1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Değirmençay Ş, Küçükler S, Özdemir S, Kaman R. Evaluation of erythrocyte arginase activity, plasma nitric oxide concentration and oxidative stress status in cattle with anaplasmosis. Vet Parasitol 2023; 314:109855. [PMID: 36528965 DOI: 10.1016/j.vetpar.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bovine anaplasmosis is an arthropod-borne disease characterized by high fever, anaemia and sometimes jaundice. The role of oxidative stress in anaplasmosis has been investigated, but erythrocyte arginase (ARG) activity has not been studied. In this study, we aimed to investigate the changes in haematological parameters, erythrocyte ARG activity, plasma nitric oxide (NO) levels and oxidative stress parameters and explain the relationship between each other in cattle with anaplasmosis. The material of this study consisted of 14 cattle, aged 10-12 months with anaplasmosis (infected group) and 14 healthy cattle aged 10-12 months (control group). Our data revealed that leukocyte parameters and plasma NO levels and serum malondialdehyde (MDA), total oxidant status (TOS) and oxidative stress index (OSI) levels were higher while erythrocyte parameters, erythrocyte ARG activity and serum total antioxidant status (TAS) and glutathione (GSH) levels were lower in the infected group compared to the control group. There was a strong correlation between erythrocyte ARG activity and NO, MDA, TOS, OSI, TAS and GSH. ROC analysis and correlation results suggest that erythrocyte ARG activity is an effective oxidative stress marker. We concluded that severe oxidative stress occurs in anaplasmosis. As the severity of anaemia increases, erythrocyte ARG activity plummets while plasma NO level elevates. These two parameters may also be used as prognostic and oxidative stress markers. Although decreased erythrocyte ARG activity is a disadvantage in haemolytic diseases, this situation can be compensated by increased NO. Thus, homeostasis of these two parameters may contribute to the elimination of the infection.
Collapse
Affiliation(s)
- Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ramazan Kaman
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
3
|
Peng Q, Nowocin A, Ratnasothy K, Smith RA, Smyth LA, Lechler RI, Dorling A, Lombardi G. Inhibition of thrombin on endothelium enhances recruitment of regulatory T cells during IRI and when combined with adoptive Treg transfer, significantly protects against acute tissue injury and prolongs allograft survival. Front Immunol 2023; 13:980462. [PMID: 36793549 PMCID: PMC9924086 DOI: 10.3389/fimmu.2022.980462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) amplifies T cell alloimmune responses after transplantation with thrombin playing a key pro-inflammatory role. To explore the influence of thrombin on regulatory T cell recruitment and efficacy we used a well-established model of IRI in the native murine kidney. Administration of the cytotopic thrombin inhibitor PTL060 inhibited IRI, and by skewing expression of chemokines (reducing CCL2 and CCL3 but increasing CCL17 and CCL22) increased the infiltration of M2 macrophages and Tregs. When PTL060 was combined with infusion of additional Tregs, these effects were further amplified. To test the benefits of thrombin inhibition in a transplant model, BALB/c hearts were transplanted into B6 mice with or without perfusion with PTL060 in combination with Tregs. Thrombin inhibition or Treg infusion alone led to small increments in allograft survival. However, the combined therapy led to modest graft prolongation by the same mechanisms as in renal IRI; graft survival was accompanied by increased numbers of Tregs and anti-inflammatory macrophages, and reduced expression of pro-inflammatory cytokines. While the grafts succumbed to rejection associated with the emergence of alloantibody, these data suggest that thrombin inhibition within the transplant vasculature enhances the efficacy of Treg infusion, a therapy that is currently entering the clinic to promote transplant tolerance.
Collapse
Affiliation(s)
- Qi Peng
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Anna Nowocin
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Kulachelvy Ratnasothy
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Richard A. Smith
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Lesley A. Smyth
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom,School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Robert I. Lechler
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom,*Correspondence: Giovanna Lombardi,
| |
Collapse
|
4
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
5
|
Souza MA, Gonçalves-Santos E, Gonçalves RV, Santos EC, Campos CC, Marques MJ, Souza RL, Novaes RD. Doxycycline hyclate stimulates inducible nitric oxide synthase and arginase imbalance, potentiating inflammatory and oxidative lung damage in schistosomiasis. Biomed J 2022; 45:857-869. [PMID: 34971826 PMCID: PMC9795368 DOI: 10.1016/j.bj.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the relationship between inducible nitric oxide synthase (iNOS) and arginase pathways, cytokines, macrophages, oxidative damage and lung granulomatous inflammation in S. mansoni-infected and doxycycline-treated mice. METHODS Swiss mice were randomized in four groups: (i) uninfected, (ii) infected with S. mansoni, (iii) infected + 200 mg/kg praziquantel (Pzt), (iv) and (v) infected + 5 and 50 mg/kg doxycycline. Pzt (reference drug) was administered in a single dose and doxycycline for 60 days. RESULTS S. mansoni-infection determined extensive lung inflammation, marked recruitment of M2 macrophages, cytokines (IL-4, IL-5, IFN-γ, TNF-α) upregulation, intense eosinophil peroxidase (EPO) levels, arginase expression and activity, reduced iNOS expression and nitric oxide (NO) production. The higher dose of doxycycline aggravated lung granulomatous inflammation, downregulating IL-4 levels and M2 macrophages recruitment, and upregulating iNOS expression, EPO, NO, IFN-γ, TNF-α, M1 macrophages, protein carbonyl and malondialdehyde tissue levels. The number and size of granulomas in doxycycline-treated animals was higher than untreated and Pzt-treated mice. Exudative/productive granulomas were predominant in untreated and doxycycline-treated animals, while fibrotic/involutive granulomas were more frequent in Pzt-treated mice. The reference treatment with Pzt attenuated all these parameters. CONCLUSION Our findings indicated that doxycycline aggravated lung granulomatous inflammation in a dose-dependent way. Although Th1 effectors are protective against several intracellular pathogens, effective schistosomicidal responses are dependent of the Th2 phenotype. Thus, doxycycline contributes to the worsening of lung granulomatous inflammation by potentiating eosinophils influx and downregulating Th2 effectors, reinforcing lipid and protein oxidative damage in chronic S. mansoni infection.
Collapse
Affiliation(s)
- Matheus Augusto Souza
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Reggiani V. Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eliziária C. Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Camila C. Campos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Marcos J. Marques
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Raquel L.M. Souza
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rômulo D. Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil,Corresponding author. Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil. Tel.: +55 31 3299 1300.
| |
Collapse
|
6
|
Remion E, Gal J, Chaouch S, Rodrigues J, Lhermitte-Vallarino N, Alonso J, Kohl L, Hübner MP, Fercoq F, Martin C. Unbalanced Arginine pathway and altered maturation of pleural macrophages in Th2-deficient mice during Litomosoides sigmodontis filarial infection. Front Immunol 2022; 13:866373. [PMID: 36353644 PMCID: PMC9637854 DOI: 10.3389/fimmu.2022.866373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Filarial parasites are tissue dwelling worms transmitted by hematophagous vectors. Understanding the mechanisms regulating microfilariae (the parasite offspring) development is a prerequisite for controlling transmission in filarial infections. Th2 immune responses are key for building efficient anti-parasite responses but have been shown to also lead to detrimental tissue damage in the presence of microfilariae. Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity was therefore used to characterize pleuropulmonary pathology and associated immune responses in wild-type and Th2 deficient mice. Wild-type and Th2-deficient mice (Il-4rα-/-/Il-5-/- ) were infected with L. sigmodontis and parasite outcome was analyzed during the patent phase (when microfilariae are in the general circulation). Pleuropulmonary manifestations were investigated and pleural and bronchoalveolar cells were characterized by RNA analysis, imaging and/or flow cytometry focusing on macrophages. Il-4rα-/-/Il-5-/- mice were hypermicrofilaremic and showed an enhanced filarial survival but also displayed a drastic reduction of microfilaria-driven pleural cavity pathologies. In parallel, pleural macrophages from Il-4rα-/-/Il-5-/- mice lacked expression of prototypical alternative activation markers RELMα and Chil3 and showed an altered balance of some markers of the arginine metabolic pathway. In addition, monocytes-derived F4/80intermediate macrophages from infected Il-4rα-/-/Il-5-/- mice failed to mature into resident F4/80high large macrophages. Altogether these data emphasize that the presence of both microfilariae and IL-4R/IL-5 signaling are critical in the development of the pathology and in the phenotype of macrophages. In Il-4rα-/-/Il-5-/- mice, the balance is in favor of parasite development while limiting the pathology associated with the host immune response.
