1
|
Ayaz Naycı N, Civan Kahve A, Kaya H, Uzdoğan A, Darben Azarsız Y, Barun S, Göka E. Are S100B and VILIP-1 Involved in a Common Mechanism of Neuroinflammation in Major Depressive Disorder? Psychiatr Q 2025; 96:19-37. [PMID: 39514156 DOI: 10.1007/s11126-024-10102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to evaluate the role of neuroinflammation in neuronal and glial cells in the pathophysiology of Major Depressive Disorder (MDD) through different biomarkers.S100-B and VILIP-1 levels of patients diagnosed with MDD were evaluated before and after antidepressant treatment. A total of 65 patients diagnosed with MDD and 69 healthy controls were included. Serum levels of S100B and VILIP-1 were measured at the time of diagnosis and after eight weeks antidepressant treatment and compared with healthy controls. Hamilton Depression Rating Scale (HDRS) and the Clinical Global Impression Scale (CGI) were applied to assess the severity of depression. In our study, although serum S100B levels were higher in patients before treatment compared to healthy controls, this difference was not statistically significant. Regarding VILIP-1 levels, there was no statistically significant difference between patients and healthy controls. A positive and statistically significant correlation was found between S100B and VILIP-1 levels in MDD group before the treatment. At the eighth week of treatment, a statistically significant positive correlation was also found between S100B and VILIP-1 levels. Our research is the first study to evaluate MDD through two separate biomarkers specific to glial and neuronal cells.The fact that S100B and VILIP-1 levels showed significant correlations in patients diagnosed with MDD both before and after treatment suggests that they may play a shared role in the pathophysiology of the disorder. The correlation between S100B and VILIP-1 may serve as a guide in understanding the pathophysiology of the disorder and in identifying new drug development targets.
Collapse
Affiliation(s)
- Nagihan Ayaz Naycı
- Department of Psychiatry, Giresun Prof. Dr. A. Ilhan Ozdemir State Hospital, Giresun, 28200, Turkey.
| | - Aybeniz Civan Kahve
- Faculty of Medicine, Department of Psychiatry, Gazi University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Andaç Uzdoğan
- Department of Biochemistry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yağmur Darben Azarsız
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Süreyya Barun
- Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Wei W, Cheng B, Yang X, Chu X, He D, Qin X, Zhang N, Zhao Y, Shi S, Cai Q, Hui J, Wen Y, Liu H, Jia Y, Zhang F. Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder. Transl Psychiatry 2024; 14:323. [PMID: 39107272 PMCID: PMC11303399 DOI: 10.1038/s41398-024-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Gayger-Dias V, Vizuete AFK, Rodrigues L, Wartchow KM, Bobermin L, Leite MC, Quincozes-Santos A, Kleindienst A, Gonçalves CA. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med (Maywood) 2023; 248:2109-2119. [PMID: 38058025 PMCID: PMC10800124 DOI: 10.1177/15353702231214260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.
Collapse
Affiliation(s)
- Vitor Gayger-Dias
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Adriana FK Vizuete
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Letícia Rodrigues
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Larissa Bobermin
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Marina Concli Leite
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - André Quincozes-Santos
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany
| | - Carlos-Alberto Gonçalves
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| |
Collapse
|
4
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
5
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
7
|
El Karkafi R, Gebara T, Salem M, Kamel J, El Khoury G, Zalal M, Fakhoury M. Ketogenic Diet and Inflammation: Implications for Mood and Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:537-554. [PMID: 36949325 DOI: 10.1007/978-981-19-7376-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The ketogenic diet, known as a low-carbohydrate, high-protein, and high-fat diet, drastically restrains the major source of energy for the body, forcing it to burn all excess fat through a process called ketosis-the breaking down of fat into ketone bodies. First suggested as a medical treatment for children suffering from epilepsy, this diet has gained increased popularity as a rapid weight loss strategy. Over the past few years, there have been numerous studies suggesting that the ketogenic diet may provide therapeutic effects for several psychiatric conditions such as mood- and anxiety-related disorders. However, despite significant progress in research, the mechanisms underlying its therapeutic effects remain largely unexplored and are yet to be fully elucidated. This chapter provides an in-depth overview of preclinical and clinical evidence supporting the use of a ketogenic diet in the management of mood and anxiety disorders and discusses its relationship with inflammatory processes and potential mechanisms of actions for its therapeutic effects.
Collapse
Affiliation(s)
- Roy El Karkafi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tammy Gebara
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Michael Salem
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jessica Kamel
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ghinwa El Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Marilynn Zalal
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
8
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
9
|
Polyakova M, Mueller K, Arelin K, Lampe L, Rodriguez FS, Luck T, Kratzsch J, Hoffmann KT, Riedel-Heller S, Villringer A, Schoenknecht P, Schroeter ML. Increased Serum NSE and S100B Indicate Neuronal and Glial Alterations in Subjects Under 71 Years With Mild Neurocognitive Disorder/Mild Cognitive Impairment. Front Cell Neurosci 2022; 16:788150. [PMID: 35910248 PMCID: PMC9329528 DOI: 10.3389/fncel.2022.788150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is considered a pre-stage of different dementia syndromes. Despite diagnostic criteria refined by DSM-5 and a new term for MCI – “mild neurocognitive disorder” (mild NCD) – this diagnosis is still based on clinical criteria. Methods To link mild NCD to the underlying pathophysiology we assessed the degree of white matter hyperintensities (WMH) in the brain and peripheral biomarkers for neuronal integrity (neuron-specific enolase, NSE), plasticity (brain-derived neurotrophic factor, BDNF), and glial function (S100B) in 158 community-dwelling subjects with mild NCD and 82 healthy controls. All participants (63–79 years old) were selected from the Leipzig-population-based study of adults (LIFE). Results Serum S100B levels were increased in mild NCD in comparison to controls (p = 0.007). Serum NSE levels were also increased but remained non-significant after Bonferroni-Holm correction (p = 0.04). Furthermore, age by group interaction was significant for S100B. In an age-stratified sub-analysis, NSE and S100B were higher in younger subjects with mild NCD below 71 years of age. Some effects were inconsistent after controlling for potentially confounding factors. The discriminatory power of the two biomarkers NSE and S100B was insufficient to establish a pathologic threshold for mild NCD. In subjects with mild NCD, WMH load correlated with serum NSE levels (r = 0.20, p = 0.01), independently of age. Conclusion Our findings might indicate the presence of neuronal (NSE) and glial (S100B) injury in mild NCD. Future studies need to investigate whether younger subjects with mild NCD with increased biomarker levels are at risk of developing major NCD.
