1
|
Pham TH, Abella LMR, Hadova K, Klimas J, Dhein S, Pockes S, Schlicht JMA, Hofmann B, Kirchhefer U, Neumann J, Gergs U. Stimulation of histamine H 1-receptors produces a positive inotropic effect in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7235-7250. [PMID: 39729205 DOI: 10.1007/s00210-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
There is a controversy whether histamine H1-receptor activation raises or lowers or does not affect contractility in the human heart. Therefore, we studied stimulation of H1-receptors in isolated electrically stimulated (one beat per second) human atrial preparations (HAP). For comparison, we measured force of contraction in left atrial preparations (LA) from mice with overexpression of the histamine H1-receptor in the heart (H1-TG). We detected the messenger ribonucleic acid (mRNA) expression of human histamine H1-receptors in HAP. In LA from H1-TG, each cumulatively applied concentration of histamine and a dual H1/H2-agonist called 2-(2-thiazolyl)-ethylamine (ThEA) caused a time-dependent initial negative inotropic effect followed over time by a lasting positive inotropic effect. Both effects were concentration-dependent in LA from H1-TG. After 100 µM cimetidine, 10 µM histamine exercised a positive inotropic effect in HAP that was diminished by 10 µM mepyramine, an H1-receptor antagonist. The concentrations of mepyramine and cimetidine used here are based on the work of others and our own work (e.g., Guo et al. J Cardiovasc Pharmacol. 6:1210-5 1984, Rayo Abella et al. J Pharmacol Exp Ther. 389:174-185 2024). Similarly, we observed that ThEA (10 µM, 30 µM, 100 µM cumulatively applied) induced a concentration- and time-dependent positive inotropic effect in HAP. In HAP, we detected never negative inotropic effects to either histamine or ThEA. The positive inotropic effects to ThEA in HAP were reduced by mepyramine. The positive inotropic effects of ThEA in LA from H1-TG and in HAP were not accompanied by reductions in the time of tension relaxation. We conclude that stimulation of histamine H1-receptors only increases and does not decrease force of contraction in the HAP in our patients.
Collapse
Affiliation(s)
- Thanh Hoai Pham
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Stefan Dhein
- Rudolf‑Boehm Institute for Pharmacology and Toxicology, University Leipzig, Härtelstraße 16‑18, D‑04107, Leipzig, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jonas Manfred Albert Schlicht
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Ernst-Grube-Str. 40, D‑06097, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, University Münster, Domagkstraße 12, D-48149, Münster, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
2
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Inhibition of protein phosphatases attenuates A 1-adenosine receptor-stimulation induced negative inotropic effects of cAMP-increasing agents in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03854-0. [PMID: 39907786 DOI: 10.1007/s00210-025-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
N6-(R)-Phenylisopropyladenosine (R-PIA), an agonist at A1-adenosine receptors, alone exerts negative inotropic effects (NIE) in the human atrium. This NIE is augmented in the presence of cAMP-increasing agonists like phosphodiesterase inhibitors (cilostamide, rolipram) or a direct activator of adenylyl cyclase (forskolin). Cantharidin inhibits protein phosphatases 1 and 2A (PP1, PP2A). We hypothesized that cantharidin would attenuate this NIE of R-PIA in the presence of cilostamide or forskolin. During open heart surgery (patients were suffering from severe coronary heart disease), isolated human atrial preparations (HAP) were obtained. These HAP were mounted in organ baths and electrically stimulated (1 Hz). For comparison, we studied isolated electrically stimulated (1 Hz) left atrial preparations (LA) from wild type mice. We noted that R-PIA exerted negative inotropic effects in LA and HAP in the presence of cilostamide or rolipram and forskolin that were attenuated by cantharidin. We hypothesize that R-PIA in the presence of phosphodiesterase inhibitors or forskolin stimulates PP in the human atrium. Hence, R-PIA acts, at least in part, by stimulating PP in HAP.
Collapse
Affiliation(s)
- Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst Grube Str. 40, 06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany.
| |
Collapse
|
3
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin and sodium fluoride attenuate the negative inotropic effect of the A 1-adenosine receptor agonist N 6-(R)-phenylisopropyl adenosine in isolated human atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1961-1971. [PMID: 39212735 PMCID: PMC11825636 DOI: 10.1007/s00210-024-03402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cantharidin and sodium fluoride inhibit the activity of serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A) and increase the force of contraction in human atrial preparations. R-phenylisopropyl adenosine (R-PIA) acts as an agonist at A1-adenosine receptors. R-PIA exerts a negative inotropic effect on human atria. The effect of R-PIA-and its various manifestations-are currently explained as a function of the inhibition of sarcolemmal adenylyl cyclase activity and/or opening of sarcolemmal potassium channels. We hypothesise that cantharidin and sodium fluoride may attenuate the negative inotropic effect of R-PIA. During open heart surgery, trabeculae carneae from the right atrium were obtained for human atrial preparations (HAPs). These trabeculae were mounted in organ baths and electrically stimulated at 1 Hz. Furthermore, we studied isolated electrically stimulated left atrial (LA) preparations from female wild-type mice (CD1). The force of contraction was recorded under isometric conditions. R-PIA (1 µM) exerted a rapid negative inotropic effect in the HAPs and mice LA preparations. These negative inotropic effects of R-PIA were attenuated by pre-incubation for 30 min with 100-µM cantharidin in HAPs, but not in mice LA preparations. Adenosine signals via A1 receptors in a species-specific pathway in mammalian atria. We postulate that R-PIA, at least in part, exerts a negative inotropic effect via activation of serine/threonine phosphatases in the human atrium.
Collapse
Affiliation(s)
- R Schwarz
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - B Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097, Halle, Germany
| | - U Gergs
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - J Neumann
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Wilson EJ, Barts N, Coffin JL, Johnson JB, Rodríguez Peña CM, Kelley JL, Tobler M, Greenway R. Gene expression signatures between Limia perugiae (Poeciliidae) populations from freshwater and hypersaline habitats, with comparisons to other teleosts. PLoS One 2024; 19:e0315014. [PMID: 39637050 PMCID: PMC11620662 DOI: 10.1371/journal.pone.0315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insights into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell-cycle and protein-folding processes between the hypersaline and freshwater L. perugiae. Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. Therefore, we compared transcriptomic variation in L. perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results-in conjunction with other recent studies-suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.