Collapse
Affiliation(s)
- Estelle Remion
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Joséphine Gal
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Soraya Chaouch
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Jules Rodrigues
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Nathaly Lhermitte-Vallarino
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Joy Alonso
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Linda Kohl
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Frédéric Fercoq
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| | - Coralie Martin
- Unit Communication Molecules and Adaptation of Micro-organisms (MCAM, UMR 7245), Team Parasites and Free Protistes, Muséum National d’Histoire Naturelle, CNRS; CP52, 61 rue Buffon, 75005 Paris, France
| |
Collapse
|
7
|
Nasirzade J, Kargarpour Z, Panahipour L, Gruber R. Acid Dentin Lysate Modulates Macrophage Polarization and Osteoclastogenesis In Vitro. MATERIALS 2021; 14:ma14226920. [PMID: 34832320 PMCID: PMC8622705 DOI: 10.3390/ma14226920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Dentin prepared from extracted teeth is used as autograft for alveolar bone augmentation. Graft consolidation involves the acid lysis of dentin thereby generating a characteristic paracrine environment. Acid lysate of dentin is mimicking this environment. Acid dentin lysate (ADL) potentially targets hematopoietic cells thereby affecting their differentiation towards macrophages and osteoclasts; however, the question remains if ADL controls macrophage polarization and osteoclastogenesis. Here, we show that ADL reduced lipopolysaccharide (LPS)-induced macrophage polarization of the pro-inflammatory (M1) phenotype, indicated by attenuated Interleukin 1 (IL1), Interleukine 6 (IL6)and cyclooxygenase 2 (COX2) expression. This decrease in M1 macrophages was confirmed by the reduced phosphorylation and nuclear translocation of p65 in the LPS-exposed RAW 264.7 macrophages. Similarly, when RAW 264.7 macrophages were incubated with other agonists of Toll-like receptor (TLR) signaling e.g., FSL1, Polyinosinic-polycytidylic acid High Molecular Weight (Poly (1:C) HMW), Pam3CSK4, and imiquimod, ADL reduced the IL6 expression. We further show herein that ADL decreased osteoclastogenesis indicated by the reduced formation of multinucleated cell expressing cathepsin K and tartrate-resistant acid phosphatase in murine bone marrow cultures. Overall, our results suggest that acid dentin lysate can affect the differentiation of hematopoietic cells to M1 macrophage polarization and a decrease in osteoclastogenesis in bone marrow cultures.
Collapse
Affiliation(s)
- Jila Nasirzade
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Layla Panahipour
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Dental School, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Reis LC, Ramos-Sanchez EM, Araujo FN, Leal AF, Ozaki CY, Sevillano OR, Uscata BA, Goto H. Pleiotropic Effect of Hormone Insulin-Like Growth Factor-I in Immune Response and Pathogenesis in Leishmaniases. J Immunol Res 2021; 2021:6614475. [PMID: 34036108 PMCID: PMC8116165 DOI: 10.1155/2021/6614475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniases are diseases caused by several Leishmania species, and many factors contribute to the development of the infection. Because the adaptive immune response does not fully explain the outcome of Leishmania infection and considering that the initial events are crucial in the establishment of the infection, we investigated one of the growth factors, the insulin-like growth factor-I (IGF-I), found in circulation and produced by different cells including macrophages and present in the skin where the parasite is inoculated. Here, we review the role of IGF-I in leishmaniasis experimental models and human patients. IGF-I induces the growth of different Leishmania species in vitro and alters the disease outcome increasing the parasite load and lesion size, especially in L. major- and L. amazonensis-infected mouse leishmaniasis. IGF-I affects the parasite interacting with the IGF-I receptor present on Leishmania. During Leishmania-macrophage interaction, IGF-I acts on the arginine metabolic pathway, resulting in polyamine production both in macrophages and Leishmania. IGF-I and cytokines interact with reciprocal influences on their expression. IL-4 is a hallmark of susceptibility to L. major in murine leishmaniasis, but we observed that IGF-I operates astoundingly as an effector element of the IL-4. Approaching human leishmaniasis, patients with mucosal, disseminated, and visceral diseases presented surprisingly low IGF-I serum levels, suggesting diverse effects than parasite growth. We observed that low IGF-I levels might contribute to the inflammatory response persistence and delayed lesion healing in human cutaneous leishmaniasis and the anemia development in visceral leishmaniasis. We must highlight the complexity of infection revealed depending on the Leishmania species and the parasite's developmental stages. Because IGF-I exerts pleiotropic effects on the biology of interaction and disease pathogenesis, IGF-I turns up as an attractive tool to explore biological and pathogenic processes underlying infection development. IGF-I pleiotropic effects open further the possibility of approaching IGF-I as a therapeutical target.
Collapse
Affiliation(s)
- Luiza C. Reis
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Fernanda N. Araujo
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Ariane F. Leal
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Christiane Y. Ozaki
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Orlando R. Sevillano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Bernardina A. Uscata
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Hiro Goto
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Arginase Activity in Eisenia andrei Coelomocytes: Function in the Earthworm Innate Response. Int J Mol Sci 2021; 22:ijms22073687. [PMID: 33916228 PMCID: PMC8037997 DOI: 10.3390/ijms22073687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.
Collapse
|
11
|
Volpini X, Ambrosio LF, Brajín MA, Brugo MB, Aoki MP, Rivarola HW, Alfonso F, Fozzatti L, Cervi L, Motran CC. Wnt Signaling Plays a Key Role in the Regulation of the Immune Response and Cardiac Damage during Trypanosoma cruzi Infection. ACS Infect Dis 2021; 7:566-578. [PMID: 33573383 DOI: 10.1021/acsinfecdis.0c00590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chagas cardiomyopathy is the consequence of a compromised electrical and mechanical cardiac function, with parasite persistence, unbalanced inflammation, and pathological tissue remodelling, being intricately related to myocardial aggression and impaired function. Recent studies have shown that Wnt signaling pathways play a critical role in the pathogenesis of cardiac and vascular diseases. In addition, we have reported that Trypanosoma cruzi infection activates Wnt signaling to promote intracellular replication of the parasites in macrophages, with the treatment of mice with IWP-L6 (an inhibitor of the O-acyl-transferase, PORCN, responsible for the post-translational modifications necessary for Wnt protein secretion) being able to diminish parasitemia and tissue parasitism. Here, we show that inhibition of Wnt signaling during the acute phase of T. cruzi infection controls the parasite replication, inhibits the development of parasite-prone and fibrosis-prone Th2-type immune response, and prevents the development of cardiac abnormalities characteristics of chronic Chagas disease. Our results suggest that the Wnt signaling pathway might be a potential target to prevent the development of T. cruzi-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Agustina Brajín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Belen Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Hector Walter Rivarola
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fernando Alfonso
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
12
|
Kupani M, Sharma S, Pandey RK, Kumar R, Sundar S, Mehrotra S. IL-10 and TGF-β Induced Arginase Expression Contributes to Deficient Nitric Oxide Response in Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 10:614165. [PMID: 33680983 PMCID: PMC7930829 DOI: 10.3389/fcimb.2020.614165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/31/2020] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.
Collapse
Affiliation(s)
- Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajeev Kumar Pandey
- Research and Development Division, Thermo Fisher Scientific, Bangalore, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
13
|
IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm 2020; 2020:4087315. [PMID: 33376451 PMCID: PMC7744230 DOI: 10.1155/2020/4087315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.
Collapse
|
14
|
Xu-Vanpala S, Deerhake ME, Wheaton JD, Parker ME, Juvvadi PR, MacIver N, Ciofani M, Shinohara ML. Functional heterogeneity of alveolar macrophage population based on expression of CXCL2. Sci Immunol 2020; 5:eaba7350. [PMID: 32769172 PMCID: PMC7717592 DOI: 10.1126/sciimmunol.aba7350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022]
Abstract
Alveolar macrophages (AMs) are the major lung-resident macrophages and have contradictory functions. AMs maintain tolerance and tissue homeostasis, but they also initiate strong inflammatory responses. However, such opposing roles within the AM population were not known to be simultaneously generated and coexist. Here, we uncovered heterogeneous AM subpopulations generated in response to two distinct pulmonary fungal infections, Cryptococcus neoformans and Aspergillus fumigatus Some AMs are bona fide sentinel cells that produce chemoattractant CXCL2, which also serves as a marker for AM heterogeneity, in the context of pulmonary fungal infections. However, other AMs do not produce CXCL2 and other pro-inflammatory molecules. Instead, they highly produce anti-inflammatory molecules, including interleukin-10 (IL-10) and complement component 1q (C1q). These two AM subpopulations have distinct metabolic profiles and phagocytic capacities. We report that polarization of pro-inflammatory and anti-inflammatory AM subpopulations is regulated at both epigenetic and transcriptional levels and that these AM subpopulations are generally highly plastic. Our studies have uncovered the role of C1q expression in programming and sustaining anti-inflammatory AMs. Our finding of the AM heterogeneity upon fungal infections suggests a possible pharmacological intervention target to treat fungal infections by tipping the balance of AM subpopulations.