Collapse
Affiliation(s)
- Maryna Polyakova
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- University Clinic for Psychiatry and Psychotherapy, Leipzig University, Leipzig, Germany
- *Correspondence: Maryna Polyakova
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katrin Arelin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Francisca S. Rodriguez
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Research Group Psychosocial Epidemiology and Public Health, German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Tobias Luck
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Faculty of Applied Social Sciences, University of Applied Sciences Erfurt, Erfurt, Germany
| | - Jürgen Kratzsch
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | | | - Steffi Riedel-Heller
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Neuroradiology, University Clinic, Leipzig, Germany
| | - Peter Schoenknecht
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- University Clinic for Psychiatry and Psychotherapy, Leipzig University, Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University Affiliated Hospital Arnsdorf, Technical University of Dresden, Dresden, Germany
| | - Matthias L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Ahmed SH, El Ghareeb AEWA, El-Rahman HAA, Almaaty AHA. Impact of maternal desvenlafaxine exposure on brain development in pregnant albino rats and their fetuses. J Biochem Mol Toxicol 2022; 36:e23062. [PMID: 35363936 DOI: 10.1002/jbt.23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Depression during pregnancy adversely affects fetal development. Desvenlafaxine drug is used for the treatment of gestational depression. In light of the well-established role of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in regulating neurogenesis and neural survival, the role of S100b in nerve cell energetic metabolism, differentiation of neurons and glial cells, an aberrant increase in NGF, BDNF and S100b expression in the fetal brain may contribute to desvenlafaxine cognitive disorders by altering brain development. This study is trying to determine the effect of desvenlafaxine on brain development. Thirty timed pregnant rats (from the 5th to the 20th day) were divided into three groups: control, low dose (5.14 mg/kg/day) and high dose (10.28 mg/kg/day) of desvenlafaxine where all animals received the corresponding doses by gavage. Maternal and fetal brain samples were fixed for histological, immunohistochemical (IHC) study of NGF and evaluated for BDNF and S100b genes expression. Desvenlafaxine induced some of the histopathological alterations in maternal and fetal rat brains. Moreover, IHC analysis of maternal and fetal rat brains showed that groups treated with desvenlafaxine demonstrated a significant increase of NGF protein immunoreactivity compared with that in the controls. Gene expression results revealed upregulation of messenger RNA BDNF and S100B expression. According to developmental changes in the brain, desvenlafaxine affects neonatal growth during pregnancy, which may lead to delay of brain development. So, it is essential to survey the roles of antidepressant drugs on neonatal development during pregnancy.
Collapse
Affiliation(s)
- Sarah H Ahmed
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| | | | | | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
11
|
Ding F, Wang X, Zhang L, Li J, Liu F, Wang L. Effect of propofol-based total intravenous anaesthesia on postoperative cognitive function and sleep quality in elderly patients. Int J Clin Pract 2021; 75:e14266. [PMID: 33893705 DOI: 10.1111/ijcp.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study aimed to observe the effect of propofol-based total intravenous anaesthesia (TIVA) on postoperative cognitive function and sleep quality in elderly patients. METHODS From August 2019 to August 2020, 130 cases of elderly patients who underwent abdominal surgery in The Third Hospital of Hebei Medical University were enrolled in this study. All participants were randomly divided into TIVA group (n = 65, receiving propofol-based TIVA) and control group (n = 65, receiving inhaled of sevoflurane anaesthesia). Intra-operative indicators were recorded in both groups. The cognitive function, sleep quality, urine melatonin sulphate, free cortisol, S-100 β protein and interleukin-6 (IL-6) levels were compared at different times. RESULTS On 1, 3, 7 and 15 days after operation, the cognitive function of the TIVA group was better than that of the control group, with statistically significance (P < .05, respectively). On the day of surgery, the two groups had similar sleep quality. The sleep quality of the TIVA group was better than that of the control group on 1, 3 and 7 days after surgery (P < .05, respectively). On the day of surgery, the levels of melatonin, cortisol, S-100β protein and IL-6 in the two groups were equivalent (P > .05). On 1, 3, 7 and 15 days after surgery, cortisol and IL-6 in the TIVA group were lower than those of the control group, and melatonin was higher than that of the control group (P < .05, respectively). On 1, 3 and 7 days after operation, the S-100 β protein in the TIVA group was lower than that in the control group (P < .05, respectively). CONCLUSION Propofol-based TIVA has little effect on the cognitive function and sleep quality of elderly patients after surgery, and it is worthy of clinical application.
Collapse
Affiliation(s)
- Fang Ding
- Department of Gerontology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuli Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Gerontology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinru Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry 2021; 11:308. [PMID: 34021122 PMCID: PMC8139962 DOI: 10.1038/s41398-021-01423-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory processes involving altered microglial activity may play a relevant role in the pathophysiology of depressive disorders. Glial fibrillary acidic protein (GFAP) and calcium-binding protein S100B are considered microglial markers. To date, their role has been studied in the serum and tissue material of patients with unipolar depression but not in the cerebrospinal fluid (CSF). Therefore, the aim of the current study was to examine GFAP and S100B levels in the CSF of patients with major depression to better understand their role in affective disorders. In this retrospective study, 102 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension were investigated. GFAP and S100B levels were measured using commercially available ELISA kits. CSF routine parameters were collected during routine clinical care. The mean values of GFAP and S100B were compared using age (and sex) corrected ANOVAs. Matched subgroups were analyzed by using an independent sample t-test. In addition, correlation analyses between GFAP/S100B levels and CSF routine parameters were performed within the patient group. Patients with unipolar depression had significantly higher levels of GFAP than controls (733.22 pg/ml vs. 245.56 pg/ml, p < 0.001). These results remained significant in a sub-analysis in which all controls were compared with patients suffering from depression matched 1:1 by age and sex (632.26 pg/ml vs. 245.56 pg/ml, p < 0.001). Levels of S100B did not differ significantly between patients and controls (1.06 ng/ml vs. 1.17 ng/ml, p = 0.385). GFAP levels correlated positively with albumin quotients (p < 0.050), S100B levels correlated positively with white blood cell counts (p = 0.001), total protein concentrations (p < 0.001), and albumin quotients (p = 0.001) in the CSF. The significance of the study is limited by its retrospective and open design, methodological aspects, and the control group with idiopathic intracranial hypertension. In conclusion, higher GFAP levels in patients with depression may be indicative of altered microglia activity, especially in astrocytes, in patients with unipolar depression. In addition, correlation analyses support the idea that S100B levels could be related to the integrity of the blood-brain/CSF barrier. Further multimodal and longitudinal studies are necessary to validate these findings and clarify the underlying biological processes.
