1
|
Nepal N, Mahara P, Subedi S, Rijal KR, Ghimire P, Banjara MR, Shrestha UT. Genotypically Confirmed Vancomycin-Resistant Staphylococcus aureus With vanB Gene Among Clinical Isolates in Kathmandu. Microbiol Insights 2023; 16:11786361231183675. [PMID: 37456613 PMCID: PMC10338656 DOI: 10.1177/11786361231183675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Methicillin-resistant Staphylococcus aureus, a common bacterial pathogen causes various infections. The acquisition of various antimicrobial-resistant genes in S. aureus has led to the transformation of this bacterium into a superbug. Vancomycin resistance among MRSA isolates is an emerging threat in empirical therapy of various infections. The study was hence aimed to find out the susceptibility status of S. aureus isolates toward vancomycin and detect mecA, vanA, and vanB genes among the isolates. Methods A total of 1245 clinical samples from the participants attending a tertiary care hospital in Kathmandu were processed. S. aureus isolated from the samples were subjected to antibiotic susceptibility patterns using the modified Kirby-Bauer disk diffusion method. Agar dilution method was used to determine the minimum inhibitory concentration of vancomycin. The antibiotic-resistant genes such as mecA, vanA, and vanB among S. aureus isolates were screened by a conventional polymerase chain reaction. Results Of 1245 samples, 80 S. aureus were identified. Out of which, 47.5% (38/80) were phenotypically confirmed MRSA isolates. mecA gene was detected in 84.2% (32/38) of MRSA isolates. 10.5% (4/38) were confirmed as vancomycin-intermediate S. aureus (VISA) by MIC determination. None of the isolates was positive for the vanA gene; however, 2 isolates were found to possess the vanB gene. The 2 isolates have vancomycin MIC breakpoints of 4 to 8 μg/mL. Conclusion There might be a spreading of vancomycin resistance among S. aureus, creating serious public health problems. Therefore, measures to limit vancomycin resistance should be considered in healthcare facilities as immediately as possible.
Collapse
Affiliation(s)
- Niranjan Nepal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakriti Mahara
- GoldenGate International College, Old Baneshwor, Kathmandu, Nepal
| | - Shishir Subedi
- Grande International Hospital, Dhapasi, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
2
|
Miró L, Rosell-Cardona C, Amat C, Polo J, Moretó M, Pérez-Bosque A. Dietary supplementation with spray-dried animal plasma improves vaccine protection in aged mice. Front Nutr 2023; 10:1050961. [PMID: 37032769 PMCID: PMC10080719 DOI: 10.3389/fnut.2023.1050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Senescence is characterized by an aggravated inflammatory state that reduces vaccine responsiveness. Dietary supplementation with spray-dried porcine plasma (SDP) exerts anti-inflammatory effects in different mucosal areas. We aimed to determine if the anti-inflammatory properties of SDP improve the efficiency of immunization in senescent animals. Methods Experiments were performed in 2-month-old and 6-month-old male SAMP8 mice fed control or SDP (8%) feeds for 4 months. The mice received nasal doses of 2.5 μg of Staphylococcus aureus enterotoxin B (SEB) or vehicle every 15 days (i.e., 3 times). Fifteen days after the last dose, a lethal shock was induced by intraperitoneal administration of SEB and LPS. Results Immunization increased anti-SEB IgA in intestinal and bronchoalveolar fluid (p < 0.05). After the lethal shock, all immunized aged mice that were supplemented with SDP survived, in contrast to only 66% of those fed the control feed (p < 0.05). Moreover, after the lethal challenge, aged mice showed higher expression levels of pro-inflammatory cytokines (Il-6, Tnf-α, Ifn-γ, and Il-1β) in jejunal and (Tnf-α, and Il-1β) in lung tissues (p < 0.05), which were reduced by SDP supplementation (p < 0.05). Furthermore, in senescent mice, SDP supplementation augmented Il-4 and Il-10 expression in both tissues (p < 0.05). Conclusion SDP reduces the mucosal inflammation associated with aging, improving vaccine protection in senescent mice.