Collapse
Affiliation(s)
- Elizabeth J. Wilson
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - Nick Barts
- Department of Biology, University of Central Missouri, Warrensburg, MO, United States of America
| | - John L. Coffin
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - James B. Johnson
- Divison of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, NC, United States of America
| | - Carlos M. Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Michael Tobler
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO, United States of America
- Whitney R. Harris World Ecology Center, University of Missouri—St. Louis, St. Louis, MO, United States of America
- WildCare Institute, Saint Louis Zoo, St. Louis, MO, United States of America
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
5
|
Duan S, Liu Q, Shen Y, Zhu L, Yuan H, Yang J. AoRan1 Is Involved in Regulating Conidiation, Stress Resistance, Secondary Metabolism, and Pathogenicity in Arthrobotrys oligospora. Microorganisms 2024; 12:1853. [PMID: 39338527 PMCID: PMC11434409 DOI: 10.3390/microorganisms12091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that is able to capture, kill, and digest nematodes by producing specialized three-dimensional networks (traps) under nutrient-deprived conditions. Ran1 is a serine/threonine protein kinase that can act as a negative regulator of sexual conjugation and meiosis. However, the specific role of Ran1 remains largely unknown in NT fungi. Here, we identified AoRan1 (AOL_s00004g277) via gene disruption, phenotypic analysis, and metabolomic analysis. Our findings reveal that Aoran1 knockout caused a remarkable increase in conidial production, traps, and nematode feeding efficiency. In addition, the absence of Aoran1 resulted in the accumulation of lipid droplets and increased autophagic levels as well as increased tolerance to cell wall synthesis-disturbing reagents and oxidants. Metabolomic analyses also suggested that AoRan1 is involved in multiple metabolic processes, such as fatty acid biosynthesis. In summary, our results suggest that AoRan1 is crucial in conidiation, pathogenicity, and secondary metabolism. This study's results further our understanding of the molecular mechanisms by which AoRan1 regulates conidiation and trap formation in A. oligospora.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China; (S.D.); (Q.L.); (Y.S.); (L.Z.); (H.Y.)
| |
Collapse
|
6
|
Huang L, Li Z, Lv Y, Zhang X, Li Y, Li Y, Yu C. Unveiling disulfidptosis-related biomarkers and predicting drugs in Alzheimer's disease. Sci Rep 2024; 14:20185. [PMID: 39215110 PMCID: PMC11364544 DOI: 10.1038/s41598-024-70893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is the predominant form of dementia, and disulfidptosis is the latest reported mode of cell death that impacts various disease processes. This study used bioinformatics to analyze genes associated with disulfidptosis in Alzheimer's disease comprehensively. Based on the public datasets, the differentially expressed genes associated with disulfidptosis were identified, and immune cell infiltration was investigated through correlation analysis. Subsequently, hub genes were determined by a randomforest model. A prediction model was constructed using logistic regression. In addition, the drug-target affinity was predicted by a graph neural network model, and the results were validated by molecular docking. Five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) were identified. The gene set showed significant enrichment for AD-related pathways. The logistic regression model demonstrated an AUC of 0.952, with AUC values of 0.916 and 0.864 in validated datasets. The immune infiltration analysis revealed significant heterogeneity between the Alzheimer's disease and control groups. High-affinity drugs for hub genes were identified. Through our study, a disease prediction model was constructed using potential biomarkers, and drugs targeting the genes were predicted. These results contribute to further understanding of the molecular mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingji Li
- ICE Bioscience Inc., Beijing, 100176, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Gergs U, Wackerhagen S, Fuhrmann T, Schäfer I, Neumann J. Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5731-5743. [PMID: 38308688 PMCID: PMC11329414 DOI: 10.1007/s00210-024-02973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after β-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of β-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany.
| | - Silke Wackerhagen
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Tobias Fuhrmann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Inka Schäfer
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| |
Collapse
|
8
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin and sodium fluoride attenuate the negative inotropic effects of carbachol in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2183-2202. [PMID: 37801145 PMCID: PMC10933163 DOI: 10.1007/s00210-023-02747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Carbachol, an agonist at muscarinic receptors, exerts a negative inotropic effect in human atrium. Carbachol can activate protein phosphatases (PP1 or PP2A). We hypothesized that cantharidin or sodium fluoride, inhibitors of PP1 and PP2A, may attenuate a negative inotropic effect of carbachol. During bypass-surgery trabeculae carneae of human atrial preparations (HAP) were obtained. These trabeculae were mounted in organ baths and electrically stimulated (1 Hz). Force of contraction was measured under isometric conditions. For comparison, we studied isolated electrically stimulated left atrial preparations (LA) from mice. Cantharidin (100 µM) and sodium fluoride (3 mM) increased force of contraction in LA (n = 5-8, p < 0.05) by 113% ± 24.5% and by 100% ± 38.2% and in HAP (n = 13-15, p < 0.05) by 625% ± 169% and by 196% ± 23.5%, respectively. Carbachol (1 µM) alone exerted a rapid transient maximum negative inotropic effect in LA (n = 6) and HAP (n = 14) to 46.9% ± 3.63% and 19.4% ± 3.74%, respectively (p < 0.05). These negative inotropic effects were smaller in LA (n = 4-6) and HAP (n = 9-12) pretreated with 100 µM cantharidin and amounted to 58.0% ± 2.27% and 59.2% ± 6.19% or 3 mM sodium fluoride to 63.7% ± 9.84% and 46.3% ± 5.69%, (p < 0.05). We suggest that carbachol, at least in part, exerts a negative inotropic effect in the human atrium by stimulating the enzymatic activity of PP1 and/or PP2A.
Collapse
Affiliation(s)
- Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
9
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin increases the force of contraction and protein phosphorylation in isolated human atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2613-2625. [PMID: 37097333 PMCID: PMC10497697 DOI: 10.1007/s00210-023-02483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Cantharidin, an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), is known to increase the force of contraction and shorten the time to relaxation in human ventricular preparations. We hypothesized that cantharidin has similar positive inotropic effects in human right atrial appendage (RAA) preparations. RAA were obtained during bypass surgery performed on human patients. These trabeculae were mounted in organ baths and electrically stimulated at 1 Hz. For comparison, we studied isolated electrically stimulated left atrial (LA) preparations and isolated spontaneously beating right atrial (RA) preparations from wild-type mice. Cumulatively applied (starting at 10 to 30 µM), cantharidin exerted a positive concentration-dependent inotropic effect that plateaued at 300 µM in the RAA, LA, and RA preparations. This positive inotropic effect was accompanied by a shortening of the time to relaxation in human atrial preparations (HAPs). Notably, cantharidin did not alter the beating rate in the RA preparations. Furthermore, cantharidin (100 µM) increased the phosphorylation state of phospholamban and the inhibitory subunit of troponin I in RAA preparations, which may account for the faster relaxation observed. The generated data indicate that PP1 and/or PP2A play a functional role in human atrial contractility.