Collapse
|
13
|
Levchuk LA, Roshchina OV, Simutkin GG, Bokhan NA, Ivanova SA. Peripheral Markers of Nervous Tissue Damage in Addictive and Affective Disorders. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tetragonia tetragonioides Relieves Depressive-Like Behavior through the Restoration of Glial Loss in the Prefrontal Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8888841. [PMID: 33628324 PMCID: PMC7895589 DOI: 10.1155/2021/8888841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
Tetragonia tetragonioides, which is a halophyte and grows widely in Asian-Pacific regions, has been used for the treatment of digestive disorders in traditional oriental medicine. This study examined the potential antidepressant effect of Tetragonia tetragonioides in an astroglial degeneration model of depression, which was established based on the postmortem study of depressive patients' brain presenting diminished astrocytes in the prefrontal cortex. C57BL/6 male mice were exposed to glial ablation in the prefrontal cortex by the administration of the gliotoxin, L-alpha-aminoadipic acid (L-AAA) to induce depression. Tetragonia tetragonioides at doses of 100 mg/kg and 300 mg/kg, imipramine at a dose of 15 mg/kg, and distilled water were orally administrated to mice for 18 days. Behavioral tests including the open field test (OFT), sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST) were carried out after 2 days of L-AAA injection. The expression levels of GFAP and NeuN in the prefrontal cortex were determined by immunohistochemistry. Mice subjected to glial ablation in the prefrontal cortex displayed decreased sucrose consumption in SPT and increased immobility time in FST and TST. Treatment with imipramine and Tetragonia tetragonioides remarkably ameliorated the behavioral despair induced by L-AAA. In addition, immunohistochemistry analysis showed that treatment with Tetragonia tetragonioides significantly restored the glial loss as indicated by the elevated GFAP expression level. These findings suggest that Tetragonia tetragonioides exerts an antidepressant effect through the restoration of glial loss under conditions of depression and can be a candidate for an antidepressant agent.
Collapse
|
15
|
Alshammari TK. The Ketamine Antidepressant Story: New Insights. Molecules 2020; 25:molecules25235777. [PMID: 33297563 PMCID: PMC7730956 DOI: 10.3390/molecules25235777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Park BS, Lee HW, Lee YJ, Park S, Kim YW, Kim SE, Kim IH, Park JH, Park KM. Serum S100B represents a biomarker for cognitive impairment in patients with end-stage renal disease. Clin Neurol Neurosurg 2020; 195:105902. [DOI: 10.1016/j.clineuro.2020.105902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
|
17
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
18
|
Machado-Santos AR, Alves ND, Araújo B, Correia JS, Patrício P, Mateus-Pinheiro A, Loureiro-Campos E, Bessa JM, Sousa N, Pinto L. Astrocytic plasticity at the dorsal dentate gyrus on an animal model of recurrent depression. Neuroscience 2019; 454:94-104. [PMID: 31747562 DOI: 10.1016/j.neuroscience.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Astrocytes are now known to play crucial roles in the central nervous system, supporting and closely interacting with neurons and therefore able to modulate brain function. Both human postmortem studies in brain samples from patients diagnosed with Major Depressive Disorder and from animal models of depression reported numerical and morphological astrocytic changes specifically in the hippocampus. In particular, these studies revealed significant reductions in glial cell density denoted by a decreased number of S100B-positive cells and a decrease in GFAP expression in several brain regions including the hippocampus. To reveal plastic astrocytic changes in the context of recurrent depression, we longitudinally assessed dynamic astrocytic alterations (gene expression, cell densities and morphologic variations) in the hippocampal dentate gyrus under repeated exposure to unpredictable chronic mild stress (uCMS) and upon treatment with two antidepressants, fluoxetine and imipramine. Both antidepressants decreased astrocytic complexity immediately after stress exposure. Moreover, we show that astrocytic alterations, particularly an increased number of S100B-positive cells, are observed after recurrent stress exposure. Interestingly, these alterations were prevented at the long-term by either fluoxetine or imipramine treatment.
Collapse
Affiliation(s)
- Ana R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno D Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana S Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
19
|
Perineuronal oligodendrocytes in health and disease: the journey so far. Rev Neurosci 2019; 31:89-99. [DOI: 10.1515/revneuro-2019-0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Abstract
Perineuronal oligodendrocytes (pn-Ols) are located in the cerebral gray matter in close proximity to neuronal perikarya and less frequently near dendrites and neurites. Although their morphology is indistinguishable from that of other oligodendrocytes, it is not known if pn-Ols have a similar or different cell signature from that of typical myelinating oligodendroglial cells. In this review, we discussed the potential roles of these cells in myelination under normal and pathophysiologic conditions as functional and nutritional supporters of neurons, as restrainers of neuronal firing, and as possible players in glutamate-glutamine homeostasis. We also highlighted the occurrences in which perineuronal oligodendroglia are altered, such as in experimental demyelination, multiple sclerosis, cerebral ischemia, epilepsy, Alzheimer’s disease, schizophrenia, major depression, and bipolar disorder.
Collapse
|
20
|
Oliveira S, Ardais AP, Bastos CR, Gazal M, Jansen K, de Mattos Souza L, da Silva RA, Kaster MP, Lara DR, Ghisleni G. Impact of genetic variations in ADORA2A gene on depression and symptoms: a cross-sectional population-based study. Purinergic Signal 2018; 15:37-44. [PMID: 30511252 DOI: 10.1007/s11302-018-9635-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic variants involved in adenosine metabolism and its receptors were associated with increased risk for psychiatric disorders, including anxiety, depression, and schizophrenia. Here, we examined an association between a single nucleotide polymorphism in A2A receptor gene (ADORA2A, rs2298383 SNP) with current depressive episode and symptom profile. A total of 1253 individuals from a cross-sectional population-based study were analyzed by the Mini International Neuropsychiatric Interview 5.0. Our data showed that the TT genotype of ADORA2A rs2298383 SNP was associated with reduced risk for depression when compared to the CC/CT genotypes (p = 0.020). This association remained significant after adjusting for confounding variables such as smoking, gender, socioeconomic class, and ethnicity (OR = 0.631 (95% CI 0.425-0.937); p = 0.022). Regarding the symptoms associated with depression, we evaluated the impact of the ADORA2A SNP in the occurrence of sad/discouraged mood, anhedonia, appetite changes, sleep disturbances, motion changes, energy loss, feelings of worthless or guilty, difficulty in concentrating, and presence of bad thoughts. Notably, the TT genotype was independently associated with reduced sleep disturbances (OR = 0.438 (95% CI 0.258-0.743); p = 0.002) and less difficulty in concentrating (OR = 0.534 (95% CI 0.316-0.901; p = 0.019). The cross-sectional design cannot evaluate the cause-effect relationship and did not evaluate the functional consequences of this polymorphism. Our data support an important role for ADORA2A rs2298383 SNP in clinical heterogeneity associated with depression. The presence of the TT genotype was associated with decrease risk for current depression and disturbances in sleep and attention, two of the most common symptoms associated with this disorder.