Collapse
Affiliation(s)
- Lluïsa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Rosell-Cardona
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Concepció Amat
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Miquel Moretó
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
4
|
Guo F, Jing M, Zhang A, Yu Y, Gao P, Wang Q, Wang L, Xu Z, Ma J, Zhang Y. Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals (Basel) 2022; 12:ani12151899. [PMID: 35892549 PMCID: PMC9330308 DOI: 10.3390/ani12151899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The poultry meat we eat is the skeletal muscle which comprises approximately three-quarters of the body weight of a chicken. In the modern poultry industry, the intensively raised broilers face the risk of exposure to environmental factors which can cause acute or chronic systemic inflammation. Inflammation, in return, contributes to the pathology of skeletal muscle diseases which are characterized by the loss of skeletal muscle mass. By adding betaine, a natural component, into the water of the newly hatched broilers for two weeks, we found that inflammation-related gene expression in the leg muscle was remarkably reduced. Specifically, we found that betaine inhibited the LPS-induced abnormal expression of IL-6 and TLR4. Further study indicated that the methylation modulation of the gene may be involved in betaine’s action. We suggest that betaine could be considered a safe and cheap preventive reagent candidate for chicken skeletal muscle inflammatory diseases. Abstract Betaine was found to alleviate inflammation in different studies. Here, newly hatched broilers were randomly divided into control and betaine consumptive groups, who had access to normal drinking water and water with betaine at a dose of 1000 mg/L, respectively. At the age of two weeks, the boilers were intraperitoneally treated with LPS. The protective effects of betaine against LPS-induced skeletal muscle inflammation were studied. Betaine attenuated the LPS-induced overexpression of IL-6 significantly in the leg muscle. Furthermore, LPS lowered the expression of TLR4 and TLR2 but increased the expression of MyD88. Betaine eliminated the effect of LPS on the expression of TLR4 but not TLR2 and MyD88. LPS also increased the expression of Tet methylcytosine dioxygenase 2 (Tet2), and this effect was also eliminated by betaine consumption. MeDIP-qPCR analysis showed that the methylation level in the promoter region of IL-6 was decreased by LPS treatment, whilst betaine cannot prevent this effect. On the contrary, LPS significantly increase the methylation level in the promoter region of TLR4, which was decreased by the consumption of betaine. Our findings suggest that betaine can alleviate LPS-induced muscle inflammation in chicken, and the regulation of aberrant DNA methylation might be a possible mechanism.
Collapse
|
5
|
Zong F, Gan C, Wang Y, Su D, Deng M, Xiao N, Zhang Z, Zhou D, Gao B, Yang H. Exposure to aerosolized staphylococcal enterotoxin B potentiated by lipopolysaccharide modifies lung transcriptomes and results in lung injury in the mouse model. J Appl Toxicol 2022; 42:1205-1217. [DOI: 10.1002/jat.4289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fuliang Zong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Changjiao Gan
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease Nankai University Affiliated Third Center Hospital Tianjin China
| | - Yifeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Duo Su
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Mengyun Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Zhipeng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Bo Gao
- Institute of Military Cognition and Brain Sciences Beijing China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| |
Collapse
|
6
|
Ribera J, Vilches C, Sanz V, de Miguel I, Portolés I, Córdoba-Jover B, Prat E, Nunes V, Jiménez W, Quidant R, Morales-Ruiz M. Treatment of Hepatic Fibrosis in Mice Based on Targeted Plasmonic Hyperthermia. ACS NANO 2021; 15:7547-7562. [PMID: 33720693 DOI: 10.1021/acsnano.1c00988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Liver fibrosis is a major health problem with multiple associated complications, which, to date, has no effective treatment. Hepatic stellate cells are the main responsible cells for fibrosis formation; upon their activation, excess accumulation of extracellular matrix and collagen deposits occurs. The mitogen platelet-derived growth factor (PDGF) and its receptor β (PDGFRβ) play a major role in hepatic stellate cells activation and are, therefore, promising targets for antifibrotic therapies. Gold nanorods hold great potential for diseased liver treatments, since their passive hepatic accumulation enhances active targeting strategies, hence increasing therapeutic efficiency. In addition, gold nanorods have photothermal properties that, combined with specific cell delivery, can be exploited to induce localized near-infrared light-mediated thermal ablation. Here, we demonstrate that gold nanorods coated with anti-PDGFRβ specifically target activated hepatic stellate cells in vivo. Additionally, gold nanorods-PDGFRβ-mediated photothermal therapy decreases fibrosis, hepatic inflammation, and hepatocyte injury in the experimental model of CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Clara Vilches
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ignacio de Miguel
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Esther Prat
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| | - Romain Quidant
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| |
Collapse
|
7
|
Yamasaki O, Sugihara S, Kajita A, Yokoyama E, Miyake T, Hirai Y, Morizane S. Staphylococcal enterotoxin B- and lipopolysaccharide-induced toxic shock syndrome in a burn patient. J Dermatol 2021; 48:547-550. [PMID: 33410193 DOI: 10.1111/1346-8138.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Toxic shock syndrome (TSS) is caused by toxic shock syndrome toxin 1 or enterotoxins secreted by Staphylococcus aureus. Lipopolysaccharide (LPS) has also been shown to play a major role in the development of sepsis. Staphylococcal superantigens and LPS operate synergistically in conditioning cytokine release and lethal shock in mice. An 80-year-old woman was admitted because of a 20% mixed-depth flame burn. Despite two excisions and grafts, necrotic ulcers with methicillin-resistant Staphylococcus aureus (MRSA) colonization remained. On the 7th day after the operation, she developed shock with an erythematous rash. Blood examination revealed evidence of disseminated intravascular coagulation, and liver and renal dysfunction. A blood culture revealed a staphylococcal enterotoxin B (SEB)-producing strain of MRSA and Klebsiella pneumoniae. The septic symptoms were prolonged, but the condition gradually improved with extensive treatment. T-cell receptor analysis demonstrated a marked accumulation of SEB-mediated Vβ T cells. Stimulation of peripheral blood mononuclear cells in the recovery phase with SEB and LPS induced additive effects on tumor necrosis factor-α, interferon-γ, and interleukin-6 production. Although the present case did not fulfill the clinical criteria for TSS, the additive effects of SEB and LPS might have caused the severe septic shock.