Collapse
Affiliation(s)
- R. Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| | - B. Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - U. Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| | - J. Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112 Halle (Saale), Germany
| |
Collapse
|
10
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
11
|
Lax A, Soler F, Fernandez del Palacio MJ, Pascual-Oliver S, Ballester MR, Fuster JJ, Pascual-Figal D, Asensio-Lopez MDC. Silencing of microRNA-106b-5p prevents doxorubicin-mediated cardiotoxicity through modulation of the PR55α/YY1/sST2 signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:704-720. [PMID: 37234747 PMCID: PMC10208836 DOI: 10.1016/j.omtn.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Clinical use of doxorubicin (Dox), an anthracycline with potent anti-tumor effects, is limited because of its highly chemotherapy-induced cardiotoxicity (CIC). After myocardial infarction (MI), we have recently identified Yin Yang-1 (YY1) and histone deacetylase 4 (HDAC4) as two factors involved in the overexpression of the isoform soluble suppression of tumorigenicity 2 (sST2) protein, which acts as a decoy receptor blocking the favorable effects of IL-33. Therefore, high levels of sST2 are associated with increased fibrosis, remodeling, and worse cardiovascular outcomes. No data exist on the role of the YY1/HDAC4/sST2 axis in CIC. This study aimed to evaluate the pathophysiological implication of the molecular YY1/HDAC4/sST2 axis in remodeling that is developed in patients treated with Dox as well as to suggest a novel molecular therapy to prevent anthracycline-induced cardiotoxicity. Here, we have characterized a novel nexus between miR106b-5p (miR-106b) levels and the YY1/HDAC4 axis in relation to the cardiac expression of sST2 using two experimental models with Dox-induced cardiotoxicity. The addition of Dox (5 μM) to human induced pluripotent stem cell-derived cardiomyocytes induced cellular apoptotic death via upregulation of miR-106b-5p (miR-106b), which was confirmed by specific mimic sequences. A functional blockage of miR-106b using the locked nucleic acid antagomir inhibited Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Fernando Soler
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | | | - Silvia Pascual-Oliver
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Miriam Ruiz Ballester
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Jose Javier Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | |
Collapse
|
12
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
13
|
Neumann J, Hofmann B, Dhein S, Gergs U. Role of Dopamine in the Heart in Health and Disease. Int J Mol Sci 2023; 24:ijms24055042. [PMID: 36902474 PMCID: PMC10003060 DOI: 10.3390/ijms24055042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Dopamine has effects on the mammalian heart. These effects can include an increase in the force of contraction, and an elevation of the beating rate and the constriction of coronary arteries. Depending on the species studied, positive inotropic effects were strong, very modest, or absent, or even negative inotropic effects occurred. We can discern five dopamine receptors. In addition, the signal transduction by dopamine receptors and the regulation of the expression of cardiac dopamine receptors will be of interest to us, because this might be a tempting area of drug development. Dopamine acts in a species-dependent fashion on these cardiac dopamine receptors, but also on cardiac adrenergic receptors. We will discuss the utility of drugs that are currently available as tools to understand cardiac dopamine receptors. The molecule dopamine itself is present in the mammalian heart. Therefore, cardiac dopamine might act as an autocrine or paracrine compound in the mammalian heart. Dopamine itself might cause cardiac diseases. Moreover, the cardiac function of dopamine and the expression of dopamine receptors in the heart can be altered in diseases such as sepsis. Various drugs for cardiac and non-cardiac diseases are currently in the clinic that are, at least in part, agonists or antagonists at dopamine receptors. We define the research needs in order to understand dopamine receptors in the heart better. All in all, an update on the role of dopamine receptors in the human heart appears to be clinically relevant, and is thus presented here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
- Correspondence: ; Tel.: +49-345-557-1686; Fax: +49-345-557-1835
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Stefan Dhein
- Medizinische Fakultät, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
14
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
15
|
Gergs U, Jahn T, Schulz N, Großmann C, Rueckschloss U, Demus U, Buchwalow IB, Neumann J. Protein Phosphatase 2A Improves Cardiac Functional Response to Ischemia and Sepsis. Int J Mol Sci 2022; 23:ijms23094688. [PMID: 35563079 PMCID: PMC9101092 DOI: 10.3390/ijms23094688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| | - Nico Schulz
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany;
| | - Uwe Rueckschloss
- Institut für Anatomie und Zellbiologie, Julius-Maximilians-Universität Würzburg, D-97070 Würzburg, Germany;
| | - Uta Demus
- Gesellschaft zur Förderung von Medizin-, Bio-und Umwelttechnologien e. V., D-06120 Halle, Germany;
| | - Igor B. Buchwalow
- Institut für Hämatopathologie, D-22547 Hamburg, Germany;
- Scientific and Educational Resource Center for Molecular Morphology, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| |
Collapse
|
16
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Function and regulation of phosphatase 1 in healthy and diseased heart. Cell Signal 2021; 90:110203. [PMID: 34822978 DOI: 10.1016/j.cellsig.2021.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.
Collapse
|
18
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
19
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
20
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
21
|
Bollmann P, Werner F, Jaron M, Bruns TA, Wache H, Runte J, Boknik P, Kirchhefer U, Müller FU, Buchwalow IB, Rothemund S, Neumann J, Gergs U. Initial Characterization of Stressed Transgenic Mice With Cardiomyocyte-Specific Overexpression of Protein Phosphatase 2C. Front Pharmacol 2021; 11:591773. [PMID: 33597873 PMCID: PMC7883593 DOI: 10.3389/fphar.2020.591773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated mice with cardiac-specific overexpression of PP2Cβ (PP2C-TG) and compared them with littermate wild type mice (WT) serving as a control. Cardiac fibrosis was noted histologically in PP2C-TG. Collagen 1a, interleukin-6 and the natriuretic peptides ANP and BNP were augmented in PP2C-TG vs. WT (p < 0.05). Left atrial preparations from PP2C-TG were less resistant to hypoxia than atria from WT. PP2C-TG maintained cardiac function after the injection of lipopolysaccharide (LPS, a model of sepsis) and chronic isoproterenol treatment (a model of heart failure) better than WT. Crossbreeding of PP2C-TG mice with PP2A-TG mice (a genetic model of heart failure) resulted in double transgenic (DT) mice that exhibited a pronounced increase of heart weight in contrast to the mild hypertrophy noted in the mono-transgenic mice. The ejection fraction was reduced in PP2C-TG and in PP2A-TG mice compared with WT, but the reduction was the highest in DT compared with WT. PP2A enzyme activity was enhanced in PP2A-TG and DT mice compared with WT and PP2C-TG mice. In summary, cardiac overexpression of PP2Cβ and co-overexpression of both the catalytic subunit of PP2A and PP2Cβ were detrimental to cardiac function. PP2Cβ overexpression made cardiac preparations less resistant to hypoxia than WT, leading to fibrosis, but PP2Cβ overexpression led to better adaptation to some stressors, such as LPS or chronic β-adrenergic stimulation. Hence, the effect of PP2Cβ is context sensitive.
Collapse
Affiliation(s)
- Paula Bollmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marko Jaron
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Tom A Bruns
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jochen Runte
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
22
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
24
|
Vandecasteele G, Bedioune I. Investigating cardiac β-adrenergic nuclear signaling with FRET-based biosensors. ANNALES D'ENDOCRINOLOGIE 2020; 82:198-200. [PMID: 32482343 DOI: 10.1016/j.ando.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By activating membrane β-adrenergic receptors (β-AR), noradrenaline and adrenaline are the most powerful stimulators of cardiac function. β-ARs are coupled to the synthesis of cAMP, which activates the cAMP-dependent protein kinase (PKA). PKA regulates the key proteins of excitation-contraction coupling but also gene expression. While an acute activation of the cAMP/PKA pathway allows adaptation of cardiac output to exercise, its chronic activation is deleterious by promoting pathological remodeling of the heart. The use of probes based on fluorescence resonance energy transfer (FRET) and located specifically at the level of the cytoplasm or the nucleus make it possible to highlight the differential mechanisms by which β-ARs control PKA activation in these two compartments. The characterization of these mechanisms is important in order to better understand the deleterious effects of chronic activation of the β-adrenergic pathway in the heart.
