1
|
Sjakste N, Dinter D, Gajski G. A review of the genotoxic effects of antiparasitic drugs on parasites and their hosts. Regul Toxicol Pharmacol 2025; 158:105797. [PMID: 40024560 DOI: 10.1016/j.yrtph.2025.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Antiparasitic medications are drugs used to treat infections caused by parasites like protozoa, helminths, and ectoparasites by either killing the parasite or inhibiting its growth and reproduction. These medications are crucial for treating parasitic diseases and can vary in dosage and administration depending on the type of infection with proper diagnosis being essential for effective treatment. Nevertheless, such drugs can also cause a range of side effects including genotoxicity, depending on the type of medication and the individual's response. Therefore, here we will summarize data on the genotoxic effects of some antiparasitic drugs since many parasites provoke DNA damage per se, and therapy can enhance such genotoxic effects. The DNA-damaging effects of antiparasitic drugs enable the use of some of them for cancer treatment. Since a parasitic disease comes with severe consequences, the cost-benefit should be considered when taking drugs against such a disease even in terms of their potential genotoxicity. While some antiparasitic drugs have shown genotoxic potential in laboratory studies, most are considered safe for human use at therapeutic doses. Long-term or high-dose exposure may carry more risk; moreover, the genotoxic effects of the drugs can interfere with the genotoxicity of the parasitic infection. More research is needed to fully understand the implications for human health. Nevertheless, the present study has confirmed the need for further cytogenetic research and regular patient monitoring to minimize the risk of an adverse event, especially among frequent travellers visiting parasite-affected areas.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, 1004, Riga, Latvia.
| | - Domagoj Dinter
- Pliva Croatia Ltd., Prilaz baruna Filipovića 25, 10000, Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Phongpradist R, Chittasupho C, Singh S, Ontong JC, Tadtong S, Akachaipaibul P, Punvittayagul C, Thongkorn K, Dejkriengkraikul P, Jiaranaikulwanitch J, Chansakaow S, Hongwiset D. Investigation of a Thermoresponsive In Situ Hydrogel Loaded with Nanotriphala: Implications for Antioxidant, Anti-Inflammatory, and Antimicrobial Therapy in Nasal Disorders. Gels 2025; 11:106. [PMID: 39996649 PMCID: PMC11853876 DOI: 10.3390/gels11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Oxidative stress plays a crucial role in chronic nasal disorders, contributing to inflammation, tissue damage, and impaired mucosal function, highlighting the need for targeted therapies. Recent advancements in nasal drug delivery systems have expanded their applications for treating respiratory and inflammatory conditions. Among these, hydrogel-based systems offer prolonged release of active pharmaceutical ingredients (APIs), enhancing therapeutic efficacy and reducing dosing frequency. This study initially evaluates the antioxidant, anti-inflammatory, antimicrobial, and cytotoxic properties of Nanotriphala, followed by its incorporation into a thermoresponsive in situ hydrogel system, which was subsequently developed and characterized as a novel formulation. Nanotriphala exhibited >90% cell viability and significantly reduced nitric oxide (NO) levels by 40.55 µg/mL at 250 µg/mL. The hydrogel was characterized by key parameters, including viscosity, gelling time, pH, gelling temperature, texture analysis, and ex vivo spreadability. Stability was assessed under various conditions, and mutagenicity and antimutagenicity were evaluated using the Ames test. Results showed that the hydrogel gelled at 34 °C, exhibited good spreadability (10.25 ± 0.28 cm), a viscosity of 227 ± 22 cP, and maintained a pH of 5.75 ± 0.01, with optimal hardness and adhesiveness suitable for nasal application. It demonstrated antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and S. epidermidis at minimal bactericidal concentrations (MBCs) of 32, 2, 4, and 8 µg/mL, respectively, with low mutagenicity (mutagenic index < 2) and strong antimutagenic activity (>60%). The gallic acid content was 0.5796 ± 0.0218 µg/100 mL. Stability studies confirmed optimal storage at 4 °C. These findings suggest that in situ hydrogel loaded with Nanotriphala is a promising nasal drug delivery system for managing oxidative stress and related inflammatory conditions.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Julalak Chorachoo Ontong
- Cosmetic Technology and Dietary Supplement Products Program, Faculty of Agro and Bio Industry, Thaksin University, Ban Pa Phayom, Phatthalung 93210, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Puriputt Akachaipaibul
- Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
| | - Kriangkrai Thongkorn
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Darunee Hongwiset
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| |
Collapse
|
3
|
Rodríguez-Garza NE, Quintanilla-Licea R, Gomez-Flores R, Galaviz-Silva L, Molina-Garza ZJ. In Vitro Antiprotozoal Activity of Schinus molle Extract, Partitions, and Fractions against Trypanosoma cruzi. PLANTS (BASEL, SWITZERLAND) 2024; 13:2177. [PMID: 39204613 PMCID: PMC11359525 DOI: 10.3390/plants13162177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, represents an important and worldwide public health issue, particularly in Latin America. Limitations of conventional treatment with benznidazole and nifurtimox underscore the urgent need for new therapeutic strategies for this disease. Schinus molle, a tree used in traditional medicine for various ailments, has demonstrated promising antiparasitic activity. The in vitro anti-T. cruzi activity of Schinus molle crude methanol extract, partitions, and fractions, as well as their cytotoxicity in Vero cells and Artemia salina, and hemolytic activity in human erythrocytes were assessed. Most of the extracts possessed anti-T. cruzi effects, with Sm-CF3 being the fraction with the highest activity (IC50 = 19 µg/mL; SI = 6.8). Gas chromatography-mass spectrometry analysis identified 20 compounds, with fatty acyls comprising the predominant chemical class (55%). We also identified the antiparasitic compounds cis-5,8,11,14,17-eicosapentaenoic acid and trans-Z-α-bisabolene epoxide, suggesting their potential contribution to the observed anti-T. cruzi activity. In conclusion, our findings support the therapeutic potential of S. molle as a source of novel antiparasitic agents against T. cruzi.