Collapse
Affiliation(s)
- Shengjie Xu-Vanpala
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua D Wheaton
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA
| | - Morgan E Parker
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Praveen R Juvvadi
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Nancie MacIver
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria Ciofani
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Das S, Banerjee A, Kamran M, Ejazi SA, Asad M, Ali N, Chakrabarti S. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J Biol Chem 2020; 295:9934-9947. [PMID: 32471865 DOI: 10.1074/jbc.ra120.014587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of resistance to available antileishmanial drugs advocates identification of new drug targets and their inhibitors for visceral leishmaniasis. Here, we identified Leishmania donovani heat shock protein 78 (LdHSP78), a putative caseinolytic protease, as important for parasite infection of host macrophages and a potential therapeutic target. Enrichment of LdHSP78 in infected humans, hamsters, and parasite amastigotes suggested its importance for disease persistence. Heterozygous knockouts of L. donovani HSP78 (LdHSP78+/-) and Leishmania mexicana HSP78 (LmxHSP78+/-) were generated using a flanking UTR-based multifragment ligation strategy and the CRISPR-Cas9 technique, respectively to investigate the significance of HSP78 for disease manifestation. The LdHSP78+/- parasite burden was dramatically reduced in both murine bone marrow-derived macrophages and hamsters, in association with enrichment of proinflammatory cytokines and NO. This finding implies that LdHSP78+/- parasites cannot suppress immune activation and escape NO-mediated toxicity in macrophages. Furthermore, phosphorylation of the mitogen-activated protein kinase p38 was enhanced and phosphorylation of extracellular signal-regulated kinase 1/2 was decreased in cells infected with LdHSP78+/- parasites, compared with WT parasites. Virulence of the LdHSP78+/- strain was restored by episomal addition of the LdHSP78 gene. Finally, using high-throughput virtual screening, we identified P 1,P 5-di(adenosine-5')-pentaphosphate (Ap5A) ammonium salt as an LdHSP78 inhibitor. It selectively induced amastigote death at doses similar to amphotericin B doses, while exhibiting much less cytotoxicity to healthy macrophages than amphotericin B. In summary, using both a genetic knockout approach and pharmacological inhibition, we establish LdHSP78 as a drug target and Ap5A as a potential lead for improved antileishmanial agents.
Collapse
Affiliation(s)
- Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Anindyajit Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Abd El-Aleem SA, Abd-Elghany MI, Ali Saber E, Jude EB, Djouhri L. A possible role for inducible arginase isoform (AI) in the pathogenesis of chronic venous leg ulcer. J Cell Physiol 2020; 235:9974-9991. [PMID: 32458472 DOI: 10.1002/jcp.29812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023]
Abstract
Chronic venous ulcer (CVU) is a major cause of chronic wounds of lower extremities and presents a significant financial and resource burden to health care systems worldwide. Defects in the vasculature, matrix deposition, and re-epithelialization are the main histopathological changes believed to impede healing. Supplementation of the amino acid arginine that plays a crucial role in the interactions that occur during inflammation and wound healing was proven clinically to improve acute wound healing probably through enhancing activity of inducible arginase (AI) locally in the wounds. However, the possible mechanism of arginine action and the potential beneficial effects of AI/arginine in human chronic wounds remain unclear. In the present study, using biopsies, taken under local anesthesia, from adult patients (n = 12, mean age 55 years old) with CVUs in lower extremities, we investigated the correlation between AI distribution in CVUs and the histopathological changes, mainly proliferative and vascular changes. Our results show a distinct spatial distribution of AI along the ulcer in the epidermis and in the dermis with the highest level of expression being at the ulcer edge and the least expression towards the ulcer base. The AI cellular immunoreactivity, enzymatic activity, and protein levels were significantly increased towards the ulcer edge. Interestingly, a similar pattern of expression was encountered in the proliferative and the vascular changes with strong correlations between AI and the proliferative activity and vascular changes. Furthermore, AI cellular distribution was associated with increased proliferative activity, inflammation, and vascular changes. Our findings of differential expression of AI along the CVU base, edge, and nearby surrounding skin and its associations with increased proliferative activity and vascular changes provide further support to the AI implication in CVU pathogenesis. The presence of high levels of AI in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- Department of Cell Biology, University of Manchester, Manchester, UK.,Department of Histology and cell Biology, Minia University, Minia, Egypt
| | | | - Entesar Ali Saber
- Department of Histology and cell Biology, Minia University, Minia, Egypt.,Department of Histology, Deraya University, New Minia, Egypt
| | - Edward B Jude
- Department of Cell Biology, University of Manchester, Manchester, UK
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165707. [DOI: 10.1016/j.bbadis.2020.165707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
18
|
Hrčková G, Kubašková TM, Reiterová K, Biedermann D. Co-administration of silymarin elevates the therapeutic effect of praziquantel through modulation of specific antibody profiles, Th1/Th2/Tregs cytokines and down-regulation of fibrogenesis in mice with Mesocestoides vogae (Cestoda) infection. Exp Parasitol 2020; 213:107888. [PMID: 32259552 DOI: 10.1016/j.exppara.2020.107888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/09/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023]
Abstract
Silymarin (SIL) represents a natural mixture of polyphenols showing an array of health benefits. The present study, carried out on a model cestode infection induced by Mesocestoides vogae tetrathyridia in the ICR strain of mice, was aimed at investigating the impact of SIL as adjunct therapy on the activity of praziquantel (PZQ) in relation to parasite burden, immunity and liver fibrosis within 20 days post-therapy. In comparison with PZQ alone, co-administration of SIL and PZQ stimulated production of total IgG antibodies to somatic and excretory-secretory antigens of metacestodes and modified the expression patterns of immunogenic molecules in both antigenic preparations. The combined therapy resulted in the elevation of IFN-γ and a decline of TNF-α and TGF-β1 in serum as compared to untreated group; however, SIL attenuated significantly the effect of PZQ on IL-4 and stimulated PZQ-suppressed phagocytosis of peritoneal macrophages. In the liver, SIL boosted the effect of PZQ on gene expression of the same cytokines in a similar way as was found in serum, except for down-regulation of PZQ-stimulated TNF-α. Compared to PZQ therapy, the infiltration of mast cells into liver after SIL co-administration was nearly abolished and correlated with suppressed activities of genes for collagen I, collagen III and α-SMA. In conclusion, co-administration of SIL modified the effects of PZQ therapy on antigenic stimulation of the immune system and modulated Th1/Th2/Tregs cytokines. In liver this was accompanied by reduced fibrosis, which correlated with significantly higher reduction of total numbers of tetrathyridia after combined therapy as compared with PZQ treatment.
Collapse
Affiliation(s)
- Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic.
| | - Terézia Mačák Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic
| | - Katarína Reiterová
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220, Prague, Czech Republic
| |
Collapse
|
19
|
Li ML, Su XM, Ren Y, Zhao X, Kong LF, Kang J. HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respir Res 2020; 21:62. [PMID: 32111211 PMCID: PMC7048058 DOI: 10.1186/s12931-020-1322-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study was to investigate of the mechanism by which histone deacetylase (HDAC) 8 inhibitor ameliorated airway hyperresponsiveness (AHR) and allergic airway inflammation. METHODS Mice were sensitized and then treated with budesonide (BUD) or PCI-34051 (PCI) prior to exposing to normal saline (NS) or ovalbumin (OVA). The raw264.7 cells were treated with interleukin (IL)-4 and PCI or shRNA alone. Repetitive measurements of enhanced pause (Penh) were executed by increasing concentrations of acetyl-β-methacholine chloride (0 - 50 mg/ml). Cells in bronchoalveolar lavage fluid (BALF) and pathological changes of lungs were examined, respectively. The expression levels of HDAC8, Galecitn (Gal)-3, CD68, CD86, CD163, Arg1 and NOS2 in lungs were measured. Co-regulation of HDAC8 and Gal-3 proteins was observed by immunofluorescence staining and co-immunoprecipitation assay (Co-IP). RESULTS Significant increases in Penh and IL-4 level were detected with a large inflammatory infiltrate, comprised predominantly of macrophages and eosinophils, into the BALF in OVA-exposed lungs. HDAC8, Gal-3, CD68, CD86, CD163, Arg1 and NOS2 proteins were over-expressed with the significant changes in the Arg1 and NOS2 mRNA levels in the lungs and the IL-4-treated cells. PCI intervention obviously reduced the counts of CD163+ cells. Furthermore, Gal-3 knockdown suppressed Arg1 expression in the cells. Immunofluorescence staining displayed simultaneous changes in HDAC8 and Gal-3 expression in the investigated samples. Treatment with PCI resulted in synchronous reduction of HDAC8 and Gal-3 expression in the Co-IP complexes. CONCLUSIONS The HDAC8 inhibitor ameliorates AHR and airway inflammation in animal model of allergic asthma through reducing HDAC8-Gal-3 interaction and M2 macrophage polarization.