Collapse
Affiliation(s)
- Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Sugihara
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ai Kajita
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emi Yokoyama
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoji Hirai
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Steinhagen F, Hilbert T, Cramer N, Senzig S, Parcina M, Bode C, Boehm O, Frede S, Klaschik S. Development of a minimal invasive and controllable murine model to study polymicrobial abdominal sepsis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1909663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Folkert Steinhagen
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Nina Cramer
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sebastian Senzig
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Marijo Parcina
- Department of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Stratton CW, Tang YW, Lu H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J Med Virol 2020; 93:1320-1342. [PMID: 33073355 DOI: 10.1002/jmv.26610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) now is considered a global public health emergency. One of the unprecedented challenges is defining the optimal therapy for those patients with severe pneumonia and systemic manifestations of COVID-19. The optimal therapy should be largely based on the pathogenesis of infections caused by this novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the onset of COVID-19, there have been many prepublications and publications reviewing the therapy of COVID-19 as well as many prepublications and publications reviewing the pathogenesis of SARS-CoV-2. However, there have been no comprehensive reviews that link COVID-19 therapies to the pathogenic mechanisms of SARS-CoV-2. To link COVID-19 therapies to pathogenic mechanisms of SARS-CoV-2, we performed a comprehensive search through MEDLINE, PubMed, medRxiv, EMBASE, Scopus, Google Scholar, and Web of Science using the following keywords: COVID-19, SARS-CoV-2, novel 2019 coronavirus, pathology, pathologic, pathogenesis, pathophysiology, coronavirus pneumonia, coronavirus infection, coronavirus pulmonary infection, coronavirus cardiovascular infection, coronavirus gastroenteritis, coronavirus autopsy findings, viral sepsis, endotheliitis, thrombosis, coagulation abnormalities, immunology, humeral immunity, cellular immunity, inflammation, cytokine storm, superantigen, therapy, treatment, therapeutics, immune-based therapeutics, antiviral agents, respiratory therapy, oxygen therapy, anticoagulation therapy, adjuvant therapy, and preventative therapy. Opinions expressed in this review also are based on personal experience as clinicians, authors, peer reviewers, and editors. This narrative review linking COVID-19 therapies with pathogenic mechanisms of SARS-CoV-2 has resulted in six major therapeutic goals for COVID-19 therapy based on the pathogenic mechanisms of SARS-CoV-2. These goals are listed below: 1. The first goal is identifying COVID-19 patients that require both testing and therapy. This is best accomplished with a COVID-19 molecular test from symptomatic patients as well as determining the oxygen saturation in such patients with a pulse oximeter. Whether a symptomatic respiratory illness is COVID-19, influenza, or another respiratory pathogen, an oxygen saturation less than 90% means that the patient requires medical assistance. 2. The second goal is to correct the hypoxia. This goal generally requires hospitalization for oxygen therapy; other respiratory-directed therapies such as prone positioning or mechanical ventilation are often used in the attempt to correct hypoxemia due to COVID-19. 3. The third goal is to reduce the viral load of SARS-CoV-2. Ideally, there would be an oral antiviral agent available such as seen with the use of oseltamivir phosphate for influenza. This oral antiviral agent should be taken early in the course of SARS-CoV-2 infection. Such an oral agent is not available yet. Currently, two options are available for reducing the viral load of SARS-CoV-2. These are post-Covid-19 plasma with a high neutralizing antibody titer against SARS-CoV-2 or intravenous remdesivir; both options require hospitalization. 4. The fourth goal is to identify and address the hyperinflammation phase often seen in hospitalized COVID-19 patients. Currently, fever with an elevated C-reactive protein is useful for diagnosing this hyperinflammation syndrome. Low-dose dexamethasone therapy currently is the best therapeutic approach. 5. The fifth goal is to identify and address the hypercoagulability phase seen in many hospitalized COVID-19 patients. Patients who would benefit from anticoagulation therapy can be identified by a marked increase in d-dimer and prothrombin time with a decrease in fibrinogen. To correct this disseminated intravascular coagulation-like phase, anticoagulation therapy with low molecular weight heparin is preferred. Anticoagulation therapy with unfractionated heparin is preferred in COVID-19 patients with acute kidney injuries. 6. The last goal is prophylaxis for persons who are not yet infected. Potential supplements include vitamin D and zinc. Although the data for such supplements is not extremely strong, it can be argued that almost 50% of the population worldwide has a vitamin D deficiency. Correcting this deficiency would be beneficial regardless of any impact of COVID-19. Similarly, zinc is an important supplement that is important in one's diet regardless of any effect on SARS-CoV-2. As emerging therapies are found to be more effective against the SARS-CoV-2 pathogenic mechanisms identified, they can be substituted for those therapies presented in this review.