Collapse
Affiliation(s)
- Sílvia Oliveira
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Biology Laboratory, University of Campanha Region, Bagé, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil. .,Laboratório de Neurociências Clínicas, Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Rua Gonçalves Chaves 373, sala 324C, Pelotas, RS, 96015-560, Brazil.
| | - Clarissa Ribeiro Bastos
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marta Gazal
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano de Mattos Souza
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Abstract
The S100B protein is an intra- and extracellular signaling protein that
plays a role in a multitude of cellular processes and abnormal S100B is
associated with various neurological diseases and cancers. S100B recognizes and
binds effector proteins in a calcium-dependent manner. S100B has been shown to
interact with the actin capping protein CapZ, protein kinase C, Hdm2 and 4, RAGE
receptor, and p53, among others. These protein partners interact with
a common area on the S100B protein surface, validating the method of using the
consensus sequence for S100B target search. In addition, each S100B target
protein distinguishes itself by additional contacts with S100B. This perspective
suggests that the combination of sequence homology search and structural
analysis promises to identify newer S100B-binding partners beyond the use of the
consensus sequence alone as the given example in the XPB subunit of the TFIIH
general transcription factor. XPB is a helicase required for both transcription
and DNA repair. Inherited xpb mutations are associated with human disease
Xeroderma Pigmentasum, Cockayne syndrome, and trichothiodystrophy. S100B protein
is likely associated with much more biological pathways and processes. We
believe that S100B will attract more and more attentions in the scientific
community and S100B related studies will have important implications in human
health and medicine.
Collapse
Affiliation(s)
- K D Prez
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| | - L Fan
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| |
Collapse
|
22
|
Choi YJ, Lee HY, Kim Y, Cho SH. Scolopendra Pharmacopuncture Ameliorates Behavioral Despair in Mice Stressed by Chronic Restraint. J Pharmacopuncture 2018; 20:257-264. [PMID: 30151295 PMCID: PMC6104719 DOI: 10.3831/kpi.2017.20.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction Pharmacopuncture, which combines acupuncture with herbal medicine, is one of the newly developed acupuncture techniques that has recently been put into use. The possible mechanisms of scolopendra pharmacopuncture, as well as its potential effects on depressive symptoms, were investigated in this study by using a mouse model of chronic immobilization stress (CIS). Methods C57BL/6 male mice were randomly assigned into three groups: mice not stressed with restraint and injected with distilled water, mice stressed with restraint and injected with distilled water, and mice stressed with restraint injected with scolopendra pharmacopuncture at a cervical site. Behavioral tests (an open field test, tail suspension test, and forced swimming test) were carried out after two weeks of CIS and injection treatments. The expression levels of glial fibrillary acidic protein (GFAP) in the hippocampus were determined by using western blot and immunohistochemistry analyses. Results Mice exposed to CIS showed decreased behavioral activity, while scolopendra pharmacopuncture treatment significantly protected against the depressive-like behaviors induced by CIS. Moreover, scolopendra pharmacopuncture treatment increased GFAP protein levels in the hippocampi of the mice stressed by chronic immobilization. Conclusion Scolopendra pharmacopuncture has an ameliorating effect on depressive behavior, which is partially mediated through protection against glial loss in the hippocampus.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hwa-Young Lee
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Korea
| | - Yunna Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Hun Cho
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Korea
| |
Collapse
|
23
|
Wang F, Zou ZR, Yuan D, Gong Y, Zhang L, Chen X, Sun T, Yu HL. Correlation between serum S100β protein levels and cognitive dysfunction in patients with cerebral small vessel disease: a case-control study. Biosci Rep 2017; 37:BSR20160446. [PMID: 28143956 PMCID: PMC5484012 DOI: 10.1042/bsr20160446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to explore the correlation between serum S100β levels and cognitive dysfunction in patients with cerebral small vessel disease (SVD). A total of 172 SVD patients participated in the study, and they were assigned to patients with no cognitive impairment (NCI group) and those with vascular cognitive impairment no dementia (VCIND group). In total, 105 people were recruited into the normal control group. Serum S100β protein level was detected by ELISA. A receiver operating characteristic (ROC) curve was employed for the predictive value of serum S100β in diagnosing SVD with cognitive dysfunction. Pearson correlation analysis was used to examine the association of S100β level with mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) and the association of S100β levels with hypertension. Logistic regression analysis was used to analyze risk factors of SVD. The serum S100β levels in the VCIND group were higher than those in the NCI and normal control groups. Logistic regression analysis revealed that a high serum S100β protein level, hypertension, and high low density lipoprotein-cholesterol (LDL-C) level were the independent risk factors for SVD. In addition, hypertension patients showed higher S100β levels than those with normal blood pressure and the normal control group, and there was a positive correlation between S100β level and blood pressure. The concentration of serum S100β level was related to impairment of cognition function of VCIND patients, therefore, early detection of serum S100β was of great value for diagnosis of SVD.