Collapse
Affiliation(s)
- Grégoire Vandecasteele
- Inserm, signaling and cardiovascular pathophysiology, UMR-S1180, université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ibrahim Bedioune
- Inserm, signaling and cardiovascular pathophysiology, UMR-S1180, université Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
25
|
Zhou Z, Shi X, Zhao G, Qin M, Ibba MI, Wang Y, Li W, Yang P, Wu Z, Lei Z, Wang J. Identification of Novel Genomic Regions and Superior Alleles Associated with Zn Accumulation in Wheat Using a Genome-Wide Association Analysis Method. Int J Mol Sci 2020; 21:ijms21061928. [PMID: 32168957 PMCID: PMC7139793 DOI: 10.3390/ijms21061928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Micronutrient deficiencies, and especially zinc (Zn) deficiency, pose serious health problems to people who mainly depend on cereal-based diets. Here, we performed a genome-wide association study (GWAS) to detect the genetic basis of the Zn accumulation in wheat (Triticum aestivum L.) grains with a diversity panel of 207 bread wheat varieties. To uncover authentic quantitative trait loci (QTL) controlling Zn accumulation, the varieties were planted in three locations. In total, 29 unique loci associated with Zn grain accumulation were identified. Notably, seven non-redundant loci located on chromosomes 1B, 3B, 3D, 4A, 5A, 5B, and 7A, were detected at least in two environments. Of these quantitative trait loci (QTL), six coincided with known QTL or genes, whereas the highest effect QTL on chromosome 3D identified in this study was not reported previously. Searches of public databases revealed that the seven identified QTL coincided with seven putative candidate genes linked to Zn accumulation. Among these seven genes, NAC domain-containing protein gene (TraesCS3D02G078500) linked with the most significant single nucleotide polymorphism (SNP) AX-94729264 on chromosome 3D was relevant to metal accumulation in wheat grains. Results of this study provide new insights into the genetic architecture of Zn accumulation in wheat grains.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Xia Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Ganqing Zhao
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Maomao Qin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F. 06600, Mexico;
| | - Yahuan Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Wenxu Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Pan Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Zhengqing Wu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhensheng Lei
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Z.L.); (J.W.); Tel.: +86-371-6572-4084 (Z.L.); +86-158-3759-0332 (J.W.)
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (Z.L.); (J.W.); Tel.: +86-371-6572-4084 (Z.L.); +86-158-3759-0332 (J.W.)
| |
Collapse
|
26
|
Zaitsev AV, Torres NS, Cawley KM, Sabry AD, Warren JS, Warren M. Conduction in the right and left ventricle is differentially regulated by protein kinases and phosphatases: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 2019; 316:H1507-H1527. [PMID: 30875259 PMCID: PMC6620685 DOI: 10.1152/ajpheart.00660.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 μM), PKA blocker H89 (10 μM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Keiko M Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Amira D Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Internal Medicine, School of Medicine, University of Utah , Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|
27
|
Elgenaidi IS, Spiers JP. Hypoxia modulates protein phosphatase 2A through HIF-1α dependent and independent mechanisms in human aortic smooth muscle cells and ventricular cardiomyocytes. Br J Pharmacol 2019; 176:1745-1763. [PMID: 30825189 DOI: 10.1111/bph.14648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Although protein phosphatases regulate multiple cellular functions, their modulation under hypoxia remains unclear. We investigated expression of the protein phosphatase system under normoxic/hypoxic conditions and the mechanism by which hypoxia alters protein phosphatase 2A (PP2A) activity. EXPERIMENTAL APPROACH Human cardiovascular cells were cultured in cell type specific media under normoxic or hypoxic conditions (1% O2 ). Effects on mRNA expression, phosphatase activity, post-translational modification, and involvement of hypoxia inducible factor 1α (HIF-1α) were assessed using RT-PCR, immunoblotting, an activity assay, and siRNA silencing. KEY RESULTS All components of the protein phosphatase system studied were expressed in each cell line. Hypoxia attenuated mRNA expression of the transcripts in a cell line- and time-dependent manner. In human aortic smooth muscle cells (HASMC) and AC16 cells, hypoxia decreased PP2Ac activity and mRNA expression without altering PP2Ac abundance. Hypoxia increased demethylated PP2Ac (DPP2Ac) and phosphatase methylesterase 1 (PME-1) abundance but decreased leucine carboxyl methyltransferase 1 (LCMT-1) abundance. HIF-1α siRNA prevented the hypoxia-mediated decrease in phosphatase activity and expression of the catalytic subunit of protein phosphatase 2A (PPP2CA), independently of altering pPP2Ac, DPP2Ac, LCMT-1, or PME-1 abundance. CONCLUSION AND IMPLICATIONS Cardiovascular cells express multiple components of the PP2A system. In HASMC and AC16 cells, hypoxia inhibits PP2A activity through HIF-1α-dependent and -independent mechanisms, with the latter being consistent with altered PP2A holoenzyme assembly. This indicates a complex inhibitory effect of hypoxia on the PP2A system, and highlights PP2A as a therapeutic target for diseases associated with dysregulated protein phosphorylation.
Collapse
Affiliation(s)
| | - James Paul Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Age-Dependent Protein Expression of Serine/Threonine Phosphatases and Their Inhibitors in the Human Cardiac Atrium. Adv Med 2019; 2019:2675972. [PMID: 30719459 PMCID: PMC6334353 DOI: 10.1155/2019/2675972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure and aging of the heart show many similarities regarding hemodynamic and biochemical parameters. There is evidence that heart failure in experimental animals and humans is accompanied and possibly exacerbated by increased activity of protein phosphatase (PP) 1 and/or 2A. Here, we wanted to study the age-dependent protein expression of major members of the protein phosphatase family in human hearts. Right atrial samples were obtained during bypass surgery. Patients (n=60) were suffering from chronic coronary artery disease (CCS 2-3; New York Heart Association (NYHA) stage 1-3). Age ranged from 48 to 84 years (median 69). All patients included in the study were given β-adrenoceptor blockers. Other medications included angiotensin-converting enzyme (ACE) or angiotensin-receptor-1 (AT1) inhibitors, statins, nitrates, and acetylsalicylic acid (ASS). 100 µg of right atrial homogenates was used for western blotting. Antibodies against catalytic subunits (and their major regulatory proteins) of all presently known cardiac serine/threonine phosphatases were used for antigen detection. In detail, we studied the expression of the catalytic subunit of PP1 (PP1c); I1 PP1 and I2 PP1, proteins that can inhibit the activity of PP1c; the catalytic subunit of PP2A (PP2Ac); regulatory A-subunit of PP2A (PP2AA); regulatory B56α-subunit of PP2A (PP2AB); I1 PP2A and I2 PP2A, inhibitory subunits of PP2A; catalytic and regulatory subunits of calcineurin: PP2BA and PP2BB; PP2C; PP5; and PP6. All data were obtained within the linear range of the assay. There was a significant decline in PP2Ac and I2 PP2A expression in older patients, whereas all other parameters remained unchanged with age. It remains to be elucidated whether the decrease in the protein expression of I2 PP2A might elevate cardiac PP2A activity in a detrimental way or is overcome by a reduced protein expression and thus a reduced activity of PP2Ac.