Collapse
Affiliation(s)
- Charles W Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi-Wei Tang
- Danaher Diagnostic Platform/Cepheid, Shanghai, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
10
|
High Titer Persistent Neutralizing Antibodies Induced by TSST-1 Variant Vaccine Against Toxic Shock Cytokine Storm. Toxins (Basel) 2020; 12:toxins12100640. [PMID: 33023185 PMCID: PMC7601046 DOI: 10.3390/toxins12100640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
Staphylococcal superantigen toxins lead to a devastating cytokine storm resulting in shock and multi-organ failure. We have previously assessed the safety and immunogenicity of a recombinant toxic shock syndrome toxin 1 variant vaccine (rTSST-1v) in clinical trials (NCT02971670 and NCT02340338). The current study assessed neutralizing antibody titers after repeated vaccination with escalating doses of rTSST-1v. At study entry, 23 out of 34 subjects (67.6%) had neutralizing antibody titers inhibiting T cell activation as determined by 3H-thymidine incorporation at a serum dilution of ≤1:100 with similar figures for inhibition of IL-2 activation (19 of 34 subjects, 55.9%) as assessed by quantitative PCR. After the first vaccination, numbers of subjects with neutralization titers inhibiting T cell activation (61.7% ≥ 1:1000) and inhibiting IL-2 gene induction (88.2% ≥ 1:1000) increased. The immune response was augmented after the second vaccination (inhibiting T cell activation: 78.8% ≥ 1:1000; inhibiting IL-2 induction: 93.9% ≥ 1:1000) corroborated with a third immunization months later in a small subgroup of subjects. Assessment of IFNγ, TNFα and IL-6 inhibition revealed similar results, whereas neutralization titers did not change in placebo participants. Antibody titer studies show that vaccination with rTSST-1v in subjects with no/low neutralizing antibodies can rapidly induce high titer neutralizing antibodies persisting over months.
Collapse
|
11
|
Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. Eur J Pharmacol 2020; 881:173259. [PMID: 32565338 DOI: 10.1016/j.ejphar.2020.173259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023]
Abstract
Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1β messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.
