mechanisms. Hence, there is a pressing need to target ALK-dependent tumors by other therapeutic strategies, and possibly use them in combination with kinase inhibitors. In this review we will focus on the therapeutic potential of proapoptotic ALK-derived peptides based on the dependence receptor properties of ALK. We will also try to make a non-exhaustive list of several alternative treatments targeting ALK-dependent and independent signaling pathways.
Collapse
|
17
|
Sato Y, Matsuo A, Kudoh S, Fang L, Hasegawa K, Shinmyo Y, Ito T. Expression of Draxin in Lung Carcinomas. Acta Histochem Cytochem 2018; 51:53-62. [PMID: 29622850 PMCID: PMC5880803 DOI: 10.1267/ahc.17035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Guidance molecules, such as Netrin-1, and their receptors have important roles in controlling axon pathfinding, modulate biological activities of various cancer cells, and may be a useful target for cancer therapy. Dorsal repulsive axon guidance protein (Draxin) is a novel guidance molecule that binds not only common guidance molecule receptors with Netrin-1, but also directly binds the EGF domain of Netrin-1 through a 22-amino-acid peptide (22aa). By immunostaining, Draxin was positively expressed in small cell carcinoma, adenocarcinoma (ADC), and squamous cell carcinoma of the lung. In addition, western blot analysis revealed that Draxin was expressed in all histological types of lung cancer cell lines examined. Knockdown of Draxin in an ADC cell line H358 resulted in altered expression of molecules associated with proliferation and apoptosis. The Ki-67 labeling index of Draxin-knockdown ADC cells was increased compared to that of control ADC cells. In H358 cells, treatment of 22aa induced phosphorylation of histone H3, but did not change apoptosis-associated enzymes. These data suggest that Draxin might be involved in cell proliferation and apoptosis in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Liu Fang
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University
| | - Yohei Shinmyo
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
18
|
Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 119:123-133. [PMID: 28347836 DOI: 10.1016/j.neuropharm.2017.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
Neuronal apoptosis is a crucial pathological process in early brain injury after subarachnoid hemorrhage (SAH). The effective therapeutic strategies to ameliorate neuronal apoptosis are still absent. We intended to determine whether intranasal administration of exogenous Netrin-1 (NTN-1) could attenuate neuronal apoptosis after experimental SAH, specifically via activating DCC-dependent APPL-1/AKT signaling cascade. Two hundred twenty-five male Sprague-Dawley rats were subjected to the endovascular perforation model of SAH. Recombinant human NTN-1 (rNTN-1) was administered intranasally. NTN-1 small interfering RNA (siRNA), APPL-1 siRNA, and AKT inhibitor MK2206 were administered through intracerebroventricular (i.c.v.) injection. SAH grade, neurological score, neuronal apoptosis assessed by cleaved caspase-3 (CC-3) expression and Fluoro-Jade C (FJC) staining, double immunofluorescence staining, and Western blot were examined. Our results revealed that endogenous NTN-1 level was increased after SAH. Administration of rNTN-1 improved neurological outcomes at 24 h and 72 h after SAH, while knockdown of endogenous NTN-1 worsened neurological impairments. Furthermore, exogenous rNTN-1 treatment promoted APPL-1 activation, increased phosphorylated-AKT and Bcl-2 expression, as well as decreased apoptotic marker CC-3 expression and the number of FJC-positive neurons, thereby alleviated neuronal apoptosis. Conversely, APPL-1 siRNA and MK2206 abolished the anti-apoptotic effect of exogenous rNTN-1 at 24 h after SAH. Collectively, intranasal administration of exogenous rNTN-1 attenuated neuronal apoptosis and improved neurological function in SAH rats, at least in apart via activating DCC/APPL-1/AKT signaling pathway.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Cesar Reis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Weifeng Wan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
19
|
Abstract