Collapse
Affiliation(s)
- Fei Wang
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Zhi-Rong Zou
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, P.R. China
| | - Dong Yuan
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Yi Gong
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Li Zhang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, P.R. China
| | - Xun Chen
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Tao Sun
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Hua-Lin Yu
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| |
Collapse
|
24
|
Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry 2017; 74:27-34. [PMID: 28088747 DOI: 10.1016/j.comppsych.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with bipolar disorder might have brain damage. The aim of this study was to investigate the serum levels of brain injury biomarkers and S100A10 in bipolar patients in a manic phase, and evaluate the changes in S100B, neuron specific enolase (NSE), heat shock protein 70 (HSP70) and S100A10 after treatment. METHOD We consecutively enrolled 17 bipolar inpatients in a manic phase and 30 healthy subjects. Serum brain injury biomarkers and S100A10 were measured with assay kits. All patients were evaluated by examining the correlation between brain injury biomarkers and Young Mania Rating Scale (YMRS) scores. RESULT We found significantly decreased S100B levels only in bipolar manic patients after treatment (p=0.002), but S100B levels were not significantly different from those in healthy controls (p>0.05). CONCLUSION Our results indicate there were decreased S100B serum levels in bipolar patients in a manic phase after treatment and that increased serum S100B levels might be a possible indicator of transient disruption of the blood-brain barrier in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Wang CH, Gu JY, Zhang XL, Dong J, Yang J, Zhang YL, Ning QF, Shan XW, Li Y. Venlafaxine ameliorates the depression-like behaviors and hippocampal S100B expression in a rat depression model. Behav Brain Funct 2016; 12:34. [PMID: 27931233 PMCID: PMC5146825 DOI: 10.1186/s12993-016-0116-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B may be involved in the pathophysiology of depression. No published study has examined the effect of the antidepressant drug venlafaxine on S100B in animal models of depression. This study investigated S100B expression in the hippocampus and assessed the effect of venlafaxine on S100B mRNA level and protein expression in rats exposed to chronic unpredictable mild stress (CUMS). Methods Forty Sprague-Dawley rats were randomly divided into four groups as control, 0, 5 and 10 mg venlafaxine groups. The venlafaxine groups were exposed to CUMS from day 2 to day 43. Venlafaxine 0, 5 and 10 mg/kg were then administered from day 23 to day 43. We performed behavioral assessments with weight change, open-field and sucrose preference, and analyzed S100B protein expression and mRNA level in the hippocampus. Results The CUMS led to a decrease in body weight, locomotor activity and sucrose consumption, but venlafaxine treatment (10 mg) reversed these CUMS-induced decreases Also, CUMS increased S100B protein expression and mRNA level in the hippocampus, but venlafaxine treatment (10 mg) significantly decreased S100B protein expression and mRNA level, which were significantly lower than the other treatment groups, without significant difference between the 10 mg venlafaxine and the control groups. Conclusions Our findings showed that venlafaxine treatment (10 mg) may improve the depression-like behaviors and decrease over-expression of S100B protein and mRNA in the hippocampus in a rat model of depression. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jun Yang
- Standard Technological Co. Ltd. (Xinxiang Institute for New Medicine), Xinxiang, 453003, Henan, China.,Xinjiang Hongda Food & Beverage Co. Ltd., Xinjiang, 043102, Shanxi, China
| | - Ying-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Wen Shan
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
26
|
Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J Affect Disord 2016; 206:210-215. [PMID: 27475892 DOI: 10.1016/j.jad.2016.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a neuropsychiatric disorder characterized by recurrent episodes of mania/hypomania, affecting more than 1% of the world population. S100B is a calcium-binding protein, mostly produced and secreted by astrocytes in the CNS that participate in several cellular responses. Previous studies have shown that patients with bipolar disorder had higher peripheral S100B levels than healthy individuals, suggesting a potential role for S100B BD. METHODS In this study, a systematic and quantitative meta-analysis of studies S100B serum was performed according to the guidelines PRISMA-statement to confirm the increase of serum S100B in patients with manic bipolar disorder. RESULTS We included in the meta-analysis two studies that reported the mean and standard deviation of serum S100B 52 patients manic BP and 52 control studies. Our results showed higher levels of S100B peripheral TB patients compared with healthy controls. In this meta-analysis, we found evidence that serum S100B are increased in patients with bipolar disorder. CONCLUSION In conclusion, several studies have observed morphological abnormalities in the brains of bipolar disorder patients, changes in the peripheral S100B levels in mood disorders were described, and this protein could be a putative marker for damage to the brain. Thus, in this meta-analysis we have found evidence, based on two studies of 52 patients and 52 healthy controls, that the serum concentrations of S100B are increased in bipolar disorder patients.
Collapse
|
27
|
Poletti S, Locatelli C, Falini A, Colombo C, Benedetti F. Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:117-22. [PMID: 27449360 DOI: 10.1016/j.pnpbp.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023]
Abstract
Adverse childhood experiences (ACE) can possibly permanently alter the stress response system, affect the glutamatergic system and influence hippocampal volume in mood disorders. The aim of the study is to investigate the association between glutamate levels in the hippocampus, measured through single proton magnetic resonance spectroscopy (1H-MRS), and ACE in patients affected by mood disorders and healthy controls. Higher levels of early stress associate to reduced levels of Glx/Cr in the hippocampus in depressed patients but not in healthy controls. Exposure to stress during early life could lead to a hypofunctionality of the glutamatergic system in the hippocampus of depressed patients. Abnormalities of glutamatergic signaling could then possibly underpin the structural and functional abnormalities observed in patients affected by mood disorders.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy..
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Andrea Falini
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy.; Department of Neuroradiology, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
28
|
Chhabria K, Chakravarthy VS. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions. Front Neurol 2016; 7:24. [PMID: 27014179 PMCID: PMC4783418 DOI: 10.3389/fneur.2016.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low-dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an “energy” variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed “neuron-energy” unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as non-invasive brain stimulation for stroke patients.
Collapse
Affiliation(s)
- Karishma Chhabria
- Computational Biophysics and Neurosciences Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| | - V Srinivasa Chakravarthy
- Computational Biophysics and Neurosciences Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
29
|
Schümberg K, Polyakova M, Steiner J, Schroeter ML. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia-A Meta-Regression Analysis. Front Cell Neurosci 2016; 10:46. [PMID: 26941608 PMCID: PMC4766293 DOI: 10.3389/fncel.2016.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings.
Collapse
Affiliation(s)
- Katharina Schümberg
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Maryna Polyakova
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Matthias L Schroeter
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Clinic for Cognitive Neurology, University of LeipzigLeipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzig, Germany; German Consortium for Frontotemporal Lobar DegenerationUlm, Germany
| |
Collapse
|
30
|
Muneer A. Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers. Psychiatry Investig 2016; 13:18-33. [PMID: 26766943 PMCID: PMC4701682 DOI: 10.4306/pi.2016.13.1.18] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder is a severe and enduring psychiatric condition which in many cases starts during early adulthood and follows a relapsing and remitting course throughout life. In many patients the disease follows a progressive path with brief periods of inter-episode recovery, sub-threshold symptoms, treatment resistance and increasing functional impairment in the biopsychosocial domains. Knowledge about the neurobiology of bipolar disorder is increasing steadily and evidence from several lines of research implicates immuno-inflammatory mechanisms in the brain and periphery in the etiopathogenesis of this illness and its comorbidities. The main findings are an increase in the levels of proinflammatory cytokines during acute episodes with a decrease in neurotrophic support. Related to these factors are glial cell dysfunction, neuro-endocrine abnormalities and neurotransmitter aberrations which together cause plastic changes in the mood regulating areas of the brain and neuroprogression of the bipolar diathesis. Research in the above mentioned areas is providing an opportunity to discover novel biomarkers for the disease and the field is reaching a point where major breakthroughs can be expected in the not too distant future. It is hoped that with new discoveries fresh avenues will be found to better treat an otherwise recalcitrant disease.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
31
|
Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ, Maffei A, Aguirre A. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 2015; 88:941-956. [PMID: 26606998 PMCID: PMC5354631 DOI: 10.1016/j.neuron.2015.10.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 09/29/2015] [Accepted: 10/28/2015] [Indexed: 01/25/2023]
Abstract
NG2-expressing glia (NG2 glia) are a uniformly distributed and mitotically active pool of cells in the central nervous system (CNS). In addition to serving as progenitors of myelinating oligodendrocytes, NG2 glia might also fulfill physiological roles in CNS homeostasis, although the mechanistic nature of such roles remains unclear. Here, we report that ablation of NG2 glia in the prefrontal cortex (PFC) of the adult brain causes deficits in excitatory glutamatergic neurotransmission and astrocytic extracellular glutamate uptake and induces depressive-like behaviors in mice. We show in parallel that chronic social stress causes NG2 glia density to decrease in areas critical to Major Depressive Disorder (MDD) pathophysiology at the time of symptom emergence in stress-susceptible mice. Finally, we demonstrate that loss of NG2 glial secretion of fibroblast growth factor 2 (FGF2) suffices to induce the same behavioral deficits. Our findings outline a pathway and role for NG2 glia in CNS homeostasis and mood disorders.