Collapse
|
12
|
Liu Y, Song Z, Ge S, Zhang J, Xu L, Yang F, Lu D, Luo P, Gu J, Zou Q, Zeng H. Determining the immunological characteristics of a novel human monoclonal antibody developed against staphylococcal enterotoxin B. Hum Vaccin Immunother 2020; 16:1708-1718. [PMID: 32275466 DOI: 10.1080/21645515.2020.1744362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Staphylococci are the main cause of nosocomial infections globally. The exotoxin staphylococcal enterotoxin B (SEB) produced by methicillin-resistant Staphylococcus aureus is a major cause of pathology after a staphylococcal infection. We previously isolated an anti-SEB human monoclonal antibody designated as M0313. Here we further characterize this antibody in vitro and in vivo. Immunoblotting analysis and ELISA results indicated that M0313 accurately recognized and bound to SEB. Its binding affinity to native SEB was measured at the low nM level. M0313 effectively inhibited SEB from inducing mouse splenic lymphocyte and human peripheral blood mononuclear cell proliferation and cytokine release in cell culture. M0313 also neutralized SEB toxicity in BALB/c female mice. Most importantly, M0313 promoted the survival of mice treated with SEB-expressing bacteria. In-vivo imaging revealed that M0313 treatment significantly reduced the replication of SEB-expressing bacteria in mice. The neutralization capacity of M0313 correlated with its ability to block SEB from binding to major histocompatibility complex II and T-cell receptor by binding to the SEB residues 85-102 and 90-92. Thus, the monoclonal antibody M0313 may be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China.,Clinical Laboratory Department, Army 954th Hospital, General Hospital of Tibet Military Region , Tibet, PR China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Limin Xu
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Feng Yang
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
13
|
Kourko O, Smyth R, Cino D, Seaver K, Petes C, Eo SY, Basta S, Gee K. Poly(I:C)-Mediated Death of Human Prostate Cancer Cell Lines Is Induced by Interleukin-27 Treatment. J Interferon Cytokine Res 2019; 39:483-494. [PMID: 31009295 DOI: 10.1089/jir.2018.0166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-27 is a promising anti-cancer cytokine with therapeutic potential. Exhibiting overlapping properties with type I and II interferons (IFNs), IL-27 impacts cancer cell viability and immune cell activity. Known to modulate toll-like receptor (TLR) expression, we investigated whether IL-27 affected TLR-mediated death in cancer cells. Using DU145 and PC3 cell lines as models of prostate cancer, we investigated whether IL-27 and IFN-γ affect TLR3-mediated cell death. Our results demonstrate that when IL-27 or IFN-γ is added with polyinosinic-polycytidylic acid [poly(I:C)], type I IFN (IFN-I) expression increases concurrently with cell death. IL-27 and IFN-γ enhanced TLR3 expression, suggesting a mechanism for sensitization to cell death. Further, PC3 cells were more sensitive to IL-27/poly(I:C)-induced cell death compared with DU145 cells. This correlated with higher production of IFN-β and inducible protein-10 versus IL-6 in response to treatment of PC3 cells compared with DU145. Taken together, this study demonstrates a potential role for IL-27 in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Robin Smyth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Daniela Cino
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - So Young Eo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
14
|
Staphylococcal Superantigens: Pyrogenic Toxins Induce Toxic Shock. Toxins (Basel) 2019; 11:toxins11030178. [PMID: 30909619 PMCID: PMC6468478 DOI: 10.3390/toxins11030178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related superantigenic toxins produced by Staphylococcus aureus are potent activators of the immune system. These protein toxins bind to major histocompatibility complex (MHC) class II molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the activation of both monocytes/macrophages and T lymphocytes. The bridging of TCRs with MHC class II molecules by superantigens triggers an early “cytokine storm” and massive polyclonal T-cell proliferation. Proinflammatory cytokines, tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 elicit fever, inflammation, multiple organ injury, hypotension, and lethal shock. Upon MHC/TCR ligation, superantigens induce signaling pathways, including mitogen-activated protein kinase cascades and cytokine receptor signaling, which results in NFκB activation and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. In addition, gene profiling studies have revealed the essential roles of innate antimicrobial defense genes in the pathogenesis of SEB. The genes expressed in a murine model of SEB-induced shock include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, endoplasmic reticulum/mitochondrial stress responses, immunoproteasome components, and IFN-stimulated genes. This review focuses on the signaling pathways induced by superantigens that lead to the activation of inflammation and damage response genes. The induction of these damage response genes provides evidence that SEB induces danger signals in host cells, resulting in multiorgan injury and toxic shock. Therapeutics targeting both host inflammatory and cell death pathways can potentially mitigate the toxic effects of staphylococcal superantigens.