Physiological characteristics of diseases bring about both challenges and opportunities for targeted drug delivery. Various drug delivery platforms have been devised ranging from macro- to micro- and further into the nanoscopic scale in the past decades. Recently, the favorable physicochemical properties of nanomaterials, including long circulation, robust tissue and cell penetration attract broad interest, leading to extensive studies for therapeutic benefits. Accumulated knowledge about the physiological barriers that affect the in vivo fate of nanomedicine has led to more rational guidelines for tailoring the nanocarriers, such as size, shape, charge, and surface ligands. Meanwhile, progresses in material chemistry and molecular pharmaceutics generate a panel of physiological stimuli-responsive modules that are equipped into the formulations to prepare “smart” drug delivery systems. The capability of harnessing physiological traits of diseased tissues to control the accumulation of or drug release from nanomedicine has further improved the controlled drug release profiles with a precise manner. Successful clinical translation of a few nano-formulations has excited the collaborative efforts from the research community, pharmaceutical industry, and the public towards a promising future of smart drug delivery.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace Wright
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet 2016; 294:897-904. [PMID: 27628753 DOI: 10.1007/s00404-016-4195-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Endometriosis is defined as the presence of endometrial-like endometrial cells, glands and stroma outside the uterus, causing a strong inflammatory-like microenvironment in the affected tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease. Considering the pivotal role of interaction between immune and endometriotic cells, in this paper, we aim to shed light about the role of apoptosis pathways in modulating the fine-regulated peritoneal microenvironment during endometriosis. METHODS Narrative overview, synthesizing the findings of literature retrieved from searches of computerized databases. RESULTS In normal conditions, endometriotic cells, refluxed through the fallopian tubes into the peritoneal cavity, should be attacked and removed by phagocytes and NK cells. During endometriosis, the breakdown of peritoneal homeostasis causes the failure of scavenging mechanisms, allowing the survival of endometriotic cells. The consequent so-called "immunoescaping" of endometriotic cells could be due, at least in part, to the reduction of apoptotic-mediated pathways previously described. CONCLUSION Considering the large amount of evidence retrieved from in vitro as well as in vivo models, the reduced apoptosis of endometriotic cells together with the increased apoptosis of peritoneal fluid mononuclear cells may address the peritoneal homeostasis to a permissive environment for the progression of the disease.
Collapse
|
21
|
Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. J Immunol Res 2016; 2016:1720827. [PMID: 27298831 PMCID: PMC4889823 DOI: 10.1155/2016/1720827] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/27/2016] [Indexed: 01/11/2023] Open
Abstract
T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective.
Collapse
|
22
|
Liu X, Wang G, Pu H, Jing H. Abnormal intracellular calcium homeostasis associated with vulnerability in the nerve cells from heroin-dependent rat. Brain Res 2014; 1572:40-9. [DOI: 10.1016/j.brainres.2014.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
|
23
|
Guidance cue netrin-1 and the regulation of inflammation in acute and chronic kidney disease. Mediators Inflamm 2014; 2014:525891. [PMID: 24991088 PMCID: PMC4065723 DOI: 10.1155/2014/525891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 01/21/2023] Open
Abstract
Acute kidney injury (AKI) is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems. Cell migration also plays an important role in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5B receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Recent identification of netrin-1 as regulators of immune cell migration has led to a large number of studies looking into how netrin-1 controls inflammation and inflammatory cell migration. This review will focus on recent advances in understanding netrin-1 mediated regulation of inflammation during acute and chronic kidney disease and whether netrin-1 and its receptor activation can be used to treat acute and chronic kidney disease.
Collapse
|
24
|
Ranganathan P, Jayakumar C, Li DY, Ramesh G. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis. J Cell Mol Med 2014; 18:1290-9. [PMID: 24720832 PMCID: PMC4117732 DOI: 10.1111/jcmm.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/12/2014] [Indexed: 12/21/2022] Open
Abstract
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.