Collapse
|
29
|
Kirchhefer U, Hammer E, Heinick A, Herpertz T, Isensee G, Müller FU, Neumann J, Schulte K, Seidl MD, Boknik P, Schulte JS. Chronic β-adrenergic stimulation reverses depressed Ca handling in mice overexpressing inhibitor-2 of protein phosphatase 1. J Mol Cell Cardiol 2018; 125:195-204. [PMID: 30389400 DOI: 10.1016/j.yjmcc.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE A higher expression/activity of type 1 serine/threonine protein phosphatase 1 (PP1) may contribute to dephosphorylation of cardiac regulatory proteins triggering the development of heart failure. OBJECTIVE Here, we tested the putatively protective effects of PP1 inhibitor-2 (I2) overexpression using a heart failure model induced by chronic β-adrenergic stimulation. METHODS AND RESULTS Transgenic (TG) and wild-type (WT) mice were subjected to isoprenaline (ISO) or isotonic NaCl solution supplied via osmotic minipumps for 7 days. I2 overexpression was associated with a depressed PP1 activity. Basal contractility was unchanged in catheterized mice and isolated cardiomyocytes between TGNaCl and WTNaCl. TGISO mice exhibited more fibrosis and a higher expression of hypertrophy marker proteins as compared to WTISO. After acute administration of ISO, the contractile response was accompanied by a higher sensitivity in TGISO as compared to WTISO. In contrast to basal contractility, the peak amplitude of [Ca]i and SR Ca load were reduced in TGNaCl as compared to WTNaCl. These effects were normalized to WT levels after chronic ISO stimulation. Cardiomyocyte relaxation and [Ca]i decay kinetics were hastened in TGISO as compared to WTISO, which can be explained by a higher phospholamban phosphorylation at Ser16. Chronic catecholamine stimulation was followed by an enhanced expression of GSK3β, whereas the phosphorylation at Ser9 was lower in TG as compared to the corresponding WT group. This resulted in a higher I2 phosphorylation that may reactivate PP1. CONCLUSION Our findings suggest that the basal desensitization of β-adrenergic signaling and the depressed Ca handling in TG by inhibition of PP1 is restored by a GSK3β-dependent phosphorylation of I2.
Collapse
Affiliation(s)
- Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany.
| | - Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Herpertz
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Gunnar Isensee
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joachim Neumann
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin-Luther-University, Halle, Germany
| | - Kirsten Schulte
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias D Seidl
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan S Schulte
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
30
|
Choudhury N, Sikdar SK. 17β-estradiol potentiates TREK1 channel activity through G protein-coupled estrogen receptor. J Steroid Biochem Mol Biol 2018; 183:94-105. [PMID: 29883692 DOI: 10.1016/j.jsbmb.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022]
Abstract
TWIK-related potassium channel 1 (TREK1), a two-pore domain potassium channel, is modulated by various hormones and neurotransmitters by activation of membrane receptor - coupled second messengers. 17β-estradiol is a neuromodulator capable of regulating several cellular processes including the activity of ion channels, in a rapid and non-genomic manner. The G protein-coupled estrogen receptor (GPER) is known to facilitate rapid actions of 17β-estradiol, though its role in modulation of ion channels is not widely explored. Several studies have shown both TREK1 and 17β-estradiol to be neuromodulatory but the interaction between them is not known. In the present study, using single channel cell-attached patch clamp electrophysiology in HEK293 cells, we show that 17β-estradiol increases the activity of hTREK1 channel by acting through hGPER and increasing the channel opening probability within minutes. The potentiation induced by 17β-estradiol is pertussis toxin - sensitive involving action of Gβγ subunits while the inhibitory effect of cAMP-PKA pathway on TREK1 is reduced. Protein phosphatases were also found to be important for the action of 17β-estradiol, which in concert with reduced activity of PKA, may alter the phosphorylation state of the channel and thus increase channel activity. Mutational studies revealed the serines at positions 315 and 348 in the C-terminal domain of hTREK1 to be the target sites for dephosphorylation induced by 17β-estradiol action through hGPER. Elucidation of the pathway for the potentiating action of 17β-estradiol via hGPER on hTREK1 channel activity will help us understand better one of the many possible neuroprotective mechanisms of 17β-estradiol and hTREK1 channel.
Collapse
Affiliation(s)
- Nasreen Choudhury
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
31
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
32
|
Ehsan M, Wang W, Gadahi JA, Hasan MW, Lu M, Wang Y, Liu X, Haseeb M, Yan R, Xu L, Song X, Li X. The Serine/Threonine-Protein Phosphatase 1 From Haemonchus contortus Is Actively Involved in Suppressive Regulatory Roles on Immune Functions of Goat Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:1627. [PMID: 30061894 PMCID: PMC6054924 DOI: 10.3389/fimmu.2018.01627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/threonine-protein phosphatases (STPs), as integral constituents of parasitic excretory/secretory proteins, are assumed to be released during the host–parasite interactions. However, knowledge about these phosphatases and their immunoregulatory and immune protective efficiencies with host peripheral blood mononuclear cells (PBMCs) is scant. In this study, an open reading frame of STP from Haemonchus contortus designated as HcSTP-1 was amplified and cloned using reverse-transcription-polymerase chain reaction (RT-PCR) method. The 951-bp nucleotides sequence was encoded to a protein of 316 amino acid residues, conserved in characteristics motifs GDXHG, GDYVDRG, GNHE, HGG, RG, and H. The HcSTP-1 protein was detected at approximately 35 kDa as recombinant protein fused in an expression vector system and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunohistochemically, HcSTP-1 was found to be localized in both male and female adult worm sections. Using immunofluorescence assay, the binding activity of rHcSTP-1 was confirmed on surface of goat PBMCs, which resulted in expression of multiple cytokines and various immunoregulatory activities in vitro. The RT-PCR results showed that mRNA level of interleukin-2, TGF-β1, IFN-γ, and IL-17 (with 10 µg/ml) was upregulated and IL-10 was decreased. However, IL-6 showed no change after PBMCs incubated with rHcSTP-1 protein. Further functional analysis showed that migratory activity of cells, intracellular nitrite production (NO), and apoptotic efficiency of PBMCs were elevated at significant level, whereas the proliferation of goat PBMCs and monocytes-associated major histocompatibility complex (MHC)-I and MHC-II expressions were decreased significantly at concentration-dependent fashion. Our results showed that the HcSTP-1 protein engaged in vital suppressive regulatory roles on host immune cells, which might represent a potential molecular target for controlling H. contortus infection in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WenJuan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Javaid Ali Gadahi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Waqqas Hasan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - MingMin Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - YuJian Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XinChao Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haseeb
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Matsui T, Yamamoto K, Fujita T, Morihashi K. Molecular Dynamics and Quantum Chemical Approach for the Estimation of an Intramolecular Hydrogen Bond Strength in Okadaic Acid. J Phys Chem B 2018; 122:7233-7242. [DOI: 10.1021/acs.jpcb.8b03272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:859-873. [PMID: 29797049 DOI: 10.1007/s00210-018-1515-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 01/16/2023]
Abstract
About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.