Collapse
Affiliation(s)
- Nancy E Rodríguez-Garza
- Laboratorio de Patología Molecular y Experimental, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Ramiro Quintanilla-Licea
- Laboratorio de Fitoquímica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Lucio Galaviz-Silva
- Laboratorio de Patología Molecular y Experimental, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Zinnia J Molina-Garza
- Laboratorio de Patología Molecular y Experimental, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
4
|
Paoli-Lombardo R, Primas N, Vanelle P. DprE1 and Ddn as promising therapeutic targets in the development of novel anti-tuberculosis nitroaromatic drugs. Eur J Med Chem 2024; 274:116559. [PMID: 38850856 DOI: 10.1016/j.ejmech.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Tuberculosis remains the second deadliest infectious disease in humans and a public health threat due to the emergence of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains. Therefore, it is urgent to identify new anti-tuberculosis treatments and novel therapeutic targets to prevent the emergence of resistance. In recent years, the study of anti-tuberculosis properties of nitroaromatic compounds has led to the identification of two novel biological targets, the deazaflavin (F420)-dependent nitroreductase Ddn and the decaprenylphosphoryl-β-d-ribose 2'-epimerase DprE1. This review aims to show why Ddn and DprE1 are promising therapeutic targets and highlight nitroaromatic compounds interest in developing new anti-tuberculosis treatments active against MDR-TB and XDR-TB. Despite renewed interest in the development of new anti-tuberculosis nitroaromatic compounds, pharmaceutical companies often exclude nitro-containing molecules from their drug discovery programs because of their toxic and mutagenic potential. This exclusion results in missed opportunities to identify new nitroaromatic compounds and promising therapeutic targets.
Collapse
Affiliation(s)
- Romain Paoli-Lombardo
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| |
Collapse
|
5
|
Linciano P, Pozzi C, Tassone G, Landi G, Mangani S, Santucci M, Luciani R, Ferrari S, Santarem N, Tagliazucchi L, Cordeiro-da-Silva A, Tonelli M, Tondi D, Bertarini L, Gul S, Witt G, Moraes CB, Costantino L, Costi MP. The discovery of aryl-2-nitroethyl triamino pyrimidines as anti-Trypanosoma brucei agents. Eur J Med Chem 2024; 264:115946. [PMID: 38043491 DOI: 10.1016/j.ejmech.2023.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-β-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Nuno Santarem
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 278, 41125, Modena, Italy
| | - Anabela Cordeiro-da-Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-100, Campinas, SP, Brazil
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
6
|
Singh A, Banerjee T, Shukla SK, Upadhyay S, Verma A. Creep in nitroimidazole inhibitory concentration among the Entamoeba histolytica isolates causing amoebic liver abscess and screening of andrographolide as a repurposing drug. Sci Rep 2023; 13:12192. [PMID: 37500681 PMCID: PMC10374660 DOI: 10.1038/s41598-023-39382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Infections by Entamoeba histolytica (E. histolytica) lead to considerable morbidity and mortality worldwide and treatment is reliant on a single class of drugs, nitroimidazoles. Treatment failures and intermittent reports of relapse from different parts of world indicate towards development of clinical drug resistance. In the present study, susceptibility testing of clinical isolates of E. histolytica was carried against metronidazole and tinidazole. Additionally, anti-amoebic property of active compounds of Andrographis paniculata was also evaluated. Prevalence of metronidazole resistance gene (nim) in patients attending hospital was also done to get comprehensive insight of present situation of drug resistance in E. histolytica. Mean inhibitory concentration 50 (IC50) value of E. histolytica isolates against metronidazole and tinidazole was 20.01 and 16.1 µM respectively. Andrographolide showed minimum mean IC50 value (3.06 µM). Significant percentage inhibition of E. histolytica isolates by andrographolide was seen as compared to metronidazole (p = 0.0495). None of E. histolytica isolates showed presence of nim gene. However, in stool samples from hospital attending population, prevalence of nimE gene was found to be 76.6% (69/90) and 62.2% (56/90) in diarrheal and non-diarrheal samples respectively. Inhibitory concentration of commonly used nitroimidazoles against clinical isolates of E. histolytica are on rise. Percentage inhibition of E. histolytica isolates by andrographolide was significantly higher than control drug metronidazole.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sunit Kumar Shukla