Collapse
|
25
|
Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT. Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med (Maywood) 2014; 239:1461-75. [PMID: 24595981 DOI: 10.1177/1535370214523703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Brandon H Cherry
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Gary F Scott
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Myoung-Gwi Ryou
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Robert T Mallet
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| |
Collapse
|
26
|
Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Cominetti D, Folini M, Perego P, Castiglioni V, Scanziani E, Borrello MG, Zaffaroni N, Cassinelli G, Lanzi C. Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99:498-509. [PMID: 24276455 DOI: 10.1210/jc.2013-2574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Tyrosine kinase inhibitors represent a new treatment option for patients with advanced medullary thyroid cancer (MTC). However, cures have not been achieved with current available agents used in monotherapy. OBJECTIVE Because RET has been shown to negatively regulate CD95 death receptor activation in preclinical models of RET-dependent MTC, we investigated the potential of the combination approach with the RET-targeting tyrosine kinase inhibitor sunitinib and cisplatin to enhance apoptosis activation through the extrinsic pathway. DESIGN The effects of sunitinib and cisplatin were examined in human MTC cell lines harboring oncogenic RET mutations. Experiments were designed to determine drug effects on RET signaling, cell growth, apoptosis, autophagy, and tumor growth in mice and to investigate the mechanisms of the drug interaction. RESULTS Sunitinib and cisplatin synergistically inhibited the growth of MZ-CRC-1 cells harboring the RET M918T activating mutation. The combination enhanced apoptosis activation through CD95-mediated, caspase-8-dependent pathway. Moreover, sunitinib induced a severe perturbation of the autophagic flux characterized by autophagosome accumulation and a remarkable lysosomal dysfunction, which was further enhanced, with lysosomal leakage induction, by cisplatin. Administration of the drug combination to mice xenografted with MZ-CRC-1 cells improved the antitumor efficacy, as compared with single-agent treatments, inducing complete responses in 30% of the treated mice, a significant increase in caspase-3 activation (P < .01 vs cisplatin, and P < .0005 vs sunitinib) and apoptosis in tumor cells. CONCLUSIONS Addition of cisplatin to sunitinib potentiates apoptotic cell death and has promising preclinical activity in MTCs harboring the RET M918T oncogene.
Collapse
Affiliation(s)
- Alessia Lopergolo
- Molecular Pharmacology Unit (A.L., V.N., E.F., L.D.B., M.T., D.C., M.F., P.P., N.Z., G.C., C.L.) and Molecular Mechanisms Unit (M.G.B.), Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; Department of Veterinary Sciences and Public Health (V.C., E.S.), Università degli Studi di Milano, 20133 Milan, Italy; and Mouse and Animal Pathology Laboratory (V.C., E.S.), Fondazione Filarete, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ranganathan P, Jayakumar C, Navankasattusas S, Li DY, Kim IM, Ramesh G. UNC5B receptor deletion exacerbates tissue injury in response to AKI. J Am Soc Nephrol 2013; 25:239-49. [PMID: 24115477 DOI: 10.1681/asn.2013040418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)). Mice were subjected to two different models of organ injury: ischemia reperfusion injury of the kidney and cisplatin-induced nephrotoxicity. Both mouse models of UNC5B depletion had normal organ function and histology under basal conditions. After AKI, however, UNC5B(-/flox/GGT-cre) mice exhibited significantly worse renal function and damage, increased tubular apoptosis, enhanced p53 activation, and exacerbated inflammation compared with UNC5B(-/flox) and wild-type mice. shRNA-mediated suppression of UNC5B expression in cultured tubular epithelial cells exacerbated cisplatin-induced cell death in a p53-dependent manner and blunted Akt phosphorylation. Inhibition of PI3 kinase similarly exacerbated cisplatin-induced apoptosis; in contrast, overexpression of UNC5B reduced cisplatin-induced apoptosis in these cells. Taken together, these results show that the netrin-1 receptor UNC5B plays a critical role in cell survival and kidney injury through Akt-mediated inactivation of p53 in response to stress.
Collapse
Affiliation(s)
- Punithavathi Ranganathan
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, Georgia; and
| | | | | | | | | | | |
Collapse
|
28
|
The Dependence Receptor TrkC Triggers Mitochondria-Dependent Apoptosis upon Cobra-1 Recruitment. Mol Cell 2013; 51:632-46. [DOI: 10.1016/j.molcel.2013.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 04/28/2013] [Accepted: 08/09/2013] [Indexed: 01/24/2023]
|
29
|
Delloye-Bourgeois C, Gibert B, Rama N, Delcros JG, Gadot N, Scoazec JY, Krauss R, Bernet A, Mehlen P. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. PLoS Biol 2013; 11:e1001623. [PMID: 23940460 PMCID: PMC3735457 DOI: 10.1371/journal.pbio.1001623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Guy Delcros
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Gadot
- Endocrine Differentiation Laboratory, Centre de Cancérologie de Lyon, INSERM U1052–CNRS UMR5286, Université de Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Anatomie Pathologique, 69437 Lyon, France
| | - Jean-Yves Scoazec
- Endocrine Differentiation Laboratory, Centre de Cancérologie de Lyon, INSERM U1052–CNRS UMR5286, Université de Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Anatomie Pathologique, 69437 Lyon, France
| | - Robert Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Agnès Bernet
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory–Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052– Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR5286), Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
30
|
Li Y, Nakagawara A. Apoptotic cell death in neuroblastoma. Cells 2013; 2:432-59. [PMID: 24709709 PMCID: PMC3972687 DOI: 10.3390/cells2020432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/30/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB.