Collapse
|
35
|
Fang HY, Hung MY, Lin YM, Pandey S, Chang CC, Lin KH, Shen CY, Viswanadha VP, Kuo WW, Huang CY. 17β-Estradiol and/or estrogen receptor alpha signaling blocks protein phosphatase 1 mediated ISO induced cardiac hypertrophy. PLoS One 2018; 13:e0196569. [PMID: 29723269 PMCID: PMC5933784 DOI: 10.1371/journal.pone.0196569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chien Chang
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
36
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
37
|
Lapied B, Defaix A, Stankiewicz M, Moreau E, Raymond V. Modulation of Low-Voltage-Activated Inward Current Permeable to Sodium and Calcium by DARPP-32 Drives Spontaneous Firing of Insect Octopaminergic Neurosecretory Cells. Front Syst Neurosci 2017; 11:31. [PMID: 28579948 PMCID: PMC5437719 DOI: 10.3389/fnsys.2017.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/02/2022] Open
Abstract
Identification of the different intracellular pathways that control phosphorylation/dephosphorylation process of ionic channels represents an exciting alternative approach for studying the ionic mechanisms underlying neuronal pacemaker activity. In the central nervous system of the cockroach Periplaneta americana, octopaminergic neurons, called dorsal unpaired median (DUM; DUM neurons), generate spontaneous repetitive action potentials. Short-term cultured adult DUM neurons isolated from the terminal abdominal ganglion (TAG) of the nerve cord were used to study the regulation of a tetrodotoxin-sensitive low-voltage-activated (LVA) channel permeable to sodium and calcium (Na/Ca), under whole cell voltage- and current-clamp conditions. A bell-shaped curve illustrating the regulation of the amplitude of the maintained current vs. [ATP]i was observed. This suggested the existence of phosphorylation mechanisms. The protein kinase A (PKA) inhibitor, H89 and elevating [cyclic adenosine 3′, 5′ monophosphate, cAMP]i, increased and decreased the current amplitude, respectively. This indicated a regulation of the current via a cAMP/PKA cascade. Furthermore, intracellular application of PP2B inhibitors, cyclosporine A, FK506 and PP1/2A inhibitor, okadaic acid decreased the current amplitude. From these results and because octopamine (OA) regulates DUM neuron electrical activity via an elevation of [cAMP]i, we wanted to know if, like in vertebrate dopaminergic neurons, OA receptor (OAR) stimulation could indirectly affect the current via PKA-mediated phosphorylation of Dopamine- and cAMP-regulated Phosphoprotein-32 (DARPP-32) known to inhibit PP1/2A. Experiments were performed using intracellular application of phospho-DARPP-32 and non-phospho-DARPP-32. Phospho-DARPP-32 strongly reduced the current amplitude whereas non-phospho-DARPP-32 did not affect the current. All together, these results confirm that DARPP-32-mediated inhibition of PP1/2A regulates the maintained sodium/calcium current, which contributes to the development of the pre-depolarizing phase of the DUM neuron pacemaker activity.
Collapse
Affiliation(s)
- Bruno Lapied
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Antoine Defaix
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Maria Stankiewicz
- Faculty of Biology and Environment Protection, N. Copernicus UniversityTorun, Poland
| | - Eléonore Moreau
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Valérie Raymond
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| |
Collapse
|
38
|
Hood AR, Ai X, Pogwizd SM. Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 2017; 107:52-57. [PMID: 28478048 DOI: 10.1016/j.yjmcc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Sufficient connexin-mediated intercellular coupling is critical to maintain gap junctional communication for proper cardiac function. Alterations in connexin phosphorylation state, particularly dephosphorylation of connexin 43 (Cx43), may impact cell coupling and conduction in disease states. Cx43 dephosphorylation may be carried out by protein phosphatase activity. Here, we present an overview of the key phosphatases known to interact with Cx43 or modulators of Cx43, as well as some possible therapeutic targets to regulate phosphatase activity in the heart.
Collapse
Affiliation(s)
- Ashleigh R Hood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xun Ai
- Department of Biophysics and Physiology, Rush University, Chicago, IL, United States
| | - Steven M Pogwizd
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
39
|
Li Z, Singh S, Suryavanshi SV, Ding W, Shen X, Wijaya CS, Gao WD, McConnell BK. Force development and intracellular Ca 2+ in intact cardiac muscles from gravin mutant mice. Eur J Pharmacol 2017; 807:117-126. [PMID: 28428008 DOI: 10.1016/j.ejphar.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Gravin (AKAP12) is an A-kinase-anchoring-protein that scaffolds protein kinase A (PKA), β2-adrenergic receptor (β2-AR), protein phosphatase 2B and protein kinase C. Gravin facilitates β2-AR-dependent signal transduction through PKA to modulate cardiac excitation-contraction coupling and its removal positively affects cardiac contraction. Trabeculae from the right ventricles of gravin mutant (gravin-t/t) mice were employed for force determination. Simultaneously, corresponding intracellular Ca2+ transient ([Ca2+]i) were measured. Twitch force (Tf)-interval relationship, [Ca2+]i-interval relationship, and the rate of decay of post-extrasysolic potentiation (Rf) were also obtained. Western blot analysis were performed to correlate sarcomeric protein expression with alterations in calcium cycling between the WT and gravin-t/t hearts. Gravin-t/t muscles had similar developed force compared to WT muscles despite having lower [Ca2+]i at any given external Ca2+ concentration ([Ca2+]o). The time to peak force and peak [Ca2+]i were slower and the time to 75% relaxation was significantly prolonged in gravin-t/t muscles. Both Tf-interval and [Ca2+]i-interval relations were depressed in gravin-t/t muscles. Rf, however, did not change. Furthermore, Western blot analysis revealed decreased ryanodine receptor (RyR2) phosphorylation in gravin-t/t hearts. Gravin-t/t cardiac muscle exhibits increased force development in responsiveness to Ca2+. The Ca2+ cycling across the SR appears to be unaltered in gravin-t/t muscle. Our study suggests that gravin is an important component of cardiac contraction regulation via increasing myofilament sensitivity to calcium. Further elucidation of the mechanism can provide insights to role of gravin if any in the pathophysiology of impaired contractility.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Heilongjiang, China
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wengang Ding
- Department of Anesthesiology of 2nd Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zaye Tower 6208, Baltimore, MD 21287, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
40
|
Minobe E, Mori MX, Kameyama M. Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. J Physiol 2017; 595:2465-2477. [PMID: 28130847 PMCID: PMC5390892 DOI: 10.1113/jp273736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
Key points Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Abstract Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+‐dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C‐terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co‐expressed with β2a and α2δ subunits in HEK293 cells. In the inside‐out mode, α1C and α1C∆ showed minimal open‐probabilities in a basic internal solution (run‐down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3–5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7–9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C‐terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl‐terminal tail is removed. Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| |
Collapse
|
41
|