Collapse
Affiliation(s)
- Meng-Lu Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xin-Ming Su
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuan Ren
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xuan Zhao
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Ling-Fei Kong
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
20
|
Abbadi A, Loftis J, Wang A, Yu M, Wang Y, Shakya S, Li X, Maytin E, Hascall V. Heparin inhibits proinflammatory and promotes anti-inflammatory macrophage polarization under hyperglycemic stress. J Biol Chem 2020; 295:4849-4857. [PMID: 32107314 DOI: 10.1074/jbc.ra119.012419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Indexed: 01/15/2023] Open
Abstract
Monocytes are rapidly recruited to sites of diabetic complications and differentiate into macrophages. Previously, we showed that rat kidney mesangial cells dividing during hyperglycemic stress abnormally synthesize hyaluronan (HA) in intracellular compartments. This initiates a stress response, resulting in an extracellular HA matrix after division that recruits inflammatory cells. Cell-cell communication among macrophages that are recruited into the glomeruli and the damaged rat mesangial cells leads to diabetic nephropathy, fibrosis, and proteinurea, which are inhibited in heparin-treated diabetic rats. In this study, we found that murine bone marrow-derived macrophages (BMDMs) and a human leukemic cell line, U937 cells, dividing in hyperglycemia also accumulate intracellular HA and that heparin inhibits the HA accumulation. Both cell types expressed increased levels of proinflammatory markers: inducible nitric-oxide synthase and tumor necrosis factor-α, when cultured under hyperglycemic stress, which was inhibited by heparin. Furthermore, the abnormal intracellular HA was also observed in peripheral blood monocytes derived from three different hyperglycemic diabetic mouse models: streptozotocin-treated, high-fat fed, and Ins2Akita. Moreover, peripheral blood monocytes in humans with type 2 diabetes and poorly controlled blood glucose levels (hemoglobin A1c (HbA1c) levels of >7) also had intracellular HA, whereas those with HbA1c of <7, did not. Of note, heparin increased the anti-inflammatory markers arginase 1 and interleukin-10 in murine BMDMs. We conclude that heparin treatment of high glucose-exposed dividing BMDMs promotes an anti-inflammatory tissue-repair phenotype in these cells.
Collapse
Affiliation(s)
- Amina Abbadi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jacqueline Loftis
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Aimin Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Minjia Yu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yan Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sajina Shakya
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
21
|
Campello AC, Zanella LGFABDE, Suzuki RB, Tokumo MO, Chagas EFB, Baleotti W, Sperança MA, Martins LPA. Correlation of plasma butyrylcholinesterase concentration with Acethylcholinesterase H353N polymorphism in the inflammatory response of Chagas disease patients. Parasitol Int 2020; 76:102066. [PMID: 32006676 DOI: 10.1016/j.parint.2020.102066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi infection triggers an intense production of pro-inflammatory cytokines mediated by T helper 1 lymphocytes, inducing the anti-inflammatory reflex of acetylcholine (ACh). The ACh concentration modulation is associated to the two major esterases, the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). AChE H353N protein polymorphism is related to low Chagas chronic disease prognostic. In order to evaluate the correlation of plasmatic BuChE concentration and the presence of AChE H353N polymorphism in Chagas disease patients and healthy individuals, we studied two groups of individuals, one of 61 Chagas disease patients and another of 74 healthy individuals. Plasma concentration of BuChE was measured by the chemiluminescent method and AChE H353N polymorphism was investigated by PCR-RFLP and sequencing of the respective encoding AChE gene fragment. The BuChE concentration was statistically higher in Chagas disease patients, with no AChE genotype significant influence. AChE genotypes YT*A/YT*A, YT*A/YT*B and YT*B/YT*B, respectively, were expressed in 53 (86.88%), 7 (11.46%) and one (1.64%) chagasic patients, and in 68 (91.89%), 6 (8.10%) and none healthy individuals. BuChE activity may represent an important marker for chronic Chagas disease inflammatory process and prognostic. Lower BuChE concentration correlated with AChE YT*B allele, although without statistical power.
Collapse
Affiliation(s)
- A C Campello
- Department of Parasitology, Marília Medical School, Marília, SP, 17519-030, Brazil
| | - L G F A B D E Zanella
- Faculty of Medicine, University of São Paulo, São Paulo, SP, 01246-903, Brazil; Servidor Público Hospital, São Paulo, SP, 04038-034, Brazil
| | - R B Suzuki
- Department of Parasitology, Marília Medical School, Marília, SP, 17519-030, Brazil; School of Medicine, Marilia University, Marília, SP, 17525-902, Brazil
| | - M O Tokumo
- Department of Cardiology, Marília Medical School, Marília, SP, 17519-030, Brazil
| | - E F B Chagas
- Study Group on Aging and Obesity [GEEO], Marilia University, Marília, SP, 17525-902, Brazil
| | - W Baleotti
- Department of Clinical Pathology, Marília Medical School, Marília, SP, 17519-030, Brazil
| | - M A Sperança
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - L P A Martins
- Department of Parasitology, Marília Medical School, Marília, SP, 17519-030, Brazil.
| |
Collapse
|
22
|
Brodaczewska KK, Donskow-Łysoniewska K, Krawczak K, Doligalska M. Role of l-arginine and CD11b+Gr-1+ cells in immunosuppression induced by Heligmosomoides polygyrus bakeri. Parasite Immunol 2020; 42:e12704. [PMID: 32049381 DOI: 10.1111/pim.12704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 01/18/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous population of monocyte and granulocyte progenitors that are highly suppressive against T cells. In BALB/c mice infected with a nematode Heligmosomoides polygyrus bakeri, we studied the dynamics of MDSCs, identified as CD11b+Gr-1+, induction in different tissues along with the development of parasite infection. We observed that MDSC-like cells are induced both by larvae and adult stages of H polygyrus bakeri. Gr-1+ cells of suppressive phenotype are recruited in the bone marrow, peripheral blood and peritoneal cavity during histotropic phase of infection and are present at that time in the intestine wall, where worms reside. Later, during intestinal phase, suppressive Gr-1+ cells increased in mesenteric lymph nodes and the spleen. l-arginine metabolism was important for the protective immunity, and parasite-induced Gr-1+ cells showed elevated arginase-1 and iNOS expression. Inhibition of arginase-1 and l-arginine administration caused reduced level of infection that coincided with weaker suppressive phenotype of Gr-1+ cells. We identified that l-arginine pathway activation and induction of MDSC-like cells characterize immunosuppressive state during H polygyrus bakeri infection in mice. Our findings confirm the role of MDSCs in parasitic infections and point l-arginine pathway as a potential target for immunomodulation during nematode infections.