Collapse
Affiliation(s)
- Yuanyuan Li
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| |
Collapse
|
31
|
Song C, Zhang Y, Dong Y. Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroinflammation 2013; 10:59. [PMID: 23651534 PMCID: PMC3656796 DOI: 10.1186/1742-2094-10-59] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. However, the interaction between neuroinflammation and neurotrophin functions in different brain conditions is unknown. The present study hypothesized that acute and subacute elevated IL-1β differentially modulates glial and neurotrophin functions, which are related to their role in neuroprotection and neurodegeneration. Method Rats were i.c.v. injected with saline or IL-1β for 1 or 8 days and tested in a radial maze. mRNA and protein expressions of glial cell markers, neurotrophins, neurotrophin receptors, β-amyloid precursor protein (APP) and the concentrations of pro- and anti-inflammatory cytokines were measured in the hippocampus. Results When compared to controls, memory deficits were found 4 days after IL-1 administrations, however the deficits were attenuated by IL-1 receptor antagonist (RA). Subacute IL-1 administrations increased expressions of APP, microglial active marker CD11b, and p75 neurotrophin receptor, and the concentration of tumor necrosis factor (TNF)-α and IL-1β, but decreased expressions of astrocyte active marker glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and TrK B. By contrast, up-regulations of NGF, BDNF and TrK B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations. However, TrK A was down-regulated by acute and up-regulated by subacute IL-1 administrations. Subacute IL-1-induced changes in the glial activities, cytokine concentrations and expressions of BDNF and p75 were reversed by IL-1RA treatment. Conclusion These results indicate that acute and subacute IL-1 administrations induce different changes toward neuroprotection after acute IL-1 administrations but neurodegeneration after subacute ones.
Collapse
Affiliation(s)
- Cai Song
- Research Institute of Marine Drug and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | | | | |
Collapse
|
32
|
Zhan B, Kong C, Guo K, Zhang Z. PKCα is involved in the progression of kidney carcinoma through regulating netrin-1/UNC5B signaling pathway. Tumour Biol 2013; 34:1759-66. [PMID: 23526078 DOI: 10.1007/s13277-013-0714-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
With a special interest towards a better understanding of signal pathways, we attempted to discover a safer and more effective therapeutic strategy for kidney carcinoma. Recent studies had suggested a role mediated by PKCα for netrin-1 and its receptors in the initiation and progression of tumors. Real-time PCR and western blotting were used to determine the expression levels of netrin-1 and UNC5B. We made use of the agonist of PKCα (phorbol-12-myristate 13-acetate-PMA) and the inhibitor of PKCα (calphostin C) to treat renal cell carcinoma (RCC) cells, and MTT assays were used to measure cell proliferation. By immunofluorescence, we identified the localization of netrin-1 and UNC5B in RCC cell lines 769-P and ACHN. The expression of UNC5B in tumor tissues was significantly downregulated compared to the corresponding normal tissues in which netrin-1 was upregulated. In low grade tumors, UNC5B expression was more prominent while netrin-1 expression was the opposite when compared with high grade ones. Proliferation of ACHN cells was concentration dependent in the presence of PMA and calphostin C. Netrin-1 and UNC5B expressions were upregulated in cells treated with PMA while calphostin C reversed this upregulation. By immunofluorescence, we identified that netrin-1 was highly expressed in the nuclear but none of UNC5B. Our data highly suggested that PMA-induced upregulation and calphostin C-induced reversion of netrin-1 and UNC5B in kidney carcinoma were accompanied by the activation of the netrin-1/UNC5B pathways.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, People's Republic of China, 110001.