Collapse
Affiliation(s)
- Fikri Birey
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michelle Kloc
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manideep Chavali
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Israa Hussein
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Wilson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel J Christoffel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Tony Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - John K Robinson
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Adan Aguirre
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
32
|
Zimmer ER, Torrez VR, Kalinine E, Augustin MC, Zenki KC, Almeida RF, Hansel G, Muller AP, Souza DO, Machado-Vieira R, Portela LV. Long-term NMDAR antagonism correlates reduced astrocytic glutamate uptake with anxiety-like phenotype. Front Cell Neurosci 2015; 9:219. [PMID: 26089779 PMCID: PMC4452887 DOI: 10.3389/fncel.2015.00219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
Abstract
The role of glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been extensively studied in schizophrenia; however, less is known about its role in anxiety disorders. Recently, it was demonstrated that astrocytic GLT-1 blockade leads to an anxiety-like phenotype. Although astrocytes are capable of modulating NMDAR activity through glutamate uptake transporters, the relationship between astrocytic glutamate uptake and the development of an anxiety phenotype remains poorly explored. Here, we aimed to investigative whether long-term antagonism of NMDAR impacts anxiety-related behaviors and astrocytic glutamate uptake. Memantine, an NMDAR antagonist, was administered daily for 24 days to healthy adult CF-1 mice by oral gavage at doses of 5, 10, or 20 mg/kg. The mice were submitted to a sequential battery of behavioral tests (open field, light–dark box and elevated plus-maze tests). We then evaluated glutamate uptake activity and the immunocontents of glutamate transporters in the frontoparietal cortex and hippocampus. Our results demonstrated that long-term administration of memantine induces anxiety-like behavior in mice in the light–dark box and elevated plus-maze paradigms. Additionally, the administration of memantine decreased glutamate uptake activity in both the frontoparietal cortex and hippocampus without altering the immunocontent of either GLT-1 or GLAST. Remarkably, the memantine-induced reduction in glutamate uptake was correlated with enhancement of an anxiety-like phenotype. In conclusion, long-term NMDAR antagonism with memantine induces anxiety-like behavior that is associated with reduced glutamate uptake activity but that is not dependent on GLT-1 or GLAST protein expression. Our study suggests that NMDAR and glutamate uptake hypofunction may contribute to the development of conditions that fall within the category of anxiety disorders.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Vitor R Torrez
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Eduardo Kalinine
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil ; Department of Physiology, Universidade Federal de Sergipe São Cristovão, Brazil
| | - Marina C Augustin
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Kamila C Zenki
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Roberto F Almeida
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Gisele Hansel
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Alexandre P Muller
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil ; Laboratory of Exercise, Biochemistry and Physiology, Universidade do Extremo Sul Catarinense Criciúma, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, Universidade de São Paulo São Paulo, Brazil ; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Universidade de São Paulo São Paulo, Brazil ; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| | - Luis V Portela
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| |
Collapse
|
33
|
Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation. Nat Commun 2015; 6:6887. [PMID: 25904499 PMCID: PMC4423212 DOI: 10.1038/ncomms7887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures. Guidepost cells provide guidance cues that orient growing axons in the brain but little is known about the midline guidepost cells that populate the mouse anterior commissure (AC). Here, the authors show that the transcription factor Nkx2.1 regulates the differentiation of astroglia and neurons that cooperate to guide AC axons through the expression of Slit2.
Collapse
|
34
|
Agam G, Almog O. Calbindin D28k and S100B Have a Similar Interaction Site with the Lithium-Inhibitable Enzyme Inositol Monophosphatase-1: A New Drug Target Site. J Med Chem 2015; 58:2042-4. [DOI: 10.1021/jm5019324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry
and Pharmacology, Faculty of
Health Sciences, and ‡Mental Health
Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry
and Pharmacology, Faculty of
Health Sciences, and ‡Mental Health
Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
35
|
Mesman E, Hillegers MH, Ambree O, Arolt V, Nolen WA, Drexhage HA. Monocyte activation, brain-derived neurotrophic factor (BDNF), and S100B in bipolar offspring: a follow-up study from adolescence into adulthood. Bipolar Disord 2015; 17:39-49. [PMID: 25039314 DOI: 10.1111/bdi.12231] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/29/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. METHODS Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. RESULTS During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. CONCLUSIONS This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value.
Collapse
Affiliation(s)
- Esther Mesman
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Blood levels of S-100 calcium-binding protein B, high-sensitivity C-reactive protein, and interleukin-6 for changes in depressive symptom severity after coronary artery bypass grafting: prospective cohort nested within a randomized, controlled trial. PLoS One 2014; 9:e111110. [PMID: 25329583 PMCID: PMC4203837 DOI: 10.1371/journal.pone.0111110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cross-sectional and retrospective studies have associated major depressive disorder with glial activation and injury as well as blood-brain barrier disruption, but these associations have not been assessed prospectively. Here, we aimed to determine the relationship between changes in depressive symptom severity and in blood levels of S-100 calcium-binding protein B (S-100B), high-sensitivity C-reactive protein, and interleukin-6 following an inflammatory challenge. METHODS Fifty unselected participants were recruited from a randomized, controlled trial comparing coronary artery bypass grafting procedures performed with versus without cardiopulmonary bypass for the risk of neurocognitive decline. Depressive symptom severity was measured at baseline, discharge, and six-month follow-up using the Beck Depression Inventory II (BDI-II). The primary outcome of the present biomarker study was acute change in depressive symptom severity, defined as the intra-subject difference between baseline and discharge BDI-II scores. Blood biomarker levels were determined at baseline and 2 days postoperative. RESULTS Changes in S-100B levels correlated positively with acute changes in depressive symptom severity (Spearman ρ, 0.62; P = 0.0004) and accounted for about one-fourth of their observed variance (R2, 0.23; P = 0.0105). This association remained statistically significant after adjusting for baseline S-100B levels, age, weight, body-mass index, or β-blocker use, but not baseline BDI-II scores (P = 0.064). There was no statistically significant association between the primary outcome and baseline S-100B levels, baseline high-sensitivity C-reactive protein or interleukin-6 levels, or changes in high-sensitivity C-reactive protein or interleukin-6 levels. Among most participants, levels of all three biomarkers were normal at baseline and markedly elevated at 2 days postoperative. CONCLUSIONS Acute changes in depressive symptom severity were specifically associated with incremental changes in S-100B blood levels, largely independent of covariates associated with either. These findings support the hypothesis that glial activation and injury and blood-brain barrier disruption can be mechanistically linked to acute exacerbation of depressive symptoms in some individuals.