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Soumya Upadhyay
- Department of Life Sciences, Banasthali Vidyapeeth, Jaipur, 302001, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
7
|
AbdRabou MA, Alrashdi BM, Alruwaili HK, Elmazoudy RH, Alwaili MA, Othman SI, Alghamdi FA, Fahmy GH. Exploration of Maternal and Fetal Toxicity Risks for Metronidazole-Related Teratogenicity and Hepatotoxicity through an Assessment in Albino Rats. TOXICS 2023; 11:303. [PMID: 37112529 PMCID: PMC10141390 DOI: 10.3390/toxics11040303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Metronidazole is the primary antimicrobial drug for treating acute and chronic vaginal pathogens during pregnancy; however, there has been insufficient research on placental disorders, early pregnancy loss, and preterm birth. Here, the potential activity of metronidazole on pregnancy outcomes was investigated. 130 mg/kg body weight of metronidazole was orally given individually to pregnant rats on gestation days 0-7, 7-14, and 0-20. Pregnancy outcome evaluations were carried out on gestation day 20. It was demonstrated that metronidazole could induce maternal and fetal hepatotoxicity. There is a significant increase in the activities of maternal hepatic enzymes (ALT, AST, and ALP), total cholesterol, and triglycerides compared with the control. These biochemical findings were evidenced by maternal and fetal liver histopathological alterations. Furthermore, metronidazole caused a significant decrease in the number of implantation sites and fetal viability, whereas it caused an increase in fetal lethality and the number of fetal resorptions. In addition, a significant decrease in fetal weight, placental weight, and placental diameter was estimated. Macroscopical examination revealed placental discoloration and hypotrophy in the labyrinth zone and the degeneration of the basal zone. The fetal defects are related to exencephaly, visceral hernias, and tail defects. These findings suggest that the administration of metroniazole during gestation interferes with embryonic implantation and fetal organogenesis and enhances placental pathology. We can also conclude that metronidazole has potential maternal and fetal risks and is unsafe during pregnancy. Additionally, it should be strictly advised and prescribed, and further consideration should be given to the associated health risks.
Collapse
Affiliation(s)
- Mervat A. AbdRabou
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Barakat M. Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Hadeel K. Alruwaili
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Reda H. Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maha A. Alwaili
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Sarah I. Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Fawzyah A. Alghamdi
- Biology Department, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gehan H. Fahmy
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| |
Collapse
|
8
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
9
|
Inhibition of Leishmania infantum Trypanothione Reductase by New Aminopropanone Derivatives Interacting with the NADPH Binding Site. Molecules 2023; 28:molecules28010338. [PMID: 36615531 PMCID: PMC9823735 DOI: 10.3390/molecules28010338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in Leishmania species protozoan parasite life. Our previously identified compound 1 is a novel chemotype endowed with a unique mode of TR inhibition thanks to its binding to a formerly unknown but druggable site at the entrance of the NADPH binding cavity, absent in human glutathione reductase (hGR). METHODS We designed and synthesized new 3-amino-1-arylpropan-1-one derivatives structurally related to compound 1 and evaluated their potential inhibition activity on TR from Leishmania infantum (LiTR). Cluster docking was performed to assess the binding poses of the compounds. RESULTS The newly synthesized compounds were screened at a concentration of 100 μM in in vitro assays and all of them proved to be active with residual activity percentages lower than 75%. CONCLUSIONS Compounds 2a and 2b were the most potent inhibitors found, suggesting that an additional aromatic ring might be promising for enzymatic inhibition. Further structure-activity relationships are needed to optimize our compounds activity.