| | | | | | | |
Collapse
|
33
|
Hopkins S, Linderoth E, Hantschel O, Suarez-Henriques P, Pilia G, Kendrick H, Smalley M, Superti-Furga G, Ferby I. Mig6 is a sensor of EGF receptor inactivation that directly activates c-Abl to induce apoptosis during epithelial homeostasis. Dev Cell 2013; 23:547-59. [PMID: 22975324 PMCID: PMC3657149 DOI: 10.1016/j.devcel.2012.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/14/2012] [Accepted: 08/01/2012] [Indexed: 11/21/2022]
Abstract
A fundamental aspect of epithelial homeostasis is the dependence on specific growth factors for cell survival, yet the underlying mechanisms remain obscure. We found an “inverse” mode of receptor tyrosine kinase signaling that directly links ErbB receptor inactivation to the induction of apoptosis. Upon ligand deprivation Mig6 dissociates from the ErbB receptor and binds to and activates the tyrosine kinase c-Abl to trigger p73-dependent apoptosis in mammary epithelial cells. Deletion of Errfi1 (encoding Mig6) and inhibition or RNAi silencing of c-Abl causes impaired apoptosis and luminal filling of mammary ducts. Mig6 activates c-Abl by binding to the kinase domain, which is prevented in the presence of epidermal growth factor (EGF) by Src family kinase-mediated phosphorylation on c-Abl-Tyr488. These results reveal a receptor-proximal switch mechanism by which Mig6 actively senses EGF deprivation to directly activate proapoptotic c-Abl. Our findings challenge the common belief that deprivation of growth factors induces apoptosis passively by lack of mitogenic signaling.
Collapse
Affiliation(s)
- Sarah Hopkins
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Emma Linderoth
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Oliver Hantschel
- CeMM – Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Paula Suarez-Henriques
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Giulia Pilia
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden
| | - Howard Kendrick
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Matthew J. Smalley
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Giulio Superti-Furga
- CeMM – Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Ingvar Ferby
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden
- Corresponding author
| |
Collapse
|
34
|
Abstract
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
Collapse
Affiliation(s)
- David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|
35
|
Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA. Noncanonical Hedgehog signaling. VITAMINS AND HORMONES 2012; 88:55-72. [PMID: 22391299 DOI: 10.1016/b978-0-12-394622-5.00003-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The notion of noncanonical hedgehog (Hh) signaling in mammals has started to receive support from numerous observations. By noncanonical, we refer to all those cellular and tissue responses to any of the Hh isoforms that are independent of transcriptional changes mediated by the Gli family of transcription factors. In this chapter, we discuss the most recent findings that suggest that Patched1 can regulate cell proliferation and apoptosis independently of Smoothened (Smo) and Gli and the reports that Smo modulates actin cytoskeleton-dependent processes such as fibroblast migration, endothelial cell tubulogenesis, axonal extension, and neurite formation by diverse mechanisms that exclude any involvement of Gli-dependent transcription. We also acknowledge the existence of less stronger evidence of noncanonical signaling in Drosophila.
Collapse
Affiliation(s)
- Donna Brennan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
36
|
Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. J Transl Med 2011; 91:1717-26. [PMID: 21876536 PMCID: PMC3411324 DOI: 10.1038/labinvest.2011.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Netrin-1, a multifunctional laminin-related protein is widely expressed in various tissues, including kidney. The pathophysiological roles of netrin-1 in toxic acute kidney injury are unknown. To determine the role of netrin-1 in cisplatin-induced nephrotoxicity, we used netrin-1 transgenic mice that overexpress netrin-1 in the proximal tubular epithelium using the fatty acid binding protein promoter. Administration of cisplatin caused severe renal injury in WT mice but not in netrin-1 transgenic mice. Functional improvement was associated with better preservation of morphology, reduced cytokine expression and oxidative stress in the kidney, and reduced serum and urine cytokine and chemokine levels of transgenic mice as compared with WT mice. Cisplatin induced an increase in neutrophil infiltration into the kidney of WT mice, which was not significantly reduced in netrin-1 transgenic mice. Interestingly, ischemia reperfusion induced a large increase in apoptosis in WT mice but not in netrin-1 transgenic mice (215 ± 40 vs 94 ± 20 cells/5 HPF ( × 400), P < 0.0001), which was associated with reduced caspase-3 and p53 activation in the transgenic kidney. These results suggest that netrin-1 protects renal tubular epithelial cells against cisplatin-induced kidney injury by suppressing apoptosis and inflammation.