Collapse
|
37
|
Zanette SA, Dussan-Sarria JA, Souza A, Deitos A, Torres ILS, Caumo W. Higher serum S100B and BDNF levels are correlated with a lower pressure-pain threshold in fibromyalgia. Mol Pain 2014; 10:46. [PMID: 25005881 PMCID: PMC4094546 DOI: 10.1186/1744-8069-10-46] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/03/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) is conceptualized as a central sensitization (CS) condition, that presents high serum brain-derived neurotrophic factor (BDNF) and neuroglia activation. Although the S100B protein regulates neuroglia functions, it has been traditionally used as a proxy of central nervous system damage. However, neither BDNF nor S100B association with the clinical picture of FM has been elucidated. To explore their association with the pressure-pain threshold (PPT) in FM, we performed a cross-sectional study, including 56 females with confirmed FM aged 18-65 years. Linear regression models were used to adjust for potential confounding factors between serum BDNF, S100B and PPT. RESULTS Serum BDNF and S100B were correlated (Spearman's Rho = 0.29). Serum BDNF (log) and S100B (log) were correlated with the PPT (log) (Partial η2 = 0.129, P = 0.012 for the BDNF (log), and Partial η2 = 0.105, P = 0.025 for the S100B (log)). Serum BDNF (log) was inversely associated with PPT (log) (β = -1.01, SE = 0.41), age (β = -0.02, SE = 0.15) and obsessive compulsive disorder (β = -0.36, SE = 0.15), while serum S100B (log) was inversely associated with PPT (log) (β = -1.38, SE = 0.50), only. CONCLUSIONS Both neuroglia key mediators in the CS process were inversely correlated with the PPT. Serum assessment of BDNF and S100B deserve further study to determine its potential as a proxy for the CS spectrum in FM.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolnei Caumo
- Post Graduate Program in Medical Sciences, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
38
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
39
|
Jun C, Choi Y, Lim SM, Bae S, Hong YS, Kim JE, Lyoo IK. Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol 2014; 23:28-35. [PMID: 24737937 PMCID: PMC3984954 DOI: 10.5607/en.2014.23.1.28] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
The role of glutamatergic system in the neurobiology of mood disorders draws increasing attention, as disturbance of this system is consistently implicated in mood disorders including major depressive disorder and bipolar disorder. Thus, the glutamate hypothesis of mood disorders is expected to complement and improve the prevailing monoamine hypothesis, and may indicate novel therapeutic targets. Since the contribution of astrocytes is found to be crucial not only in the modulation of the glutamatergic system but also in the maintenance of brain energy metabolism, alterations in the astrocytic function and neuroenergetic environment are suggested as the potential neurobiological underpinnings of mood disorders. In the present review, the evidence of glutamatergic abnormalities in mood disorders based on postmortem and magnetic resonance spectroscopy (MRS) studies is presented, and disrupted energy metabolism involving astrocytic dysfunction is proposed as the underlying mechanism linking altered energy metabolism, perturbations in the glutamatergic system, and pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 151-747, Korea
| | - Soo Mee Lim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Radiology, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Sujin Bae
- Brain Institute and Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul 120-750, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
40
|
Abstract
From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity - reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition - limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional "unified field theory" of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia - the brain's primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic-pituitary-adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great questions facing the field and one that is likely to have profound treatment implications, given that fact that such a discovery would greatly increase our ability to individualize - and by extension, enhance - treatment.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Sciences, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Charles Raison
- Department of Psychiatry, University of Arizona , Tucson, AZ , USA ; Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona , Tucson, AZ , USA
| |
Collapse
|
41
|
The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm (Vienna) 2013; 122 Suppl 1:S9-18. [DOI: 10.1007/s00702-013-1134-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
|
42
|
Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, Bogerts B, Steiner J. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res 2013; 47:1694-9. [PMID: 23896207 DOI: 10.1016/j.jpsychires.2013.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have suggested that affective disorders are characterized by glial pathology. In this context, it has been hypothesized that elevated S100B serum and cerebrospinal fluid levels may represent a suitable surrogate marker. However, brain studies on the cellular distribution pattern of S100B in depressed patients are lacking so far. Such analyses are crucial, since S100B has been detected in various other cell types, even outside the central nervous system. METHODS Therefore, we performed a first postmortem analysis on this topic in the hippocampus--which is of major importance for emotional and cognitive aspects of affective disorders. S100B-immunopositive astrocytes and oligodendrocytes were evaluated in the alveus and the CA1 pyramidal layer of patients with major depressive disorder (MDD) or bipolar I disorder (BD) compared to controls. RESULTS As revealed by the optical disector cell-counting method, the numerical density of S100B-immunopositive astrocytes was bilaterally decreased in the CA1 pyramidal layer of MDD and BD patients compared to controls, whereas only the bipolar group showed a decreased density of S100B-immunopositive oligodendrocytes in the left alveus. These results were not confounded by gender, age, duration of disease, medication dosage, or autolysis time. CONCLUSIONS Confirming the idea of previous S100B serum and cerebrospinal fluid studies, our data suggest that S100B-immunopositive glia is dysregulated in the brains of depressed patients. These findings are in accordance with animal experiments in rodents showing a reduced astrocytic S100B-immunoreactivity in the hippocampus after pharmacological serotonin depletion (modeling depression).