Collapse
Affiliation(s)
| | | | - Katarzyna Krawczak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Doligalska
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Cao S, Gong W, Zhang X, Xu M, Wang Y, Xu Y, Cao J, Shen Y, Chen J. Arginase promotes immune evasion of Echinococcus granulosus in mice. Parasit Vectors 2020; 13:49. [PMID: 32029006 PMCID: PMC7006169 DOI: 10.1186/s13071-020-3919-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cystic echinococcosis is a chronic disease caused by infection with the larvae of Echinococcus granulosus. The parasite's ability to establish persistent infection is partly due to its evolving immune evasion strategies. One strategy may involve the protective effect of arginase, which impedes the control of pathogens or tumors, whereas it remains largely unknown during E. granulosus infection. Here, we analyzed whether arginase was produced in peritoneal cells and assessed its role in immunosuppression in mice infected with protoscoleces of E. granulosus. METHODS BALB/c mice injected with protoscoleces of E. granulosus were used to evaluate the expression of arginase (ARG) in mRNA and protein levels. The profiles of ARG-1 expression in peritoneal cells and CD3ζ expression in T cells from spleens were assessed at different time points (3, 6, 9 and 12 months post-infection) by flow cytometry. In vitro, peritoneal cells were co-cultured with purified T cells in a transwell system, and the levels of CD3ζ re-expression were compared by flow cytometry. Meanwhile, the changes of L-arginine and its related metabolites in serum were tested. RESULTS Compared to the control group, the peritoneal cells from infected mice showed higher levels of ARG-1 mRNA and protein, unchanged ARG-2 and iNOS. Enhanced ARG-1 expression was present in SSClowCD11b+F4/80+, CD11b+CD11c+, CD11b+Gr-1+Ly-6C+Ly-6G-, CD11b+Gr-1+Ly-6C-Ly-6G+, CD11b+Gr-1+ and CD11b+Ly-6G+ cells. The proportion of cells and the proportion of ARG-1 expression in corresponding cells exhibited a rising trend along with the extension of infection time, except for fluctuations in SSClowCD11b+F4/80+ and CD11b+CD11c+ cells at 12 months post-infection, whereas the expression of CD3ζ chain in CD4+ and CD8+ T cells showed a descending trend. Purified T cells showed declined re-expression of CD3ζ when co-cultured with peritoneal cells from infected mice, and CD3ζ was regenerated by supplement of L-arginine or arginase inhibitor BEC, rather than NOS inhibitor L-NMMA or catalase. Meanwhile, the concentrations of L-arginine, L-citrulline and NO decreased, and those of L-ornithine and urea increased in serum post-infection. CONCLUSIONS Our findings demonstrated that ARG-1 expression is enhanced in multiple myeloid cells from peritoneum and promotes immune evasion of E. granulosus in mice by inhibiting the expression of T cell receptor CD3ζ chain and antagonism against iNOS.
Collapse
Affiliation(s)
- Shengkui Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Wenci Gong
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Xiaofan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Meng Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.
| | - Jiaxu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
24
|
Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana Maria Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Mónica Cristina García
- Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolas Eric Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina.
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Maria Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
25
|
Qiu Y, Yang X, Wang L, Gao K, Jiang Z. L-Arginine Inhibited Inflammatory Response and Oxidative Stress Induced by Lipopolysaccharide via Arginase-1 Signaling in IPEC-J2 Cells. Int J Mol Sci 2019; 20:ijms20071800. [PMID: 30979040 PMCID: PMC6479672 DOI: 10.3390/ijms20071800] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to explore the effect of L-arginine on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in IPEC-2 cells. We found that the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), cluster of differentiation 14 (CD14), nuclear factor-kappaBp65 (NF-κBp65), chemokine-8 (IL-8), tumor necrosis factor (TNF-α) and chemokine-6 (IL-6) mRNA were significantly increased by LPS. Exposure to LPS induced oxidative stress as reactive oxygen species (ROS) and malonaldehyde (MDA) production were increased while glutathione peroxidase (GSH-Px) were decreased in LPS-treated cells compared to those in the control. LPS administration also effectively induced cell growth inhibition through induction of G0/G1 cell cycle arrest. However, compared with the LPS group, cells co-treatment with L-arginine effectively increased cell viability and promoted the cell cycle into the S phase; L-arginine exhibited an anti-inflammatory effect in alleviating inflammation induced by LPS by reducing the abundance of TLR4, MyD88, CD14, NF-κBp65, and IL-8 transcripts. Cells treated with LPS+L-arginine significantly enhanced the content of GSH-Px, while they decreased the production of ROS and MDA compared with the LPS group. Furthermore, L-arginine increased the activity of arginase-1 (Arg-1), while Arg-1 inhibitor abolished the protection of arginine against LPS-induced inflammation and oxidative stress. Taken together, these results suggested that L-arginine exerted its anti-inflammatory and antioxidant effects to protect IPEC-J2 cells from inflammatory response and oxidative stress challenged by LPS at least partly via the Arg-1 signaling pathway.
Collapse
Affiliation(s)
- Yueqin Qiu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
26
|
Huang J, Montani JP, Verrey F, Feraille E, Ming XF, Yang Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption. FASEB J 2018; 32:5520-5531. [PMID: 29718707 PMCID: PMC6405175 DOI: 10.1096/fj.201701209r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly
expressed in the kidney. The physiologic role played by Arg-II in the kidney remains
unknown. Herein, we report that in mice that are deficient in Arg-II
(Arg-II−/−), total and membrane-associated aquaporin-2
(AQP2) protein levels were significantly higher compared with wild-type (WT)
controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane
association in collecting ducts. Effects of water deprivation on AQP2 were stronger
in Arg-II−/− mice than in WT mice. Accordingly, a decrease
in urine volume and an increase in urine osmolality under water deprivation were more
pronounced in Arg-II−/− mice than in WT mice, which
correlated with a weaker increase in plasma osmolality in
Arg-II−/− mice. There was no difference in vasopressin
release under water deprivation conditions between either genotype of mice. Although
total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under
water deprivation conditions were significantly higher in
Arg-II−/− mice compared with WT animals, there is no
difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct
principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced
by the vasopressin type 2 receptor agonist, desamino-d-arginine
vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane
association of AQP2 by dDAVP without influencing cAMP levels. In conclusion,
in vivo and in vitro experiments demonstrate
that Arg-II negatively regulates AQP2 and the urine-concentrating capability in
kidneys via a mechanism that is not associated with the modulation
of the cAMP pathway.—Huang, J., Montani, J.-P., Verrey, F., Feraille, E.,
Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water
reabsorption.
Collapse
Affiliation(s)
- Ji Huang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - François Verrey
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eric Feraille
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| |
Collapse
|
27
|
Partida-Zavala N, Ponce-Gallegos MA, Buendía-Roldán I, Falfán-Valencia R. Type 2 macrophages and Th2 CD4+ cells in interstitial lung diseases (ILDs): an overview. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2018; 35:98-108. [PMID: 32476888 PMCID: PMC7170082 DOI: 10.36141/svdld.v35i2.6691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group characterized mainly by damage to pulmonary parenchyma, through histopathological processes such as granulomatous pneumopathy, inflammation and fibrosis. Factors that generate susceptibility to ILDs include age, exposure to occupational and environmental compounds, genetic, family history, radiation and chemotherapy/immunomodulatory and cigarette smoke. IFN-γ, IL-1β, and LPS are necessary to induce a classical activation of macrophages, whereas cytokines as IL-4 and IL-13 can induce an alternative activation in macrophages, through the JAK-STAT mediated signal transduction. M2 macrophages are identified based on the gene transcription or protein expression of a set of M2 markers. These markers include transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. Fibrotic lung disorders may have a M2 polarization background. The Th2 pathway with an elevated CCL-18 (marker of M2) concentration in the bronchoalveolar lavage fluid (BALF) is linked to fibrosis in ILDs. Besides the role of M2 in tissue repair and ECM remodeling, activated fibroblasts summon and stimulate macrophages by producing MCP-1, M-CSF and other chemokines, as well as activated macrophages secrete cytokines that attract and stimulate proliferation, survival and migration of fibroblast mediated by platelet-derived growth factor (PDGF). (Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 98-108).
Collapse
Affiliation(s)
- Neftali Partida-Zavala
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Marco Antonio Ponce-Gallegos
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ivette Buendía-Roldán
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| |
Collapse
|
28
|
Rojas Márquez JD, Ana Y, Baigorrí RE, Stempin CC, Cerban FM. Mammalian Target of Rapamycin Inhibition in Trypanosoma cruzi-Infected Macrophages Leads to an Intracellular Profile That Is Detrimental for Infection. Front Immunol 2018. [PMID: 29515594 PMCID: PMC5826284 DOI: 10.3389/fimmu.2018.00313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The causative agent of Chagas’ disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR)-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO) were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1β production. Taking into account that IL-1β is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of mitochondrial ROS (mtROS) compared with control cells. Moreover, inhibition of mtROS production partially reversed the effect of rapamycin on parasite replication, with there being a significant increase in parasite load in rapamycin pretreated and infected macrophages from NLRP3 KO mice compared to wild-type control cells. Our findings strongly suggest that mTOR inhibition during T. cruzi infection induces NLRP3 inflammasome activation and mtROS production, resulting in an inflammatory-like macrophage profile that controls T. cruzi replication.