Collapse
|
10
|
Buick JK, Rowan-Carroll A, Gagné R, Williams A, Chen R, Li HH, Fornace AJ, Chao C, Engelward BP, Frötschl R, Ellinger-Ziegelbauer H, Pettit SD, Aubrecht J, Yauk CL. Integrated Genotoxicity Testing of three anti-infective drugs using the TGx-DDI transcriptomic biomarker and high-throughput CometChip® assay in TK6 cells. FRONTIERS IN TOXICOLOGY 2022; 4:991590. [PMID: 36211197 PMCID: PMC9540394 DOI: 10.3389/ftox.2022.991590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Genotoxicity testing relies on the detection of gene mutations and chromosome damage and has been used in the genetic safety assessment of drugs and chemicals for decades. However, the results of standard genotoxicity tests are often difficult to interpret due to lack of mode of action information. The TGx-DDI transcriptomic biomarker provides mechanistic information on the DNA damage-inducing (DDI) capability of chemicals to aid in the interpretation of positive in vitro genotoxicity data. The CometChip® assay was developed to assess DNA strand breaks in a higher-throughput format. We paired the TGx-DDI biomarker with the CometChip® assay in TK6 cells to evaluate three model agents: nitrofurantoin (NIT), metronidazole (MTZ), and novobiocin (NOV). TGx-DDI was analyzed by two independent labs and technologies (nCounter® and TempO-Seq®). Although these anti-infective drugs are, or have been, used in human and/or veterinary medicine, the standard genotoxicity testing battery showed significant genetic safety findings. Specifically, NIT is a mutagen and causes chromosome damage, and MTZ and NOV cause chromosome damage in conventional in vitro tests. Herein, the TGx-DDI biomarker classified NIT and MTZ as non-DDI at all concentrations tested, suggesting that NIT’s mutagenic activity is bacterial specific and that the observed chromosome damage by MTZ might be a consequence of in vitro test conditions. In contrast, NOV was classified as DDI at the second highest concentration tested, which is in line with the fact that NOV is a bacterial DNA-gyrase inhibitor that also affects topoisomerase II at high concentrations. The lack of DNA damage for NIT and MTZ was confirmed by the CometChip® results, which were negative for all three drugs except at overtly cytotoxic concentrations. This case study demonstrates the utility of combining the TGx-DDI biomarker and CometChip® to resolve conflicting genotoxicity data and provides further validation to support the reproducibility of the biomarker.
Collapse
Affiliation(s)
- Julie K. Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Renxiang Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | | - Syril D. Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jiri Aubrecht
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Carole L. Yauk,
| |
Collapse
|
11
|
Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals (Basel) 2022; 15:ph15050561. [PMID: 35631389 PMCID: PMC9144801 DOI: 10.3390/ph15050561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.
Collapse
|
12
|
In Vitro Validation of Antiparasitic Activity of PLA-Nanoparticles of Sodium Diethyldithiocarbamate against Trypanosoma cruzi. Pharmaceutics 2022; 14:pharmaceutics14030497. [PMID: 35335875 PMCID: PMC8954078 DOI: 10.3390/pharmaceutics14030497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite responsible for Chagas disease, which affects millions around the world and is not treatable in its chronic stage. Sodium diethyldithiocarbamate is a compound belonging to the carbamate class and, in a previous study, demonstrated high efficacy against T. cruzi, showing itself to be a promising compound for the treatment of Chagas disease. This study investigates the encapsulation of sodium diethyldithiocarbamate by poly-lactic acid in nanoparticles, a system of biodegradable nanoparticles that is capable of reducing the toxicity caused by free DETC against cells and maintaining the antiparasitic activity. The nanosystem PLA-DETC was fabricated using nanoprecipitation, and its physical characterization was measured via DLS, SEM, and AFM, demonstrating a small size around 168 nm and a zeta potential of around −19 mv. Furthermore, the toxicity was determined by MTT reduction against three cell lines (VERO, 3T3, and RAW), and when compared to free DETC, we observed a reduction in cell mortality, demonstrating the importance of DETC nanoencapsulation. In addition, the nanoparticles were stained with FITC and put in contact with cells for 24 h, followed by confirmation of whether the nanosystem was inside the cells. Lastly, the antiparasitic activity against different strains of T. cruzi in trypomastigote forms was determined by resazurin reduction and ROS production, which demonstrated high efficacy towards T. cruzi equal to that of free DETC.
Collapse
|
13
|
Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, Chaves LL, de La Rocca Soares MF, Soares-Sobrinho JL. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opin Ther Pat 2021; 32:89-114. [PMID: 34424127 DOI: 10.1080/13543776.2021.1970746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.