Collapse
|
37
|
Interplay between Ret and Fap-1 regulates CD95-mediated apoptosis in medullary thyroid cancer cells. Biochem Pharmacol 2011; 82:778-88. [DOI: 10.1016/j.bcp.2011.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/27/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023]
|
38
|
Bredesen DE, John V, Galvan V. Importance of the caspase cleavage site in amyloid-β protein precursor. J Alzheimers Dis 2011; 22:57-63. [PMID: 20847422 DOI: 10.3233/jad-2010-100537] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reports from multiple laboratories have now been published analyzing the critical nature of the caspase cleavage site of amyloid-β protein precursor (AβPP) for cell death induction, synaptic loss, hippocampal atrophy, long-term potentiation, memory loss, neophobia, and other aspects of the Alzheimer's phenotype. Here we review the results and implications of these studies for the understanding of Alzheimer's disease pathophysiology and the potential development of therapeutics that target this site in AβPP.
Collapse
|
39
|
Abstract
The fourth meeting on dependence receptors featured descriptions of previously unknown dependence receptors. New mechanistic data were presented on the switch between the trophic, antiapoptotic response with the proapoptotic response that occurs with loss of trophic support. The possibility that the loss of trophic support may also involve the binding of an active antitrophin was also discussed. New in vivo data were presented on the roles of dependence receptors in development, angiogenesis, oncogenesis, and neurodegeneration, as well as new therapeutic approaches based on dependence receptor function. The next meeting on dependence receptors is scheduled for 2012.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptose, Cancer et Développement, CNRS UMR5538, Centre Léon Bérard, University of Lyon, Lyon 69008, France. dbredesen@buckinstitute
| | | |
Collapse
|
40
|
Abstract
Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches. These new findings are also discussed in the context of neural diseases and the potential links between axon pruning and degeneration.
Collapse
|
41
|
Rogers D, Schor NF. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Ann Neurol 2010; 67:151-8. [PMID: 20225270 DOI: 10.1002/ana.21841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although Alzheimer's and Parkinson's diseases predominately affect elderly adults, the proteins that play a role in the pathogenesis of these diseases are expressed throughout life. In fact, many of the proteins hypothesized to be important in the progression of neurodegeneration play direct or indirect roles in the development of the central nervous system. The systems affected by these proteins include neural stem cell fate decisions, neuronal differentiation, cellular migration, protection from oxidative stress, and programmed cell death. Insights into the developmental roles of these proteins may ultimately impact the understanding of neurodegenerative diseases and lead to the discovery of novel treatments.
Collapse
Affiliation(s)
- Danny Rogers
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The dependence receptor notion has recently seen an interesting development. From a basic cell biology concept, which proposes that some transmembrane receptors can be active in the absence of their ligand and induce in the setting apoptosis, recent observations have provided new hope for the development of alternative targeted therapies. The purpose of this review is to show, with the example of netrin-1 dependence receptors, the path from cell biology to promising anticancer-targeted therapy. RECENT FINDINGS The dependence receptors Deleted in Colorectal Cancer and Unc-5 homolog that bind netrin-1 had been implicated in nervous system development as they participate in neuronal navigation. They were also implicated beyond the developing brain with roles in angiogenesis regulation and homeostasis of various tissues. However, these receptors were shown to trigger apoptosis in the absence of netrin-1 and, as such, act as tumor suppressors. Recent data support the view that Deleted in Colorectal Cancer/Unc-5 homolog proapoptotic signals are indeed a safeguard mechanism regulating tumor growth and metastasis. SUMMARY In this review, we will develop the different data supporting the view that a selective advantage for a tumor is to inactivate this dependence receptor's proapoptotic signal and will describe a putative therapeutic approach that is to reactivate this death signaling in tumor cells.
Collapse
|
43
|
Wang W, Reeves WB, Pays L, Mehlen P, Ramesh G. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1010-8. [PMID: 19700747 DOI: 10.2353/ajpath.2009.090224] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Netrin-1, a diffusible laminin-related protein, is highly expressed in the kidney. However, the pathophysiological roles of netrin-1 in the kidney are unknown. To address this question directly, we used transgenic mice that overexpress chicken netrin-1 in the kidney. Netrin-1 overexpression was confirmed by real-time RT-PCR and Western blot analysis. Eight-week-old wild-type and transgenic mice were subjected to 26 minutes of renal ischemia followed by reperfusion for 72 hours. Wild-type mice developed more severe renal dysfunction by 24 hours than netrin-1 transgenic mice. Functional improvement was associated with better preservation of morphology, reduced cytokine expression, and reduced oxidative stress in the kidney of transgenic mice as compared with wild-type mice. In addition, both basal and reperfusion-induced cell proliferation were dramatically increased in transgenic kidneys as determined by Ki-67 staining. Interestingly, ischemia reperfusion induced a large increase in apoptosis in wild-type mice but not in netrin-1 transgenic mice that was associated with reduced caspase-3 activation in the transgenic kidney. These results suggest that netrin-1 protects renal tubular epithelial cells against ischemia reperfusion-induced injury by increasing proliferation and suppressing apoptosis.