Collapse
Affiliation(s)
- Jorge David Rojas Márquez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Yamile Ana
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorrí
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Fabio Marcelo Cerban
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
29
|
Immune Response and Protective Efficacy of a Heterologous DNA-Protein Immunization with Leishmania Superoxide Dismutase B1. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2145386. [PMID: 29359145 PMCID: PMC5735611 DOI: 10.1155/2017/2145386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022]
Abstract
Growing evidence shows that antioxidant proteins of Leishmania could be used as vaccine candidates. In this study, we report the efficacy of Leishmania donovani iron superoxide dismutase B1 (LdFeSODB1) as a vaccine antigen in BALB/c mice in a DNA-protein prime-boost immunization regimen in the presence or absence of murine granulocyte macrophage colony stimulating factor (mGMCSF) DNA adjuvant. The expression study confirmed that LdFeSODB1 is expressed in mammalian cells and mGMCSF fusion mediates the secretion of the recombinant protein. Heterologous immunization with LdFeSODB1 induced a strong antibody- and cell-mediated immune response in mice. Immunization triggered a mixed Th1/Th2 response as evidenced by the ratio of IgG2a to IgG1. Antigen-stimulated spleen cells from the immunized mice produced high level IFN-γ. Multiparametric flow cytometry data showed that immunization with LdFeSODB1 induced significantly higher expression of TNF-α or IL-2 by antigen-stimulated T cells. Eight weeks after L. major infection, immunization with the antigen shifted the immune response to a more Th1 type than the controls as demonstrated by IgG2a/IgG1 ratio. Moreover, IFN-γ production by antigen-stimulated spleen cells from immunized mice remained high. The footpad swelling experiment showed that immunization with LdFeSODB1 resulted in partial protection of mice from a high dose L. major infection.
Collapse
|
30
|
Leptin regulates Granzyme-A, PD-1 and CTLA-4 expression in T cell to control visceral leishmaniasis in BALB/c Mice. Sci Rep 2017; 7:14664. [PMID: 29116252 PMCID: PMC5676676 DOI: 10.1038/s41598-017-15288-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
Visceral leishmaniasis (VL) is responsible for several deaths in malnourished children accompanied by diminished circulating leptin and impaired cell-mediated immunity. Typically, leptin deficiency is associated with the Th2 polarization that markedly coincides with the pathogenesis of VL. The aim of the present study was to unravel the prophylactic role of leptin in malnutrition-coupled VL mice. Interestingly, we observed that L. donovani infection itself reduces the serum leptin levels in malnutrition. Exogenous leptin restored severe body weight loss and parasite load in the spleen and liver of malnourished infected mice compared to controls. Leptin increases functional CD8+ T-cell population, Granzyme-A expression down-regulates anergic T-cell markers such as PD-1 and CTLA-4. It was also noticed that, leptin suppresses GM-CSF mRNA expression in parasite favored monocytes and reduced arginase activity in bone marrow derived macrophage indicate macrophages dependent T-cell activation and proliferation. Leptin-induced IFN-γ, IL-2, and TNF-α cytokines in the culture supernatant of splenocytes upon soluble leishmanial antigen (SLA) stimulation and significantly up-regulates serum IgG2a titers, which help to generate Th1 immune response in VL. Furthermore, leptin induced a granulomatous response and restored L. donovani induced tissue degeneration in the liver. Altogether, our findings suggest the exogenous leptin can restore T cell mediated immunity in malnourished VL mice.
Collapse
|
31
|
Rocha Pereira AE, Rodrigues MÂ, Novaes RD, Caldas IS, Martins Souza RL, Costa Pereira AA. Lipopolysaccharide-induced acute lung injury in mice chronically infected by Schistosoma mansoni. Exp Parasitol 2017; 178:21-29. [PMID: 28533109 DOI: 10.1016/j.exppara.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
We used a murine model of Schistosoma mansoni (SM) infection and lipopolysaccharide (LPS)-induced endotoxicity to investigate if these conditions can interact to modify the pathological manifestations typically observed in each condition. Swiss mice were randomized into four groups: SAL, uninfected; SM, infected; LPS, uninfected + LPS; and SM + LPS, infected + LPS. S. mansoni infection developed over 120 days, after which blood samples and lungs were collected, peritoneal leukocytes were isolated and cultivated for 6 and 24 h after LPS inoculation (1 mL/kg). Infected animals presented marked granulomatous inflammation. LPS exposure transiently modified the profile of leucocyte migration into the lung tissue and increased NO production by isolated leukocytes, without inducing any acute effect on the structure of schistosomiasis granulomas. Beyond modifying lung morphology, S. mansoni and LPS interacted to modulate the circulating levels of cytokines. S. mansoni infection restricted INF-γ upregulation 6 and 24 h after LPS administration. Conversely, 24 h after inoculation, LPS increased IL-2 and IL-5 levels. Our findings indicate that LPS impaired the lung microenvironment by acutely disrupting inflammatory homeostatic mechanisms that control lung schistosomiasis. As schistosomiasis develops as a chronic condition, long-term exposure to endotoxins could aggravate the granulomatous process, an issue that requires further investigation.
Collapse
Affiliation(s)
- Amanda Esteves Rocha Pereira
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Maria Ângela Rodrigues
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Ivo Santana Caldas
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Raquel Lopes Martins Souza
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Alessandro Antônio Costa Pereira
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil.
| |
Collapse
|
32
|
Abstract
Macrophages constitute a heterogeneous population of myeloid cells that are essential for maintaining homeostasis and as a first line of innate responders controlling and organizing host defenses against pathogens. Monocyte-macrophage lineage cells are among the most functionally diverse and plastic cells of the immune system. They undergo specific activation into functionally distinct phenotypes in response to immune signals and microbial products. In mammals, macrophage functional heterogeneity is defined by two activation states, M1 and M2, which represent two polar ends of a continuum exhibiting pro-inflammatory and tissue repair activities, respectively. While the ancient evolutionary origin of macrophages as phagocytic defenders is well established, the evolutionary roots of the specialized division of macrophages into subsets with polarized activation phenotypes is less well defined. Accordingly, this chapter focuses on recent advances in the understanding of the evolution of macrophage polarization and functional heterogeneity with a focus on ectothermic vertebrates.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kun Hyoe Rhoo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
33
|
Liu Y, Kloc M, Li XC. Macrophages as Effectors of Acute and Chronic Allograft Injury. CURRENT TRANSPLANTATION REPORTS 2016; 3:303-312. [PMID: 28546901 PMCID: PMC5440082 DOI: 10.1007/s40472-016-0130-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ transplants give a second chance of life to patients with end-stage organ failure. However, the immuno-logical barriers prove to be very challenging to overcome and graft rejection remains a major hurdle to long-term transplant survival. For decades, adaptive immunity has been the focus of studies, primarily based on the belief that T cells are necessary and sufficient for rejection. With better-developed immunosuppressive drugs and protocols that effectively control adaptive cells, innate immune cells have emerged as key effector cells in triggering graft injury and have therefore attracted much recent attention. In this review, we discuss current understanding of macrophages and their role in transplant rejection, their dynamics, distinct phenotypes, locations, and functions. We also discuss novel therapeutic approaches under development to target macrophages in transplant recipients.