Collapse
|
15
|
Krakauer T. FDA-approved immunosuppressants targeting staphylococcal superantigens: mechanisms and insights. Immunotargets Ther 2017; 6:17-29. [PMID: 28497030 PMCID: PMC5423536 DOI: 10.2147/itt.s125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in human beings and laboratory animals by hyperactivating cells of the immune system. These protein toxins bind to the major histocompatibility complex class II (MHC II) molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the stimulation of both monocytes/macrophages and T lymphocytes. The bridging of TCR with MHC II molecules by superantigens triggers intracellular signaling cascades, resulting in excessive release of proinflammatory mediators and massive polyclonal T-cell proliferation. The early induction of tumor necrosis factor α, interleukin 1 (IL-1), interleukin 2 (IL-2), interferon gamma (IFNγ), and macrophage chemoattractant protein 1 promotes fever, inflammation, and multiple organ injury. The signal transduction pathways for staphylococcal superantigen-induced toxicity downstream from TCR/major histocompatibility complex (MHC) ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, activating nuclear factor κB (NFκB) and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Knowledge of host regulation within these activated pathways and molecules initiated by SEB and other superantigens enables the selection of US Food and Drug Administration (FDA)-approved drugs to interrupt and prevent superantigen-induced shock in animal models. This review focuses on the use of FDA-approved immunosuppressants in targeting the signaling pathways induced by staphylococcal superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
16
|
Szabo PA, Goswami A, Mazzuca DM, Kim K, O'Gorman DB, Hess DA, Welch ID, Young HA, Singh B, McCormick JK, Haeryfar SMM. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2805-2818. [PMID: 28219889 PMCID: PMC6635948 DOI: 10.4049/jimmunol.1601366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Ankur Goswami
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Delfina M Mazzuca
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Kyoungok Kim
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - David B O'Gorman
- Cell and Molecular Biology Laboratory, Roth | McFarlane Hand and Upper Limb Centre, Western University, London, Ontario N6A 4V2, Canada
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Department of Surgery, Western University, London, Ontario N6A 4V2, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Ian D Welch
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada;
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada
| |
Collapse
|
17
|
Whitfield SJC, Taylor C, Risdall JE, Griffiths GD, Jones JTA, Williamson ED, Rijpkema S, Saraiva L, Vessillier S, Green AC, Carter AJ. Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology. THE JOURNAL OF IMMUNOLOGY 2017; 198:3989-3998. [PMID: 28320831 DOI: 10.4049/jimmunol.1601525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/11/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-γ (p < 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p < 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.
Collapse
Affiliation(s)
- Sarah J C Whitfield
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom;
| | - Chris Taylor
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Jane E Risdall
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom.,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Gareth D Griffiths
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - James T A Jones
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - E Diane Williamson
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Sjoerd Rijpkema
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, United Kingdom
| | - Luisa Saraiva
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, United Kingdom; and
| | - Sandrine Vessillier
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, United Kingdom; and
| | - A Christopher Green
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Alun J Carter
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury, Wiltshire SP4 0JQ, United Kingdom.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Krakauer T, Pradhan K, Stiles BG. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Front Immunol 2016; 7:23. [PMID: 26870039 PMCID: PMC4735405 DOI: 10.3389/fimmu.2016.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/18/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed toward TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an “SEB-only” model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome components, as well as antiviral and IFN-stimulated genes. The host-wide induction of these, and other, antimicrobial defense genes provide evidence that SEB elicits danger signals resulting in multi-organ damage and toxic shock. Ultimately, these discoveries might lead to novel therapeutics for various superantigen-based diseases.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick , Frederick, MD , USA
| | - Kisha Pradhan
- Biology Department, Wilson College , Chambersburg, PA , USA
| | | |
Collapse
|
19
|
Abstract
Staphylococcal enterotoxin B is one of the most potent bacterial superantigens that exerts profound toxic effects upon the immune system, leading to stimulation of cytokine release and inflammation. It is associated with food poisoning, nonmenstrual toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. Currently, there is no treatment or vaccine available. Passive immunotherapy using monoclonal antibodies made in several different species has shown significant inhibition in in vitro studies and reduction in staphylococcal enterotoxin B-induced lethal shock in in vivo studies. This should encourage future endeavors to develop these antibodies as therapeutic reagents.
Collapse
|
20
|
Sulfasalazine attenuates staphylococcal enterotoxin B-induced immune responses. Toxins (Basel) 2015; 7:553-9. [PMID: 25688664 PMCID: PMC4344640 DOI: 10.3390/toxins7020553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/27/2015] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. The excessive release of proinflammatory cytokines from these cells mediates the toxic effects of SEB. This study examined the inhibitory activities of an anti-inflammatory drug, sulfasalazine, on SEB-stimulated human peripheral blood mononuclear cells (PBMC). Sulfasalazine dose-dependently inhibited tumor necrosis factor α, interleukin 1 (IL-1) β, IL-2, IL-6, interferon γ (IFNγ), and various chemotactic cytokines from SEB-stimulated human PBMC. Sulfasalazine also potently blocked SEB-induced T cell proliferation and NFκB activation. These results suggest that sulfasalazine might be useful in mitigating the toxic effects of SEB by blocking SEB-induced host inflammatory cascade and signaling pathways.
Collapse
|
21
|
Farzi A, Reichmann F, Meinitzer A, Mayerhofer R, Jain P, Hassan AM, Fröhlich EE, Wagner K, Painsipp E, Rinner B, Holzer P. Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain Behav Immun 2015; 44:106-20. [PMID: 25218901 PMCID: PMC4295938 DOI: 10.1016/j.bbi.2014.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.