Collapse
Affiliation(s)
| | | | | | - Luise Lopes Chaves
- Department of Pharmacy, Federal University of Pernambuco, Recife, Recife-Pernambuco
| | | | | |
Collapse
|
14
|
Quintero WL, Moreno EM, Pinto SML, Sanabria SM, Stashenko E, García LT. Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complement Med Ther 2021; 21:187. [PMID: 34215249 PMCID: PMC8254251 DOI: 10.1186/s12906-021-03347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parasite persistence, exacerbated and sustained immune response, and continuous oxidative stress have been described to contribute to the development of the cardiac manifestations in Chronic Chagas Disease. Nevertheless, there are no efficient therapies to resolve the Trypanosoma cruzi infection and prevent the disease progression. Interestingly, trypanocide, antioxidant, and immunodulatory properties have been reported separately for some major terpenes, as citral (neral plus geranial), limonene, and caryophyllene oxide, presents in essential oils (EO) extracted from two chemotypes (Citral and Carvone) of Lippia alba. The aim of this study was to obtain L. alba essential oil fractions enriched with the aforementioned bioactive terpenes and to evaluate the impact of these therapies on trypanocide, oxidative stress, mitochondrial bioenergetics, genotoxicity, and inflammatory markers on T. cruzi-infected macrophages. METHODS T. cruzi-infected J774A.1 macrophage were treated with limonene-enriched (ACT1) and citral/caryophyllene oxide-enriched (ACT2) essential oils fractions derived from Carvone and Citral-L. alba chemotypes, respectively. RESULTS ACT1 (IC50 = 45 ± 1.7 μg/mL) and ACT2 (IC50 = 80 ± 1.9 μg/mL) exhibit similar trypanocidal effects to Benznidazole (BZN) (IC50 = 48 ± 2.5 μg/mL), against amastigotes. Synergistic antiparasitic activity was observed when ACT1 was combined with BZN (∑FIC = 0.52 ± 0.13 μg/mL) or ACT2 (∑FIC = 0.46 ± 1.7 μg/mL). ACT1 also decreased the oxidative stress, mitochondrial metabolism, and genotoxicity of the therapies. The ACT1 + ACT2 and ACT1 + BZN experimental treatments reduced the pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) and increased the anti-inflammatory cytokines (IL-4 and IL-10). CONCLUSION Due to its highly trypanocidal and immunomodulatory properties, ACT1 (whether alone or in combination with BZN or ACT2) represents a promising L. alba essential oil fraction for further studies in drug development towards the Chagas disease control.
Collapse
Affiliation(s)
- Wendy Lorena Quintero
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Erika Marcela Moreno
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Sandra Milena Leal Pinto
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | | | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga, Colombia 680002
| | - Liliana Torcoroma García
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| |
Collapse
|
15
|
Vembuli T, Thiripuranthagan S, Sureshkumar T, Erusappan E, Kumaravel S, Kasinathan M, Natesan B, Sivakumar A. Degradation of Harmful Organics Using Visible Light Driven N-TiO₂/rGO Nanocomposite. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3081-3091. [PMID: 33653483 DOI: 10.1166/jnn.2021.19122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen doped titania over reduced form of graphene oxide (N-TiO₂/rGO) catalysts were synthesized by adopting single step hydrothermal route. All the prepared photocatalysts were thoroughly characterized by using different analytical tools such as XRD, Raman, UV-DRS, FE-SEM and HRTEM. The photocatalytic activities of bare and composite catalysts were evaluated towards the photocatalytic decolourisation/degradation of Methylene blue dye (MB) and Metronidazole antibiotic (MTZ) under visible electromagnetic radiation. Among all the synthesized catalysts, N-TiO₂/rGO composite catalyst showed the highest decolourisation/degradation activity towards both the dye and the antibiotic. The most active catalyst was also tested under UV and solar light irradiations which showed promising results. The stability of the most active catalyst (N-TiO₂/rGO) was examined by recyclability test. The possible photocatalytic mechanism was proposed for the composite catalyst.
Collapse
Affiliation(s)
- Thanigaivel Vembuli
- Catalysis Laboratory, Department of Applied Science and Technology, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sivakumar Thiripuranthagan
- Catalysis Laboratory, Department of Applied Science and Technology, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | | | - Elangovan Erusappan
- Catalysis Laboratory, Department of Applied Science and Technology, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sakthivel Kumaravel
- Catalysis Laboratory, Department of Applied Science and Technology, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | - Maruthadurai Kasinathan
- Catalysis Laboratory, Department of Applied Science and Technology, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | - Balasubramanian Natesan
- Department of Chemical Engineering, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| | - Aishwarya Sivakumar
- Department of Chemical Engineering, A. C. Tech, Anna University, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
16
|
Virtual Screening Based on QSAR and Molecular Docking of Possible Inhibitors Targeting Chagas CYP51. J CHEM-NY 2021. [DOI: 10.1155/2021/6640624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chagas is a neglected tropical disease caused by the parasite Trypanosoma cruzi with no effective treatment in all its forms. There is a need to find more effective therapeutic alternatives with reduced toxicity. In this contribution, multiple linear regression models were used to identify the molecular descriptors that best describe the inhibitory activity of 52 fenarimol analogues against Trypanosoma cruzi. The topological, physicochemical, thermodynamic, electronic, and charge descriptors were evaluated to cover a wide range of properties that frequently encode biological activity. A model with high predictive value was obtained based on geometrical descriptors and descriptors encoding hydrophobicity and London dispersion forces as necessary for the inhibition of Trypanosoma cruzi-CYP51. Docking methodology was implemented to evaluate molecular interactions in silico. The virtual screening results in this study can be used for rational design of new analogues with improved activity against Chagas disease.