Collapse
Affiliation(s)
- Yianzhu Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, 6670 Bertner Avenue, Houston, TX 77030, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Malgorzata Kloc
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Xian C. Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, 6670 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
34
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
35
|
Mukhopadhyay D, Mukherjee S, Roy S, Dalton JE, Kundu S, Sarkar A, Das NK, Kaye PM, Chatterjee M. M2 Polarization of Monocytes-Macrophages Is a Hallmark of Indian Post Kala-Azar Dermal Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004145. [PMID: 26496711 PMCID: PMC4619837 DOI: 10.1371/journal.pntd.0004145] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023] Open
Abstract
The high level of functional diversity and plasticity in monocytes/macrophages has been defined within in vitro systems as M1 (classically activated), M2 (alternatively activated) and deactivated macrophages, of which the latter two subtypes are associated with suppression of cell mediated immunity, that confers susceptibility to intracellular infection. Although the Leishmania parasite modulates macrophage functions to ensure its survival, what remains an unanswered yet pertinent question is whether these macrophages are deactivated or alternatively activated. This study aimed to characterize the functional plasticity and polarization of monocytes/macrophages and delineate their importance in the immunopathogenesis of Post kala-azar dermal leishmaniasis (PKDL), a chronic dermatosis of human leishmaniasis. Monocytes from PKDL patients showed a decreased expression of TLR-2/4, along with an attenuated generation of reactive oxidative/nitrosative species. At disease presentation, an increased mRNA expression of classical M2 markers CD206, ARG1 and PPARG in monocytes and lesional macrophages indicated M2 polarization of macrophages which was corroborated by increased expression of CD206 and arginase-1. Furthermore, altered vitamin D signaling was a key feature in PKDL, as disease presentation was associated with raised plasma levels of monohydroxylated vitamin D3 and vitamin D3- associated genes, features of M2 polarization. Taken together, in PKDL, monocyte/macrophage subsets appear to be alternatively activated, a phenotype that might sustain disease chronicity. Importantly, repolarization of these monocytes to M1 by antileishmanial drugs suggests that switching from M2 to M1 phenotype might represent a therapeutic opportunity, worthy of future pharmacological consideration. Monocyte/macrophage subsets following their polarization by the microenvironement serve as important immune sentinels that play a vital role in host defense and homeostasis. The polarization of macrophage function has been broadly classified as M1 (classical) and M2 (alternate) activation, wherein M1 polarised cells display a strong pro-inflammatory microbicidal response, while M2 polarization is linked to production of an anti-inflammatory milieu leading to tissue regeneration and wound healing. Data pertaining to macrophage polarization are primarily derived from murine models, but increasing evidence is highlighting the inadequacy of direct inter-species translation. In leishmaniasis, a protozoan infection caused by the genus Leishmania, manipulation of host macrophage function is central to pathogenesis. In this study we report that monocyte/macrophage subsets in Post kala-azar dermal leishmaniasis are polarized to an M2 phenotype. This study provides insights into systemic and local regulation of macrophage/ monocyte functions in this important human disease and highlights the influence of immunomodulatory anti-leishmanial chemotherapy on macrophage/monocyte polarization.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Shibabrata Mukherjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Susmita Roy
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Jane E. Dalton
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Sunanda Kundu
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Nilay K. Das
- Department of Dermatology, Calcutta Medical College, Kolkata, West Bengal, India
| | - Paul M. Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
- * E-mail: (PMK); (MC)
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
- * E-mail: (PMK); (MC)
| |
Collapse
|
36
|
Abstract
The ability of Leishmania parasites to infect and persist in the antigen-presenting cell population of their mammalian hosts is dependent on their ability to gain entry to their host and host cells, to survive the mammalian cell environment, and to suppress or evade the protective immune response mechanisms of their hosts. A multitude of genes and their products have been implicated in each of these virulence-enhancing strategies to date, and we present an overview of the nature and known function of such virulence genes.
Collapse
|
37
|
Pietsch C, Katzenback BA, Garcia-Garcia E, Schulz C, Belosevic M, Burkhardt-Holm P. Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed. Mycotoxin Res 2015; 31:151-64. [DOI: 10.1007/s12550-015-0226-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
|
38
|
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm 2015; 2015:816460. [PMID: 26089604 PMCID: PMC4452191 DOI: 10.1155/2015/816460] [Citation(s) in RCA: 1278] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022] Open
Abstract
The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
Collapse
|
39
|
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Negl Trop Dis 2014; 8:e3391. [PMID: 25500571 PMCID: PMC4263403 DOI: 10.1371/journal.pntd.0003391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. METHODOLOGY AND PRINCIPAL FINDINGS A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. CONCLUSION The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To our knowledge, this is the first study showing the vaccine potential of Leishmania peroxidoxin -1.
Collapse
Affiliation(s)
- Abebe Genetu Bayih
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Nada S. Daifalla
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A 2014; 111:E4024-32. [PMID: 25201986 DOI: 10.1073/pnas.1408839111] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia.
Collapse
|
41
|
Molteni CG, Principi N, Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic Res 2014; 48:1163-9. [PMID: 25039433 DOI: 10.3109/10715762.2014.945443] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxygen and nitrogen radicals are frequently produced during viral infections. These radicals are not only a physiological mechanism for pathogen clearance but also result in many pathological consequences. Low concentrations of radicals can promote viral replication; however, high concentrations of radicals can also inhibit viral replication and are detrimental to the cell due to their mitogenic activity. We reviewed the detailed mechanisms behind oxygen and nitrogen radical production and focused on how viruses induce radical production. In addition, we examined the effects of oxygen and nitrogen radicals on both the virus and host. We also reviewed enzymatic and chemical detoxification mechanisms and recent advances in therapeutic antioxidant applications. Many molecules that modulate the redox balance have yielded promising results in cell and animal models of infection. This encourages their use in clinical practice either alone or with existing therapies. However, since the redox balance also plays an important role in host defence against pathogens, carefully designed clinical trials are needed to assess the therapeutic benefits and secondary effects of these molecules and whether these effects differ between different types of viral infections.
Collapse
Affiliation(s)
- C G Molteni
- Department of Pathophysiology and Transplantation, Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | | | | |
Collapse
|
42
|
Osorio EY, Travi BL, da Cruz AM, Saldarriaga OA, Medina AA, Melby PC. Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathog 2014; 10:e1004165. [PMID: 24967908 PMCID: PMC4072777 DOI: 10.1371/journal.ppat.1004165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/21/2014] [Indexed: 12/26/2022] Open
Abstract
Host arginase 1 (arg1) expression is a significant contributor to the pathogenesis of progressive visceral leishmaniasis (VL), a neglected tropical disease caused by the intracellular protozoan Leishmania donovani. Previously we found that parasite-induced arg1 expression in macrophages was dependent on STAT6 activation. Arg1 expression was amplified by, but did not require, IL-4, and required de novo synthesis of unknown protein(s). To further explore the mechanisms involved in arg1 regulation in VL, we screened a panel of kinase inhibitors and found that inhibitors of growth factor signaling reduced arg1 expression in splenic macrophages from hamsters with VL. Analysis of growth factors and their signaling pathways revealed that the Fibroblast Growth Factor Receptor 1 (FGFR-1) and Insulin-like Growth Factor 1 Receptor (IGF-1R) and a number of downstream signaling proteins were activated in splenic macrophages isolated from hamsters infected with L. donovani. Recombinant FGF-2 and IGF-1 increased the expression of arg1 in L. donovani infected hamster macrophages, and this induction was augmented by IL-4. Inhibition of FGFR-1 and IGF-1R decreased arg1 expression and restricted L. donovani replication in both in vitro and ex vivo models of infection. Inhibition of the downstream signaling molecules JAK and AKT also reduced the expression of arg1 in infected macrophages. STAT6 was activated in infected macrophages exposed to either FGF-2 or IGF-1, and STAT6 was critical to the FGFR-1- and IGF-1R-mediated expression of arg1. The converse was also true as inhibition of FGFR-1 and IGF-1R reduced the activation of STAT6 in infected macrophages. Collectively, these data indicate that the FGFR/IGF-1R and IL-4 signaling pathways converge at STAT6 to promote pathologic arg1 expression and intracellular parasite survival in VL. Targeted interruption of these pathological processes offers an approach to restrain this relentlessly progressive disease. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive infection that is particularly common in impoverished populations of the world. People die from this disease unless it is treated. We used an experimental infection model that mimics the clinical and pathological features of human VL to study how the parasite causes this severe disease. We found that host macrophages infected with Leishmania donovani are activated in a way that leads to the expression of arginase, an enzyme that counteracts the cell's mechanisms that control the infection. This disease-promoting activation pathway was driven by the convergence of growth factor and cytokine signaling pathways and activation of the transcription factor STAT6. Chemical inhibition of signaling through the fibroblast growth factor receptor-1 (FGFR-1) or insulin-like growth factor-1 receptor (IGF-IR), or genetic knockdown of STAT6 led to reduced expression of arginase and enhanced control of the infection by macrophages. This indicates that the growth factor signaling pathways together with the cytokine pathways promote this disease. Interventions designed to disrupt this signaling could help in the treatment of VL.
Collapse
Affiliation(s)
- E Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America; Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno L Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alda M da Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Omar A Saldarriaga
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Audrie A Medina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America; Center for Tropical Diseases, and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America; Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
43
|
|
44
|
Basso B. Modulation of immune response in experimental Chagas disease. World J Exp Med 2013; 3:1-10. [PMID: 24520540 PMCID: PMC3905588 DOI: 10.5493/wjem.v3.i1.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/07/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, affects nearly 18 million people in Latin America and 90 million are at risk of infection. The parasite presents two stages of medical importance in the host, the amastigote, intracellular replicating form, and the extracellular trypomastigote, the infective form. Thus infection by T. cruzi induces a complex immune response that involves effectors and regulatory mechanisms. That is why control of the infection requires a strong humoral and cellular immune response; hence, the outcome of host-parasite interaction in the early stages of infection is extremely important. A critical event during this period of the infection is innate immune response, in which the macrophage’s role is vital. Thus, after being phagocytized, the parasite is able to develop intracellularly; however, during later periods, these cells induce its elimination by means of toxic metabolites. In turn, as the infection progresses, adaptive immune response mechanisms are triggered through the TH1 and TH2 responses. Finally, T. cruzi, like other protozoa such as Leishmania and Toxoplasma, have numerous evasive mechanisms to the immune response that make it possible to spread around the host. In our Laboratory we have developed a vaccination model in mice with Trypanosoma rangeli, nonpathogenic to humans, which modulates the immune response to infection by T. cruzi, thus protecting them. Vaccinated animals showed an important innate response (modulation of NO and other metabolites, cytokines, activation of macrophages), a strong adaptive cellular response and significant increase in specific antibodies. The modulation caused early elimination of the parasites, low parasitaemia, the absence of histological lesions and high survival rates. Even though progress has been made in the knowledge of some of these mechanisms, new studies must be conducted which could target further prophylactic and therapeutic trials against T. cruzi infection.