Collapse
Affiliation(s)
- Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Ahmed M. Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E. Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Karin Wagner
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Beate Rinner
- Core Facility Flow Cytometry, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|
22
|
Rodríguez-González R, Ramos-Nuez Á, Martín-Barrasa JL, López-Aguilar J, Baluja A, Álvarez J, Rocco PRM, Pelosi P, Villar J. Endotoxin-induced lung alveolar cell injury causes brain cell damage. Exp Biol Med (Maywood) 2014; 240:135-42. [PMID: 25135986 DOI: 10.1177/1535370214547156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Ángela Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - José Luis Martín-Barrasa
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Animal Facility Service, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Josefina López-Aguilar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Critical Care Center, Corporació Sanitaria Parc Taulí, Sabadell, 08208 Barcelona, Spain
| | - Aurora Baluja
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Julián Álvarez
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16126 Genoa, Italy
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
23
|
Mathew S, Bartels J, Banerjee I, Vodovotz Y. Global sensitivity analysis of a mathematical model of acute inflammation identifies nonlinear dependence of cumulative tissue damage on host interleukin-6 responses. J Theor Biol 2014; 358:132-48. [PMID: 24909493 DOI: 10.1016/j.jtbi.2014.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the ODE model for different levels of simulated LPS challenges using a global sensitivity approach called Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient parametric Monte Carlo samples to generate the variance-based Sobol' global sensitivity indices, and found that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak representing healthy response and the higher peak representing sustained inflammation. Damage was minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6 resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the NO-mediated anti-inflammatory responses. These observations suggest that the host's health status during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory stimulus, on the host's propensity to produce IL-6, and on NO-mediated downstream responses.
Collapse
Affiliation(s)
- Shibin Mathew
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yoram Vodovotz
- Immunetrics, Inc., Pittsburgh, PA 15203, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Liao PY, Chang SC, Chen KS, Wang HC. Decreased postoperative C-reactive protein production in dogs with pyometra through the use of low-dose ketamine. J Vet Emerg Crit Care (San Antonio) 2014; 24:286-90. [PMID: 24690118 DOI: 10.1111/vec.12178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the effects of subanesthetic ketamine in dogs with pyometra on C-reactive protein (CRP) concentrations following surgery. DESIGN Prospective, nonconcealed, alternating allocation controlled trial. SETTING Veterinary teaching hospital. ANIMALS Sixteen dogs diagnosed with pyometra. INTERVENTIONS The tentative diagnosis of canine pyometra was based on compatible history, physical examination findings, ultrasonographic findings, and hematological evaluation. Two different anesthesia and analgesic protocols with and without low-dose ketamine were used during and following ovariohysterectomy in 16 female dogs (n = 8 per group) that were diagnosed with naturally occurring pyometra. Dogs were sequentially allocated to treatment groups in an alternating fashion without concealment. Serum was collected before, 24, and 48 hours after surgery for CRP measurement. MEASUREMENTS AND MAIN RESULTS Perioperative physical parameters in the 2 groups of dogs were similar. The serum concentrations of CRP in both groups were essentially the same before surgery, but significantly increased in the control group and decreased in ketamine group at 48 hours after surgery. CONCLUSIONS Low-dose ketamine attenuated the postoperative concentration of serum CRP in dogs with pyometra compared with dogs that did not receive ketamine in the perioperative period. Further studies are warranted to determine the clinical implications of these findings.
Collapse
Affiliation(s)
- Pei-Yu Liao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 40227, Taiwan
| | | | | | | |
Collapse
|
25
|
Krakauer T. Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins (Basel) 2013; 5:1629-54. [PMID: 24064719 PMCID: PMC3798877 DOI: 10.3390/toxins5091629] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related bacterial toxins cause diseases in humans and laboratory animals ranging from food poisoning, acute lung injury to toxic shock. These superantigens bind directly to the major histocompatibility complex class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in rapid hyper-activation of the host immune system. In addition to TCR and co-stimulatory signals, proinflammatory mediators activate signaling pathways culminating in cell-stress response, activation of NFκB and mammalian target of rapamycin (mTOR). This article presents a concise review of superantigen-activated signaling pathways and focuses on the therapeutic challenges against bacterial superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702 5011, USA.
| |
Collapse
|
26
|
Abstract
Staphylococcus aureus plays an important role in numerous human cases of food poisoning, soft tissue, and bone infections, as well as potentially lethal toxic shock. This common bacterium synthesizes various virulence factors that include staphylococcal enterotoxins (SEs). These protein toxins bind directly to major histocompatibility complex class II on antigen-presenting cells and specific Vβ regions of T-cell receptors, resulting in potentially life-threatening stimulation of the immune system. Picomolar concentrations of SEs ultimately elicit proinflammatory cytokines that can induce fever, hypotension, multi-organ failure, and lethal shock. Various in vitro and in vivo models have provided important tools for studying the biological effects of, as well as potential vaccines/therapeutics against, the SEs. This review succinctly presents known physical and biological properties of the SEs, including various intervention strategies. In particular, SEB will often be portrayed as per biodefense concerns dating back to the 1960s.