Collapse
|
17
|
Gonzalez SN, Mills JJ, Maugeri D, Olaya C, Laguera BL, Enders JR, Sherman J, Rodriguez A, Pierce JG, Cazzulo JJ, D'Antonio EL. Design, synthesis, and evaluation of substrate - analogue inhibitors of Trypanosoma cruzi ribose 5-phosphate isomerase type B. Bioorg Med Chem Lett 2021; 32:127723. [PMID: 33249135 DOI: 10.1016/j.bmcl.2020.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 μM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 μM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.
Collapse
Affiliation(s)
- Soledad Natalia Gonzalez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Jonathan J Mills
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Dante Maugeri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Christopher Olaya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Breana L Laguera
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Joshua G Pierce
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA.
| |
Collapse
|
18
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Fersing C, Boudot C, Castera-Ducros C, Pinault E, Hutter S, Paoli-Lombardo R, Primas N, Pedron J, Seguy L, Bourgeade-Delmas S, Sournia-Saquet A, Stigliani JL, Brossas JY, Paris L, Valentin A, Wyllie S, Fairlamb AH, Boutet-Robinet É, Corvaisier S, Since M, Malzert-Fréon A, Destere A, Mazier D, Rathelot P, Courtioux B, Azas N, Verhaeghe P, Vanelle P. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur J Med Chem 2020; 202:112558. [PMID: 32652409 DOI: 10.1016/j.ejmech.2020.112558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/15/2022]
Abstract
An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 μM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Clotilde Boudot
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Emilie Pinault
- Université de Limoges, BISCEm Mass Spectrometry Platform, CBRS, 2 rue du Pr. Descottes, F-87025, Limoges, France
| | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Romain Paoli-Lombardo
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Line Seguy
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | | | - Jean-Yves Brossas
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, France
| | - Luc Paris
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, France
| | - Alexis Valentin
- UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan H Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Élisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000, Caen, France
| | | | - Alexandre Destere
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, INSERM, UMR 1248, University of Limoges, Limoges, France
| | - Dominique Mazier
- CIMI-Paris, Sorbonne Université 91 boulevard de l'Hôpital, 75013, Paris, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Bertrand Courtioux
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| |
Collapse
|
20
|
Shakeel M, Butt TM, Zubair M, Siddiqi HM, Janjua NK, Akhter Z, Yaqub A, Mahmood S. Electrochemical investigations of DNA-Intercalation potency of bisnitrophenoxy compounds with different alkyl chain lengths. Heliyon 2020; 6:e04124. [PMID: 32548325 PMCID: PMC7284074 DOI: 10.1016/j.heliyon.2020.e04124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, the binding tendency of bisnitrophenoxy compounds (BN) having different methylene (-CH2-)n spacer groups (n = 8-11) with fish sperm double stranded deoxyribonucleic acid (dsDNA) was explored. Cyclic voltammetry (CV) was used to evaluate various kinetic and binding parameters (Ks,h, Do, K b and binding site sizes). Performed electrochemical studies designated strong contact of these symmetric molecules with dsDNA in threading intercalation mode of binding. The number (n) of methylene spacer group in the molecular structure of bisnitrophenoxy compounds, e.g., BN-8 (1-nitro-4-(8-(4-nitrophenoxy)octyloxy)benzene, was observed to have a strong influence on their binding affinity. Decreased peak current values and positively shifted peak potentials recorded via cyclic voltammetry clearly depicted that bisnitrophenoxy compounds can intercalate with dsDNA. Results demonstrated the following order of binding constants; K b (M-1): BN-8 (2.32 × 104) < BN-9 (5.73 × 104) < BN-10 (8.97 × 104) < BN-11 (17.34 × 104). The order of increasing binding sites from BN-8 (0.13) to BN-11 (1.38), revealed the maximum threading intercalation strength by bisnitrophenoxy compound having the longest methylene spacer (n = 11). Thermodynamic studies augmented the strong binding of BN-11 with dsDNA as compared to BN-8 because of the long-chain, -CH2- spacer in its structure. The spontaneity of dsDNA-binding was revealed by the negative ΔG values for interaction of all the compounds. Moreover, binding parameters from thermodynamic and kinetic studies also corresponded to the threading intercalation mode of interaction, which itself points to the potency of the envisioned drug-like molecules.