Collapse
Affiliation(s)
- Weiwei Wang
- Division of Nephrology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
44
|
Bredesen DE. Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol Neurodegener 2009; 4:27. [PMID: 19558683 PMCID: PMC2709109 DOI: 10.1186/1750-1326-4-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 06/26/2009] [Indexed: 11/10/2022] Open
Abstract
Extensive genetic, biochemical, and histological evidence has implicated the amyloid-β peptide (Aβ) in Alzheimer's disease pathogenesis, and several mechanisms have been suggested, such as metal binding, reactive oxygen species production, and membrane pore formation. However, recent evidence argues for an additional role for signaling mediated by the amyloid precursor protein, APP, in part via the caspase cleavage of APP at aspartate 664. Here we review the effects and implications of this cleavage event, and propose a model of Alzheimer's disease that focuses on the critical nature of this cleavage and its downstream effects.
Collapse
Affiliation(s)
- Dale E Bredesen
- Buck Institute for Age Research, 8001 Redwood Blvd,, Novato, CA USA 94945.
| |
Collapse
|
45
|
Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed JC, Mehlen P. The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 2009; 11:739-46. [PMID: 19465923 DOI: 10.1038/ncb1880] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/02/2009] [Indexed: 01/08/2023]
Abstract
Sonic hedgehog (Shh) and its main receptor, Patched (Ptc), are implicated in both neural development and tumorigenesis. Besides its classic morphogenic activity, Shh is also a survival factor. Along this line, Ptc has been shown to function as a dependence receptor; it induces apoptosis in the absence of Shh, whereas its pro-apoptotic activity is blocked in the presence of Shh. Here we show that, in the absence of its ligand, Ptc interacts with the adaptor protein DRAL (downregulated in rhabdomyosarcoma LIM-domain protein; also known as FHL2). DRAL is required for the pro-apoptotic activity of Ptc both in immortalized cells and during neural tube development in chick embryos. We demonstrate that, in the absence of Shh, Ptc recruits a protein complex that includes DRAL, one of the caspase recruitment (CARD)-domain containing proteins TUCAN (family member, 8) or NALP1 (NLR family, pyrin domain containing 1) and apical caspase-9. Ptc triggers caspase-9 activation and enhances cell death through a caspase-9-dependent mechanism. Thus, we propose that in the absence of its ligand Shh the dependence receptor Ptc serves as the anchor for a caspase-activating complex that includes DRAL, and caspase-9.
Collapse
Affiliation(s)
- Frédéric Mille
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée La Ligue, CNRS UMR5238, Université de Lyon, Centre Leon Bérard, 69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Neurotrophins were christened in consideration of their actions on the nervous system and, for a long time, they were the exclusive interest of neuroscientists. However, more recently, this family of proteins has been shown to possess essential cardiovascular functions. During cardiovascular development, neurotrophins and their receptors are essential factors in the formation of the heart and critical regulator of vascular development. Postnatally, neurotrophins control the survival of endothelial cells, vascular smooth muscle cells, and cardiomyocytes and regulate angiogenesis and vasculogenesis, by autocrine and paracrine mechanisms. Recent studies suggest the capacity of neurotrophins, via their tropomyosin-kinase receptors, to promote therapeutic neovascularization in animal models of hindlimb ischemia. Conversely, the neurotrophin low-affinity p75(NTR) receptor induces apoptosis of endothelial cells and vascular smooth muscle cells and impairs angiogenesis. Finally, nerve growth factor looks particularly promising in treating microvascular complications of diabetes or reducing cardiomyocyte apoptosis in the infarcted heart. These seminal discoveries have fuelled basic and translational research and thus opened a new field of investigation in cardiovascular medicine and therapeutics. Here, we review recent progress on the molecular signaling and roles played by neurotrophins in cardiovascular development, function, and pathology, and we discuss therapeutic potential of strategies based on neurotrophin manipulation.