Heijman J, Ghezelbash S, Wehrens XHT, Dobrev D. Serine/Threonine Phosphatases in Atrial Fibrillation. J Mol Cell Cardiol 2017; 103:110-120. [PMID: 28077320 DOI: 10.1016/j.yjmcc.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Serine/threonine protein phosphatases control dephosphorylation of numerous cardiac proteins, including a variety of ion channels and calcium-handling proteins, thereby providing precise post-translational regulation of cardiac electrophysiology and function. Accordingly, dysfunction of this regulation can contribute to the initiation, maintenance and progression of cardiac arrhythmias. Atrial fibrillation (AF) is the most common heart rhythm disorder and is characterized by electrical, autonomic, calcium-handling, contractile, and structural remodeling, which include, among other things, changes in the phosphorylation status of a wide range of proteins. Here, we review AF-associated alterations in the phosphorylation of atrial ion channels, calcium-handling and contractile proteins, and their role in AF-pathophysiology. We highlight the mechanisms controlling the phosphorylation of these proteins and focus on the role of altered dephosphorylation via local type-1, type-2A and type-2B phosphatases (PP1, PP2A, and PP2B, also known as calcineurin, respectively). Finally, we discuss the challenges for phosphatase research, potential therapeutic significance of altered phosphatase-mediated protein dephosphorylation in AF, as well as future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
42
|
Liao FH, Hsiao WY, Lin YC, Chan YC, Huang CY. T cell proliferation and adaptive immune responses are critically regulated by protein phosphatase 4. Cell Cycle 2017; 15:1073-83. [PMID: 26940341 DOI: 10.1080/15384101.2016.1156267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The clonal expansion of activated T cells is pivotal for the induction of protective immunity. Protein phosphatase 4 (PP4) is a ubiquitously expressed serine/threonine phosphatase with reported functions in thymocyte development and DNA damage responses. However, the role of PP4 in T cell immunity has not been thoroughly investigated. In this report, our data showed that T cell-specific ablation of PP4 resulted in defective adaptive immunity, impaired T cell homeostatic expansion, and inefficient T cell proliferation. This hypo-proliferation was associated with a partial G1-S cell cycle arrest, enhanced transcriptions of CDK inhibitors and elevated activation of AMPK. In addition, resveratrol, a known AMPK activator, induced similar G1-S arrests, while lentivirally-transduced WT or constitutively-active AMPKα1 retarded the proliferation of WT T cells. Further investigations showed that PP4 co-immunoprecipitated with AMPKα1, and the over-expression of PP4 inhibited AMPK phosphorylation, thereby implicating PP4 for the negative regulation of AMPK. In summary, our results indicate that PP4 is an essential modulator for T cell proliferation and immune responses; they further suggest a potential link between PP4 functions, AMPK activation and G1-S arrest in activated T cells.
Collapse
Affiliation(s)
- Fang-Hsuean Liao
- a Immunology Research Center, National Health Research Institutes , Zhunan , Miaoli County , Taiwan
| | - Wan-Yi Hsiao
- a Immunology Research Center, National Health Research Institutes , Zhunan , Miaoli County , Taiwan
| | - Yu-Chun Lin
- a Immunology Research Center, National Health Research Institutes , Zhunan , Miaoli County , Taiwan
| | - Yi-Chiao Chan
- a Immunology Research Center, National Health Research Institutes , Zhunan , Miaoli County , Taiwan
| | - Ching-Yu Huang
- a Immunology Research Center, National Health Research Institutes , Zhunan , Miaoli County , Taiwan
| |
Collapse
|
43
|
Lubbers ER, Mohler PJ. Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol 2016; 101:127-133. [PMID: 27832939 DOI: 10.1016/j.yjmcc.2016.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023]
Abstract
Reversible protein phosphorylation is central to a variety of cardiac processes including excitation-contraction coupling, Ca2+ handling, cell metabolism, myofilament regulation, and cell-cell communication. While kinase pathways linked with elevated adrenergic signaling have been a major focus for the cardiovascular field over the past half century, new findings support the critical role of protein phosphatases in both health and disease. Protein phosphatase 2A (PP2A) is a central cardiac phosphatase that regulates diverse myocyte functions through a host of target molecules. Notably, multiple mechanisms have evolved to dynamically tune PP2A function, including modulation of the composition, phosphorylation, methylation, and localization of PP2A holoenzyme populations. Further, aberrations in this regulation of PP2A function may contribute to cardiac pathophysiology. In summary, PP2A is a critical regulatory molecule in both health and disease, with a myriad of targets in heart. Based on their unique structure, localization, and regulatory properties, PP2A subunits represent exciting therapeutic targets to modulate altered adrenergic signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Ellen R Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
44
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
45
|
Yu L, Xu J, Minobe E, Kameyama A, Yang L, Feng R, Hao L, Kameyama M. Role of protein phosphatases in the run down of guinea pig cardiac Cav1.2 Ca2+ channels. Am J Physiol Cell Physiol 2016; 310:C773-9. [DOI: 10.1152/ajpcell.00199.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate protein phosphatases involved in the run down of Cav1.2 Ca2+ channels. Single ventricular myocytes obtained from adult guinea pig hearts were used to record Ca2+ channel currents with the patch-clamp technique. Calmodulin (CaM) and ATP were used to restore channel activity in inside-out patches. Inhibitors of protein phosphatases were applied to investigate the role of phosphatases. The specific protein phosphatase type 1 (PP1) inhibitor (PP1 inhibitor-2) and protein phosphatase type 2A (PP2A) inhibitor (fostriecin) abolished the slow run down of Cav1.2 Ca2+ channels, which was evident as the time-dependent attenuation of the reversing effect of CaM/ATP on the run down. However, protein phosphatase type 2B (PP2B, calcineurin) inhibitor cyclosporine A together with cyclophilin A had no effect on the channel run down. Furthermore, PP1 inhibitor-2 mainly prolonged the open time constants of the channel, specifically, the slow open time. Fostriecin primarily shortened the slow close time constants. Our data suggest that PP1 and PP2A were involved in the slow phase of Cav1.2 Ca2+ channel run down. In addition, they exerted different effects on the open-close kinetics of the channel. All above support the view that PP1 and PP2A may dephosphorylate distinct phosphorylation sites on the Cav1.2 Ca2+ channel.
Collapse
Affiliation(s)
- Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Asako Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lei Yang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
46
|
Ochi R, Dhagia V, Lakhkar A, Patel D, Wolin MS, Gupte SA. Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca2+ current in A7r5 aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2016; 310:H1118-28. [PMID: 26873970 DOI: 10.1152/ajpheart.00889.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
Voltage-gated L-type Ca(2+) current (ICa,L) induces contraction of arterial smooth muscle cells (ASMCs), and ICa,L is increased by H2O2 in ASMCs. Superoxide released from the mitochondrial respiratory chain (MRC) is dismutated to H2O2 We studied whether superoxide per se acutely modulates ICa,L in ASMCs using cultured A7r5 cells derived from rat aorta. Rotenone is a toxin that inhibits complex I of the MRC and increases mitochondrial superoxide release. The superoxide content of mitochondria was estimated using mitochondrial-specific MitoSOX and HPLC methods, and was shown to be increased by a brief exposure to 10 μM rotenone. ICa,L was recorded with 5 mM BAPTA in the pipette solution. Rotenone administration (10 nM to 10 μM) resulted in a greater ICa,L increase in a dose-dependent manner to a maximum of 22.1% at 10 μM for 1 min, which gradually decreased to 9% after 5 min. The rotenone-induced ICa,L increase was associated with a shift in the current-voltage relationship (I-V) to a hyperpolarizing direction. DTT administration resulted in a 17.9% increase in ICa,L without a negative shift in I-V, and rotenone produced an additional increase with a shift. H2O2 (0.3 mM) inhibited ICa,L by 13%, and additional rotenone induced an increase with a negative shift. Sustained treatment with Tempol (4-hydroxy tempo) led to a significant ICa,L increase but it inhibited the rotenone-induced increase. Staurosporine, a broad-spectrum protein kinase inhibitor, partially inhibited ICa,L and completely suppressed the rotenone-induced increase. Superoxide released from mitochondria affected protein kinases and resulted in stronger ICa,L preceding its dismutation to H2O2 The removal of nitric oxide is a likely mechanism for the increase in ICa,L.