Collapse
Affiliation(s)
- Maria Shakeel
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Maria Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Azra Yaqub
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.,Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad, 45650, Pakistan
| | - Sadia Mahmood
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
21
|
Autophagy: A Player in response to Oxidative Stress and DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5692958. [PMID: 31467633 PMCID: PMC6701339 DOI: 10.1155/2019/5692958] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Autophagy is a catabolic pathway activated in response to different cellular stressors, such as damaged organelles, accumulation of misfolded or unfolded proteins, ER stress, accumulation of reactive oxygen species, and DNA damage. Some DNA damage sensors like FOXO3a, ATM, ATR, and p53 are known to be important autophagy regulators, and autophagy seems therefore to have a role in DNA damage response (DDR). Recent studies have partly clarified the pathways that induce autophagy during DDR, but its precise role is still not well known. Previous studies have shown that autophagy alterations induce an increase in DNA damage and in the occurrence of tumor and neurodegenerative diseases, highlighting its fundamental role in the maintenance of genomic stability. During DDR, autophagy could act as a source of energy to maintain cell cycle arrest and to sustain DNA repair activities. In addition, autophagy seems to play a role in the degradation of components involved in the repair machinery. In this paper, molecules which are able to induce oxidative stress and/or DNA damage have been selected and their toxic and genotoxic effects on the U937 cell line have been assessed in the presence of the single compounds and in concurrence with an inhibitor (chloroquine) or an inducer (rapamycin) of autophagy. Our data seem to corroborate the fundamental role of this pathway in response to direct and indirect DNA-damaging agents. The inhibition of autophagy through chloroquine had no effect on the genotoxicity induced by the tested compounds, but it led to a high increase of cytotoxicity. The induction of autophagy, through cotreatment with rapamycin, reduced the genotoxic activity of the compounds. The present study confirms the cytoprotective role of autophagy during DDR; its inhibition can sensitize cancer cells to DNA-damaging agents. The modulation of this pathway could therefore be an innovative approach able to reduce the toxicity of many compounds and to enhance the activity of others, including anticancer drugs.
Collapse
|
22
|
Development of a Novel Ex-vivo 3D Model to Screen Amoebicidal Activity on Infected Tissue. Sci Rep 2019; 9:8396. [PMID: 31182753 PMCID: PMC6557822 DOI: 10.1038/s41598-019-44899-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
Abstract
Amoebiasis is a parasitic disease that causes thousands of deaths every year, its adverse effects and resistance to conventional treatments have led to the search of new treatment options, as well as the development of novel screening methods. In this work, we implemented a 3D model of intestine and liver slices from hamsters that were infected ex vivo with virulent E. histolytica trophozoites. Results show preserved histology in both uninfected tissues as well as ulcerations, destruction of the epithelial cells, and inflammatory reaction in intestine slices and formation of micro abscesses, and the presence of amoebae in the sinusoidal spaces and in the interior of central veins in liver slices. The three chemically synthetized compounds T-001, T-011, and T-016, which act as amoebicides in vitro, were active in both infected tissues, as they decreased the number of trophozoites, and provoked death by disintegration of the amoeba, similar to metronidazole. However, compound T-011 induced signs of cytotoxicity to liver slices. Our results suggest that ex vivo cultures of precision-cut intestinal and liver slices represent a reliable 3D approach to evaluate novel amoebicidal compounds, and to simultaneously detect their toxicity, while reducing the number of experimental animals commonly required by other model systems.
Collapse
|
23
|
Pedron J, Boudot C, Hutter S, Bourgeade-Delmas S, Stigliani JL, Sournia-Saquet A, Moreau A, Boutet-Robinet E, Paloque L, Mothes E, Laget M, Vendier L, Pratviel G, Wyllie S, Fairlamb A, Azas N, Courtioux B, Valentin A, Verhaeghe P. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. Eur J Med Chem 2018; 155:135-152. [PMID: 29885575 DOI: 10.1016/j.ejmech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.
Collapse
Affiliation(s)
- Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | | | | | | | - Alain Moreau
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Michèle Laget
- UMR MD1, U1261, AMU, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Laure Vendier
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Nadine Azas
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse, France
| | | |
Collapse
|
24
|
ALARCON-VALDES P, ORTIZ-REYNOSO M, SANTILLAN-BENITEZ J. Perspective on the Genetic Response to Antiparasitics: A Review Article. IRANIAN JOURNAL OF PARASITOLOGY 2017; 12:470-481. [PMID: 29317871 PMCID: PMC5756296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Drugs' pharmacokinetics and pharmacodynamics can be affected by diverse genetic variations, within which simple nucleotide polymorphisms (SNPs) are the most common. Genetic variability is one of the factors that could explain questions like why a given drug does not have the desired effect or why do adverse drug reactions arise. METHODS In this retrospective observational study, literature search limits were set within PubMed database as well as the epidemiological bulletins published by the Mexican Ministry of Health, from Jan 1st 2001 to Mar 31st 2017 (16 years). RESULTS Metabolism of antiparasitic drugs and their interindividual responses are mainly modified by variations in cytochrome P450 enzymes. These enzymes show high frequencies of polymorphic variability thus affecting the expression of CYP2C, CYP2A, CYP2A6, CYP2D6, CYP2E6 and CYP2A6 isoforms. Research in this field opens the door to new personalized treatment approaches in medicine. CONCLUSION Clinical and pharmacological utility yield by applying pharmacogenetics to antiparasitic treatments is not intended as a mean to improve the prescription process, but to select or exclude patients that could present adverse drug reactions as well as to evaluate genetic alterations which result in a diversity of responses, ultimately seeking to provide a more effective and safe treatment; therefore choosing a proper dose for the appropriate patient and the optimal treatment duration. Furthermore, pharmacogenetics assists in the development of vaccines. In other words, the aim of this discipline is to find therapeutic targets allowing personalized treatments.