Collapse
Affiliation(s)
- Andrea Caporali
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | | |
Collapse
|
47
|
Lisak RP, Benjamins JA, Bealmear B, Nedelkoska L, Studzinski D, Retland E, Yao B, Land S. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures. J Neuroinflammation 2009; 6:4. [PMID: 19159481 PMCID: PMC2639549 DOI: 10.1186/1742-2094-6-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/21/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS) in multiple sclerosis (MS). METHODS We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M). RESULTS In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1) seen at 6 hours with microarray. CONCLUSION Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter signaling in glia.
Collapse
Affiliation(s)
- Robert P Lisak
- Department of Neurology, 8D University Health Center, Wayne State University School of Medicine, 4201 St Antoine, Detroit, MI, 48210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bonora-Centelles A, Castell JV, Gómez-Lechón MJ. [Adipose tissue-derived stem cells: hepatic plasticity]. GASTROENTEROLOGIA Y HEPATOLOGIA 2008; 31:299-309. [PMID: 18448061 DOI: 10.1157/13119884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currently, the only effective treatment for end-stage liver disease is liver transplantation. The number of patients on the waiting list increases considerably each year, giving rise to a wide imbalance between supply and demand for healthy livers. Knowledge of stem cells and their possible use have awakened great interest in the field of hepatology, these cells being one of the most promising short-term alternatives. Hepatic stem cell therapy consists of the implantation of healthy cells capable of performing the functions that damaged cells are unable to carry out. Recent observations indicate that several stem cells can differentiate into distinct cell lineages. Hepatic differentiation of adult stem cells from several origins has yielded highly promising results. Adipose tissue in adults contains a reservoir of stem cells that can be induced and differentiated into different types of cells, showing a high degree of plasticity. Because of its abundance and easy access, adipose tissue is a promising source of adult stem cells for hepatic stem cell therapy. The present article reviews the progress made in the differentiation of adult stem cells from adipose tissue into cells with hepatic phenotype. We also discuss the potential application of this technique as a therapy for temporary metabolic support in patients with end-stage liver failure awaiting whole organ transplantation, as a method to support liver function and facilitate regeneration of the native liver in cases of fulminant hepatic failure, and as a treatment in patients with genetic metabolic defects in vital liver functions.
Collapse
Affiliation(s)
- Ana Bonora-Centelles
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Valencia, España
| | | | | |
Collapse
|
49
|
Furne C, Ricard J, Cabrera JR, Pays L, Bethea JR, Mehlen P, Liebl DJ. EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:231-8. [PMID: 18948148 DOI: 10.1016/j.bbamcr.2008.09.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 09/02/2008] [Accepted: 09/15/2008] [Indexed: 02/05/2023]
Abstract
Eph receptors have been implicated in regulating a diverse array of cellular functions in the developing nervous system. Recently, Eph receptors have been shown to promote cell death in adult germinal zones; however, their mechanisms of action remain ill-defined. In this study, we demonstrate that EphA4 is a new member of the dependence receptors family, which can initiate cell death in the absence of its ligand ephrinB3. Upon removal of its ligand, EphA4 triggers cell death that is dependent on caspase activation as caspase inhibitors prevent cell death. EphA4 itself is cleaved by caspase-3-like caspase in the intracellular domain at position D773/774, which is necessary for cell death initiation as mutation of the cleavage site abolishes apoptosis. In the adult subventricular zone, abolishing ephrinB3 results in increased cell death, while the absence of EphA4 results in excessive numbers of neuroblasts. Furthermore, infusion of soluble ephrinB3 into the lateral ventricle reduced cell death, and together these results support a dependence role for EphA4 in adult neurogenesis.
Collapse
Affiliation(s)
- Céline Furne
- Laboratory Apoptosis Cancer and Development, CNRS UMR 5238, Center Léon Bérard, University of Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Hu F, Li G, Liang Z, Yang Y, Zhou Y. The morphological changes of pyramidal and spiny stellate cells in the primary visual cortex of chronic morphine treated cats. Brain Res Bull 2008; 77:77-83. [DOI: 10.1016/j.brainresbull.2008.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/12/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|