Collapse
Affiliation(s)
- Rikuo Ochi
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Anand Lakhkar
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Dhara Patel
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
47
|
Koss DJ, Robinson L, Mietelska-Porowska A, Gasiorowska A, Sepčić K, Turk T, Jaspars M, Niewiadomska G, Scott RH, Platt B, Riedel G. Polymeric alkylpyridinium salts permit intracellular delivery of human Tau in rat hippocampal neurons: requirement of Tau phosphorylation for functional deficits. Cell Mol Life Sci 2015; 72:4613-32. [PMID: 26070304 PMCID: PMC11113860 DOI: 10.1007/s00018-015-1949-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
Abstract
Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer's disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca(2+) transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca(2+) transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats treated with Poly-APS+hTau+OA presented with subtle learning deficits, but were also impaired in cognitive flexibility and recall. Hippocampal plasticity recorded from slices ex vivo was diminished in Poly-APS+hTau+OA subjects, but not in other treatment groups. Histological sections confirmed the intracellular accumulation of hTau in CA1 pyramidal cells and along their processes; phosphorylated Tau was present only within somata. This study demonstrates that cognitive, physiological and pathological symptoms reminiscent of tauopathies can be induced following non-mutant hTau delivery into CA1 in rats, but functional consequences hinge on increased Tau phosphorylation. Collectively, these data validate a novel model of locally infused recombinant hTau protein as an inducer of Tau pathology in the hippocampus of normal rats; future studies will provide insights into the pathological spread and maturation of Tau pathology.
Collapse
Affiliation(s)
- Dave J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
- Behavioural Neuroscience Core Facility, Division of Neuroscience, University of Dundee, Dundee, UK
| | | | - Anna Gasiorowska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Mossakowski Medical Research Centre, Warsaw, Poland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, UK
| | - Grazyna Niewiadomska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roderick H Scott
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK.
| |
Collapse
|
48
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
49
|
Combination of zoledronic acid and serine/threonine phosphatase inhibitors induces synergistic cytotoxicity and apoptosis in human breast cancer cells via inhibition of PI3K/Akt pathway. Tumour Biol 2015; 37:3665-73. [PMID: 26462835 DOI: 10.1007/s13277-015-3265-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the cytotoxic and apoptotic effects of zoledronic acid (ZA) in combination with serine/threonine protein phosphatase inhibitors, calyculin-A (CA) and okadaic acid (OA), in human MCF-7 and MDA-MB-231 breast cancer cells. XTT cell viability assay was used to evaluate cytotoxicity. DNA fragmentation and caspase-3/7 activity assays were performed to evaluate apoptosis. Activities of phosphatase 1 (PP1) and phosphatase 2A (PP2A) were measured by serine/threonine phosphatase ELISA kit. Expression levels of PI3K, p-PI3K, Akt, p-Akt, Bcl-2, p-Bcl-2, Bad, and p-Bad proteins were evaluated by Western blot analysis. Combination of ZA with either CA or OA showed synergistic cytotoxicity and apoptosis as compared to any agent alone in both MCF-7 and MDA-MB-231 breast cancer cells. Combination treatment also resulted in inhibition of both PP1 and PP2A activities. Both agents used alone or in combination did not induce significant changes in total PI3K, Akt, Bcl-2, and Bad expressions, while p-PI3K, p-Akt, p-Bcl-2, and p-Bad levels were reduced by the combination treatment as compared to agents alone. Moreover, apoptotic effect of combination treatment was significantly inhibited in the presence of LY294002, a specific PI3K inhibitor, in both breast cancer cell lines. In conclusion, synergistic apoptotic effect of the combination treatment is correlated with the block of the PI3K/Akt signal pathway in breast cancer cells.
Collapse
|
50
|
Rodriguez P, Rojas J. cAMP-Induced Histones H3 Dephosphorylation Is Independent of PKA and MAP Kinase Activations and Correlates With mTOR Inactivation. J Cell Biochem 2015; 117:741-50. [PMID: 26335579 DOI: 10.1002/jcb.25359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023]
Abstract
cAMP is a second messenger well documented to be involved in the phosphorylation of PKA, MAP kinase, and histone H3 (H3). Early, we reported that cAMP also induced H3 dephosphorylation in a variety of proliferating cell lines. Herein, it is shown that cAMP elicits a biphasic H3 dephosphorylation independent of PKA activation in cycling cells. H89, a potent inhibitor of PKA catalytic sub-unite, could not abolish this effect. Additionally, H89 induces a rapid and biphasic H3 serine 10 dephosphorylation, while a decline in the basal phosphorylation of CREB/ATF-1 is observed. Rp-cAMPS, an analog of cAMP and specific inhibitor of PKA, is unable to suppress cAMP-mediated H3 dephosphorylation, whereas Rp-cAMPS effectively blocks CREB/ATF-1 hyper-phosphorylation by cAMP and its inducers. Interestingly, cAMP exerts a rapid and profound H3 dephosphorylation at much lower concentration (50-fold lower, 0.125 mM) than the concentration required for maximal CREB/ATF-1 phosphorylation (5 mM). Much higher cAMP concentration is required to fully induce CREB/ATF-1 gain in phosphate (5 mM), which correlates with the inhibition of H3 dephosphorylation. Also, the dephosphorylation of H3 does not overlap at onset of MAP kinase phosphorylation pathways, p38 and ERK. Surprisingly, rapamycin (an mTOR inhibitor), cAMP, and its natural inducer isoproterenol, elicit identical dephosphorylation kinetics on both S6K1 ribosomal kinase (a downstream mTOR target) and H3. Finally, cAMP-induced H3 dephosphorylation is PP1/2-dependent. The results suggest that a pathway, requiring much lower cAMP concentration to that required for CREB/ATF-1 hyper-phosphorylation, is responsible for histone H3 dephosphorylation and may be linked to mTOR down regulation.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Facultad de Ciencias M, é, dicas, Escuela de Medicina, Universidad de Santiago de Chile (USACH), el Belloto 3530, segundo piso. Avenida Libertador Bernardo O'Higgins n°3363, Estación Central, Santiago, Chile
| | - Juan Rojas
- Facultad de Ciencias M, é, dicas, Escuela de Medicina, Universidad de Santiago de Chile (USACH), el Belloto 3530, segundo piso. Avenida Libertador Bernardo O'Higgins n°3363, Estación Central, Santiago, Chile
| |
Collapse
|