Collapse
|
45
|
Gurusamy D, Gray JK, Pathrose P, Kulkarni RM, Finkleman FD, Waltz SE. Myeloid-specific expression of Ron receptor kinase promotes prostate tumor growth. Cancer Res 2013; 73:1752-63. [PMID: 23328584 DOI: 10.1158/0008-5472.can-12-2474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ron receptor kinase (MST1R) is important in promoting epithelial tumorigenesis, but the potential contributions of its specific expression in stromal cells have not been examined. Herein, we show that the Ron receptor is expressed in mouse and human stromal cells of the prostate tumor microenvironment. To test the significance of stromal Ron expression, prostate cancer cells were orthotopically implanted into the prostates of either wild-type or Ron tyrosine kinase deficient (TK(-/-); Mst1r(-/-)) hosts. In TK(-/-) hosts, prostate cancer cell growth was significantly reduced as compared with tumor growth in TK(+/+) hosts. Prostate tumors in TK(-/-) hosts exhibited an increase in tumor cell apoptosis, macrophage infiltration and altered cytokine expression. Reciprocal bone marrow transplantation studies and myeloid cell-specific ablation of Ron showed that loss of Ron in myeloid cells is sufficient to inhibit prostate cancer cell growth. Interestingly, depletion of CD8(+) T cells, but not CD4(+) T cells, was able to restore prostate tumor growth in hosts devoid of myeloid-specific Ron expression. These studies show a critical role for the Ron receptor in the tumor microenvironment, whereby Ron loss in tumor-associated macrophages inhibits prostate cancer cell growth, at least in part, by derepressing the activity of CD8(+) T cells.
Collapse
Affiliation(s)
- Devikala Gurusamy
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
46
|
Peón AN, Espinoza-Jiménez A, Terrazas LI. Immunoregulation by Taenia crassiceps and its antigens. BIOMED RESEARCH INTERNATIONAL 2012; 2013:498583. [PMID: 23484125 PMCID: PMC3591211 DOI: 10.1155/2013/498583] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/07/2012] [Accepted: 11/14/2012] [Indexed: 12/15/2022]
Abstract
Taenia crassiceps is a cestode parasite of rodents (in its larval stage) and canids (in its adult stage) that can also parasitize immunocompromised humans. We have studied the immune response elicited by this helminth and its antigens in mice and human cells, and have discovered that they have a strong capacity to induce chronic Th2-type responses that are primarily characterized by high levels of Th2 cytokines, low proliferative responses in lymphocytes, an immature and LPS-tolerogenic profile in dendritic cells, the recruitment of myeloid-derived suppressor cells and, specially, alternatively activated macrophages. We also have utilized the immunoregulatory capabilities of this helminth to successfully modulate autoimmune responses and the outcome of other infectious diseases. In the present paper, we review the work of others and ourselves with regard to the immune response induced by T. crassiceps and its antigens, and we compare the advances in our understanding of this parasitic infection model with the knowledge that has been obtained from other selected models.
Collapse
Affiliation(s)
- Alberto N. Peón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Arlett Espinoza-Jiménez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| |
Collapse
|
47
|
Ming X, Rajapakse AG, Yepuri G, Xiong Y, Carvas JM, Ruffieux J, Scerri I, Wu Z, Popp K, Li J, Sartori C, Scherrer U, Kwak BR, Montani J, Yang Z. Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen Species, Contributing to Insulin Resistance and Atherogenesis. J Am Heart Assoc 2012; 1:e000992. [PMID: 23130157 PMCID: PMC3487353 DOI: 10.1161/jaha.112.000992] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/08/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).
Collapse
Affiliation(s)
- Xiu‐Fen Ming
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Angana G. Rajapakse
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Gautham Yepuri
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Yuyan Xiong
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - João M. Carvas
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Jean Ruffieux
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Isabelle Scerri
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Zongsong Wu
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Katja Popp
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Jianhui Li
- Department of Intensive Care Medicine, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland (J.L.)
- Dr Li is currently affiliated with the Department of Hepatobiliary and Pancreatic Surgery and Centre of Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (J.L.)
| | - Claudio Sartori
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (C.S.)
| | - Urs Scherrer
- Department of Cardiology, University Hospital, Bern, Switzerland (U.S.)
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile (U.S.)
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Department of Internal Medicine–Cardiology, University of Geneva, Switzerland (B.R.K.)
| | - Jean‐Pierre Montani
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Zhihong Yang
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| |
Collapse
|
48
|
Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 2012; 8:558. [PMID: 22735334 PMCID: PMC3397418 DOI: 10.1038/msb.2012.21] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/09/2012] [Indexed: 12/11/2022] Open
Abstract
Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Monica L Mo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Bryan C Frank
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Daniel R Hyduke
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection. PLoS One 2012; 7:e35834. [PMID: 22558235 PMCID: PMC3338469 DOI: 10.1371/journal.pone.0035834] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens.
Collapse
|
50
|
Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, Travi BL, Melby PC. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 2012; 8:e1002417. [PMID: 22275864 PMCID: PMC3261917 DOI: 10.1371/journal.ppat.1002417] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/19/2011] [Indexed: 01/11/2023] Open
Abstract
The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation. Indeed, the infected hamster spleen showed low NOS2 but high arg1 enzyme activity and protein and mRNA expression (p<0.001) and increased polyamine synthesis (p<0.05). Increased arginase activity was also evident in macrophages isolated from the spleens of infected hamsters (p<0.05), and arg1 expression was induced by L. donovani in primary hamster peritoneal macrophages (p<0.001) and fibroblasts (p<0.01), and in a hamster fibroblast cell line (p<0.05), without synthesis of endogenous IL-4 or IL-13 or exposure to exogenous cytokines. miRNAi-mediated selective knockdown of hamster arginase 1 (arg1) in BHK cells led to increased generation of nitric oxide and reduced parasite burden (p<0.005). Since many of the genes involved in alternative macrophage activation are regulated by Signal Transducer and Activator of Transcription-6 (STAT6), and because the parasite-induced expression of arg1 occurred in the absence of exogenous IL-4, we considered the possibility that L. donovani was directly activating STAT6. Indeed, exposure of hamster fibroblasts or macrophages to L. donovani resulted in dose-dependent STAT6 activation, even without the addition of exogenous cytokines. Knockdown of hamster STAT6 in BHK cells with miRNAi resulted in reduced arg1 mRNA expression and enhanced control of parasite replication (p<0.0001). Collectively these data indicate that L. donovani infection induces macrophage STAT6 activation and STAT6-dependent arg1 expression, which do not require but are amplified by type 2 cytokines, and which contribute to impaired control of infection. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive, potentially fatal infection found in many resource-poor regions of the world. We initiated these studies of an experimental model of VL to better understand the molecular and cellular determinants underlying this disease. We found that host macrophages or fibroblasts, when infected with Leishmania donovani or exposed to products secreted by the parasite, are permissive to infection because they fail to metabolize arginine to generate nitric oxide, the effector molecule needed to kill the intracellular parasites. Instead, the infected host cells are activated in a way that leads to the expression of arginase, an enzyme that metabolizes arginine to produce polyamines, which support parasite growth. This detrimental activation pathway was dependent on the parasite-induced activation of the transcription factor STAT6, but contrary to the previously accepted paradigm, did not require (but was amplified by) the presence of polarized Th2 cells or type 2 cytokines. Knockdown of host arginase or STAT6 enhanced control of the infection, indicating that this activation pathway has a critical role in the pathogenesis of the disease. Interventions designed to inhibit the STAT6-arginase-polyamine pathway could help in the treatment or prevention of VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weiguo Zhao
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Claudia Espitia
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Omar Saldarriaga
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Leo Hawel
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Craig V. Byus
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Bruno L. Travi
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter C. Melby
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|