Collapse
Affiliation(s)
- Tomasz Gos
- Department of Psychiatry, University of Magdeburg, Germany; Institute of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14:1225-36. [PMID: 23469922 PMCID: PMC3799810 DOI: 10.2174/13894501113149990156] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
44
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abdallah CG, Coplan JD, Jackowski A, Sato JR, Mao X, Shungu DC, Mathew SJ. A pilot study of hippocampal volume and N-acetylaspartate (NAA) as response biomarkers in riluzole-treated patients with GAD. Eur Neuropsychopharmacol 2013; 23:276-84. [PMID: 22739126 PMCID: PMC3473175 DOI: 10.1016/j.euroneuro.2012.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/08/2012] [Accepted: 05/29/2012] [Indexed: 12/25/2022]
Abstract
Anxiolytic benefit following chronic treatment with the glutamate modulating agent riluzole in patients with generalized anxiety disorder (GAD) was previously associated with differential changes in hippocampal NAA concentrations. Here, we investigated the association between hippocampal volume and hippocampal NAA in the context of riluzole response in GAD. Eighteen medication-free adult patients with GAD received 8-week of open-label riluzole. Ten healthy subjects served as a comparison group. Participants underwent magnetic resonance imaging and spectroscopy at baseline and at the end of Week 8. GAD patients who completed all interventions were classified as remitters (n=7) or non-remitters (n=6), based on final Hamilton Anxiety Rating Scale (HAM-A) scores ≤7. At baseline, GAD patients had a significant reduction in total hippocampal volume compared to healthy subjects (F(1,21)=6.55, p=0.02). This reduction was most pronounced in the remitters, compared to non-remitters and healthy subjects. Delta (final-baseline) hippocampal volume was positively correlated with delta NAA in GAD. This positive association was highly significant in the right hippocampus in GAD [r=0.81, p=0.002], with no significant association in healthy subjects [Fisher r-to-z p=0.017]. Across all GAD patients, delta hippocampal volume was positively associated with improvement in HAM-A (rspearman=0.62, p=0.03). These preliminary findings support hippocampal NAA and volume as neural biomarkers substantially associated with therapeutic response to a glutamatergic drug.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Division of Neuropsychopharmacology, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
47
|
Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin Biochem 2012; 45:1302-7. [DOI: 10.1016/j.clinbiochem.2012.07.094] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 11/23/2022]
|
48
|
Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 2012; 140:142-8. [PMID: 21890211 DOI: 10.1016/j.jad.2011.08.001] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Depression has a lifetime prevalence of up to 20%. Neuroimaging methods have revealed various structural and functional changes that occur in a human brain during a depressive episode. However, we still lack information concerning the extent to which structural and functional changes co-occur in a depressed brain. Furthermore, it is difficult to evaluate from a merely qualitative literature review what regional brain changes in volume and activation are robust across depressed patient samples and consistent across imaging centers. METHODOLOGY AND PRINCIPLE FINDINGS This study is a meta-analysis from 10 selected studies published previously. We applied the statistical anatomical/activation likelihood estimate method (ALE) in a total of 176 depressed patients and 175 controls for the MRI modality and in a total of 102 depressed patients and 94 controls for the PET modality to quantitatively identify those brain regions that show concordant alteration in the midst of a depressive episode across imaging modalities and study sites. We find a convergent change in the limbic-cortical brain circuit in depression compared to controls of both Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) data. The specific changes include lower gray matter volumes in the amygdala, the dorsal frontomedian cortex, and the right paracingulate cortex, as well as increases in glucose metabolism in the right subgenual and pregenual anterior cingulate cortices. CONCLUSIONS/SIGNIFICANCE Our current findings represent an important first step towards a more focused approach to neuroimaging unipolar depression. The regions identified could serve as a specific region-of-interest-for-disease template for both individual in vivo imaging studies and postmortem histopathologic exploration.
Collapse
|
49
|
Uher T, Bob P. Cerebrospinal fluid S100B levels reflect symptoms of depression in patients with non-inflammatory neurological disorders. Neurosci Lett 2012; 529:139-43. [PMID: 22982200 DOI: 10.1016/j.neulet.2012.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022]
Abstract
Recent findings document numerous interactions between neuronal and glial systems that likely play a role in the pathophysiology of depression. These findings suggest that glia-derived neurotrophic protein S100B may play a significant role in developing depression. To test the relationship between S100B and depressive symptoms we designed cross-sectional clinical study including S100B serum and CSF levels in neurological patients with non-inflammatory disorders (NIND), who undergone cerebrospinal fluid assessment for diagnostic purposes. The present study was focused on psychometric testing of depression (BDI-II), anxiety (SAS) and alexithymia (TAS-20), and neurochemical measure of cerebrospinal fluid (CSF) and serum levels of S100B in 40 NIND inpatients [mean age 41.67]. The main result shows that S100B in CSF is significantly negatively correlated with BDI-II (Spearman R=-0.51, p<0.0009) but not with SAS and TAS-20. The finding indicates that decreased level of S100B in CSF is related to increased symptoms of depression in the NIND patients.
Collapse
Affiliation(s)
- Tomas Uher
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry & UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
50
|
Serum S100B protein is associated with depressive symptoms in patients with end-stage renal disease. Clin Biochem 2012; 45:1573-7. [PMID: 22935566 DOI: 10.1016/j.clinbiochem.2012.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Depression is associated with a poorer prognosis in patients with end-stage renal disease (ESRD). Increasing evidence indicates that glial pathology and blood-brain-barrier (BBB) dysfunction are involved in the pathophysiology of depression. S100B, a protein expressed in astro- and oligodendroglia in the human brain is considered a biomarker of depression. Our objective was to investigate the relationship between S100B and depressive symptoms in patients undergoing hemodialysis (HD). DESIGN AND METHODS Seventy-eight Korean patients undergoing chronic HD without significant neurological issues participated in a cross-sectional observation study. Depressive symptoms were assessed with the Beck Depression Inventory-II (BDI-II), and serum S100B levels were measured using blood samples obtained prior to a mid-week HD session. RESULTS The mean age of patients was 59.0 years, and the mean dialysis duration was 51.7 months. About 45% of patients undergoing HD met criteria for depression (BDI-II≥20). Serum S100B levels were significantly higher in patients with depression compared with patients without depression (115.1±45.4 vs. 66.1±35.3 pg/mL, p<0.001). S100B (r=0.556, p<0.001) and high-sensitivity C-reactive protein (hs-CRP; r=0.422, p<0.001) and β2-microglobulin (r=0.391, p<0.001) levels were positively correlated with BDI-II scores. A multivariate regression analysis showed that both S100B and hs-CRP were significantly associated with BDI-II scores. CONCLUSIONS The results showed a close association between S100B and depressive symptoms in patients undergoing HD. However, the mechanisms underlying this relationship are currently unknown and warrant further investigation.
Collapse
|