Collapse
|
25
|
Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 2016; 374:18-28. [DOI: 10.1016/j.tox.2016.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
|
26
|
Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas' disease. Antimicrob Agents Chemother 2014; 59:1398-404. [PMID: 25512408 DOI: 10.1128/aac.03814-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the parasitic infection Chagas' disease was described over 100 years ago, even now there are not suitable drugs. The available drugs nifurtimox and benznidazole have limited efficacies and tolerances, with proven mutagenic effects. Attempting to find appropriate drugs to deal with this problem, here we report on the development and pharmacological characterization of new amide-containing thiazoles. In the present study, we evaluated the in vitro and in vivo effects of new candidates against Trypanosoma cruzi, the etiological agent of Chagas' disease. The lead amide-containing thiazole derivative had potent in vitro activity, an absence of both in vitro mutagenic and in vivo clastogenic effects, and excellent in vitro selectivity and in vivo tolerance. The compound suppressed parasitemia in mice, modifying the anti-T. cruzi antibodies like the reference drug, benznidazole, and displayed the lowest mortality among the tested drugs. The present evidence suggests that this compound is a promising anti-T. cruzi agent surpassing the lead optimization stage in drug development and leading to a candidate for preclinical study.
Collapse
|
27
|
Patterson S, Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol 2014; 30:289-98. [PMID: 24776300 PMCID: PMC4045206 DOI: 10.1016/j.pt.2014.04.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
Two nitro drugs are currently used in the treatment of trypanosomatid diseases. Several new nitroaromatics are being developed against the trypanosomatid diseases. Many nitro drugs and drug candidates act as prodrugs which require bioactivation. Nitroaromatics can have disparate mechanisms of action in trypanosomatid parasites.
There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Janjua NK, Akhter Z, Jabeen F, Iftikhar B. Cyclic Voltammetric Investigation of Interactions between Bisnitroaromatic Compounds and ds.DNA. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2014. [DOI: 10.5012/jkcs.2014.58.2.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Kovacic P, Somanathan R. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 2014; 34:810-24. [PMID: 24532466 DOI: 10.1002/jat.2980] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Vehicle pollution is an increasing problem in the industrial world. Aromatic nitro compounds comprise a significant portion of the threat. In this review, the class includes nitro derivatives of benzene, biphenyls, naphthalenes, benzanthrone and polycyclic aromatic hydrocarbons, plus nitroheteroaromatic compounds. The numerous toxic manifestations are discussed. An appreciable number of drugs incorporate the nitroaromatic structure. The mechanistic aspects of both toxicity and therapy are addressed in the context of a unifying mechanism involving electron transfer, reactive oxygen species, oxidative stress and antioxidants.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
30
|
Bunik VI, Tylicki A, Lukashev NV. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 2013; 280:6412-42. [PMID: 24004353 DOI: 10.1111/febs.12512] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
31
|
Man YB, Chow KL, Kang Y, Wong MH. Mutagenicity and genotoxicity of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons and dioxins/furans. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:47-56. [DOI: 10.1016/j.mrgentox.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
32
|
Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 2012; 482:232-6. [PMID: 22278056 PMCID: PMC3303116 DOI: 10.1038/nature10771] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/07/2011] [Indexed: 01/24/2023]
Abstract
The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work, and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers and the only known pro-drug activator, and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H(+)-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sabine Eckert
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Nicola Baker
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Lucy Glover
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
33
|
Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 2011; 56:115-23. [PMID: 22037852 DOI: 10.1128/aac.05135-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benznidazole, a 2-nitroimidazole, is the front-line treatment used against American trypanosomiasis, a parasitic infection caused by Trypanosoma cruzi. Despite nearly 40 years of use, the trypanocidal activity of this prodrug is not fully understood. It has been proposed that benznidazole activation leads to the formation of reductive metabolites that can cause a series of deleterious effects, including DNA damage and thiol depletion. Here, we show that the key step in benznidazole activation involves an NADH-dependent trypanosomal type I nitroreductase. This catalyzes an oxygen-insensitive reaction with the interaction of enzyme, reductant, and prodrug occurring through a ping-pong mechanism. Liquid chromatography/mass spectrometry (LC/MS) analysis of the resultant metabolites identified 4,5-dihydro-4,5-dihydroxyimidazole as the major product of a reductive pathway proceeding through hydroxylamine and hydroxy intermediates. The breakdown of this product released the reactive dialdehyde glyoxal, which, in the presence of guanosine, generated guanosine-glyoxal adducts. These experiments indicate that the reduction of benznidazole by type I nitroreductase activity leads to the formation of highly reactive metabolites and that the expression of this enzyme is key to the trypanocidal properties displayed by the prodrug.
Collapse
|