Collapse
Affiliation(s)
- Teresa Krakauer
- Integrated Toxicology Division; United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | | |
Collapse
|
27
|
Krakauer T. PI3K/Akt/mTOR, a pathway less recognized for staphylococcal superantigen-induced toxicity. Toxins (Basel) 2012; 4:1343-66. [PMID: 23202320 PMCID: PMC3509712 DOI: 10.3390/toxins4111343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/27/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in humans and laboratory animals by activating cells of the immune system. These toxins bind directly to the major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. The well-explored signal transduction pathways for SEB-induced toxicity downstream from TCR/MHC ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, culminating in NFκB activation. Independently, IL-2, IFNγ, and chemokines from activated T cells signal via the phosphoinositide 3-kinase (PI3K), the serine/threonine kinases, Akt and mammalian target of rapamycin (mTOR) pathways. This article reviews the signaling molecules induced by superantigens in the activation of PI3K/Akt/mTOR pathways leading to staphylococcal superantigen-induced toxicity and updates potential therapeutics against superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
28
|
Serriere S, Barantin L, Seguin F, Tranquart F, Nadal-Desbarats L. Impact of prenatal stress on 1H NMR-based metabolic profiling of rat amniotic fluid. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:267-75. [DOI: 10.1007/s10334-011-0260-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/15/2011] [Accepted: 05/06/2011] [Indexed: 01/05/2023]
|
29
|
Ji N, Rao N, Guentzel NM, Arulanandam BP, Forsthuber TG. Anaphylaxis and mortality induced by treatment of mice with anti-VLA-4 antibody and pertussis toxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2750-6. [PMID: 21270409 PMCID: PMC4064569 DOI: 10.4049/jimmunol.1000907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab-mediated blockade of the adhesion molecule VLA-4 has been shown to ameliorate disease in human multiple sclerosis patients and experimental autoimmune encephalomyelitis (EAE) animal models. We wanted to determine whether anti-VLA-4 Ab treatment affected the function and persistence of autoreactive T cells in mice with EAE. Unexpectedly, we observed a high level of mortality in anti-VLA-4 mAb (PS/2)-treated mice with actively induced EAE despite decreased disease severity. Investigation of the underlying mechanism showed that injection of PS/2 mAb in combination with pertussis toxin resulted in anaphylaxis and mortality. Furthermore, the data showed that CD4(+) T cells were required for this effect and suggested a role for IL-1β and TNF-α in the underlying pathology. The results reveal a previously not appreciated deleterious effect of anti-VLA-4 Ab treatment in combination with exposure to pertussis toxin.
Collapse
MESH Headings
- Anaphylaxis/genetics
- Anaphylaxis/immunology
- Anaphylaxis/mortality
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Drug Combinations
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/mortality
- Female
- Integrin alpha4beta1/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Myelin Proteins
- Myelin-Associated Glycoprotein/administration & dosage
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Pertussis Toxin/administration & dosage
- Survival Analysis
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Niannian Ji
- Dept. Biology, University of Texas at San Antonio, TX 78249
| | - Nagarjun Rao
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | | | | |
Collapse
|
30
|
Therapeutic down-modulators of staphylococcal superantigen-induced inflammation and toxic shock. Toxins (Basel) 2010; 2:1963-83. [PMID: 22069668 PMCID: PMC3153276 DOI: 10.3390/toxins2081963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/16/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related superantigenic toxins are potent stimulators of the immune system and cause a variety of diseases in humans, ranging from food poisoning to toxic shock. These toxins bind directly to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in hyperactivation of both monocytes/macrophages and T lymphocytes. Activated host cells produce massive amounts of proinflammatory cytokines and chemokines, activating inflammation and coagulation, causing clinical symptoms that include fever, hypotension, and shock. This review summarizes the in vitro and in vivo effects of staphylococcal superantigens, the role of pivotal mediators induced by these toxins in the pathogenic mechanisms of tissue injury, and the therapeutic agents to mitigate the toxic effects of superantigens.
Collapse
|