1
|
Anesi SD, Chang PY, Maleki A, Manhapra A, Look-Why S, Asgari S, Walsh M, Drenen K, Foster CS. Effects of Subcutaneous Repository Corticotropin Gel Injection on Regulatory T Cell Population in Noninfectious Retinal Vasculitis. Ocul Immunol Inflamm 2023; 31:556-565. [PMID: 35258389 DOI: 10.1080/09273948.2022.2042323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 10/18/2022]
Abstract
AIM To evaluate the effect of repository corticotropin injection (RCI) on regulatory T cell population in patients with noninfectious retinal vasculitis. PATIENTS AND METHODS Patients with active noninfectious retinal vasculitis were included in a prospective nonrandomized open-label study. RESULTS Eighteen patients (33 eyes) were included in the study. Eleven (61.1%) patients [20 (60.6%) eyes] and 7 (38.9%) patients [13 (33.3%) eyes] were in the responsive and non-responsive groups, respectively. We did not find any statistically significant difference within the PPP-R group, within the PPP-NR group, or between these two groups in regard to regulatory T cell population. No significant systemic or ocular complications were found. CONCLUSION RCI may be a complementary treatment in patients with non-infectious retinal vasculitis with or without uveitis. This study did not demonstrate an increase in regulatory T cell population in patients with noninfectious retinal vasculitis.
Collapse
Affiliation(s)
- Stephen D Anesi
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Peter Y Chang
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Arash Maleki
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Ambika Manhapra
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Sydney Look-Why
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Soheila Asgari
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Marisa Walsh
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Kayla Drenen
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
- The Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res 2022; 218:108973. [PMID: 35149082 DOI: 10.1016/j.exer.2022.108973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.
Collapse
|
4
|
Ng TF, Dawit K, Taylor AW. Melanocortin receptor agonists suppress experimental autoimmune uveitis. Exp Eye Res 2022; 218:108986. [PMID: 35196505 PMCID: PMC9050930 DOI: 10.1016/j.exer.2022.108986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
The melanocortin system plays an essential role in the regulation of immune activity. The anti-inflammatory microenvironment of the eye is dependent on the expression of the melanocortin-neuropeptide alpha-melanocyte stimulating hormone (α-MSH). In addition, the melanocortin system may have a role in retinal development and retinal cell survival under conditions of retinal degeneration. We have found that treating experimental autoimmune uveitis (EAU) with α-MSH suppresses retinal inflammation. Also, this augmentation of the melanocortin system promotes immune tolerance and protection of the retinal structure. The benefit of α-MSH-therapy appears to be dependent on different melanocortin receptors. Therefore, we treated EAU mice with α-MSH-analogs with different melanocortin-receptor targets. This approach demonstrated which melanocortin-receptors suppress inflammation, preserve retinal structure, and induce immune tolerance in uveitis. At the chronic stage of EAU the mice were injected twice 1 day apart with 50 μg of α-MSH or an α-MSH-analog. The α-MSH-analogs were a pan-agonist PL8331, PL8177 (potent MC1r-only agonist), PL5000 (a pan-agonist with no MC5r functional activity), MT-II (same as PL5000) and PG901 (MC5r agonist, but also an antagonist to MC3r, and MC4r). Clinical EAU scores were measured until resolution in the α-MSH-treated mice, when the eyes were collected for histology, and spleen cells collected for retinal-antigen-stimulated cytokine production. Significant suppression of EAU was seen with α-MSH or PL8331 treatment. This was accompanied with significant preservation of retinal structure. A similar effect was seen in EAU-mice that were treated with PL8177, except the suppression of EAU was temporary. In EAU mice treated with PL5000, MTII, or PG901, there was no suppression of EAU with a significant loss in whole retina and outer-nuclear layer thickness. There was significant suppression of IL-17 with induction of IL-10 by retinal-antigen stimulated spleen T cells from EAU mice treated with α-MSH, PL8331, PL8177, or PL5000, but not from EAU mice treated with MT-II, or PG901. Our previous studies show the melanocortin system's importance in maintaining ocular immune privilege and that α-MSH-treatment accelerates recovery and induces retinal-antigen-specific regulatory immunity in EAU. Our current results show that this activity is centered around MC1r and MC5r. In addition, the results suggest that a therapeutic potential to target MC1r and MC5r together to suppress uveitis induces regulatory immunity with potentially maintaining a normal retinal structure.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, United States
| | - Kaleb Dawit
- Department of Ophthalmology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, United States
| | - Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, United States.
| |
Collapse
|
5
|
Wynn D, Goldstick L, Bauer W, Zhao E, Tarau E, Cohen JA, Robertson D, Miller A. Results from a multicenter, randomized, double-blind, placebo-controlled study of repository corticotropin injection for multiple sclerosis relapse that did not adequately respond to corticosteroids. CNS Neurosci Ther 2022; 28:364-371. [PMID: 34984839 PMCID: PMC8841301 DOI: 10.1111/cns.13789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION About 20%-35% of multiple sclerosis (MS) patients fail to respond to high-dose corticosteroids during a relapse. Repository corticotropin injection (RCI, Acthar® Gel) is a naturally sourced complex mixture of adrenocorticotropic hormone analogs and pituitary peptides that has anti-inflammatory and immunomodulatory effects. AIMS The study objective was to determine the efficacy and safety of RCI in patients with MS relapse that inadequately responded to corticosteroids. This was a multicenter, double-blind, placebo-controlled study. Nonresponders to high-dose corticosteroids were randomized to receive RCI (80 U) or placebo daily for 14 days. Assessments included improvements on the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Impact Scale (MSIS-29), Clinical Global Impression of Improvement (CGI-I), and adverse events (AEs). RESULTS Eighteen patients received RCI, and 17 received placebo. A greater proportion of EDSS responders was observed in the RCI group at Day 7, 21, and 42 compared with the placebo group. Qualitative CGI-I showed that more patients receiving RCI were much improved or very much improved than with placebo. No meaningful differences were observed between treatment groups for MSIS-29. No serious AEs or deaths were reported. CONCLUSION RCI is safe and effective for MS relapse patients who do not respond to high-dose corticosteroids.
Collapse
Affiliation(s)
- Daniel Wynn
- Consultants in Neurology, Multiple Sclerosis Center, Northbrook, Illinois, USA
| | - Lawrence Goldstick
- University of Cincinnati Waddell Center for Multiple Sclerosis, Cincinnati, Ohio, USA
| | - William Bauer
- Department of Neurosciences, University of Toledo, Toledo, Ohio, USA
| | - Enxu Zhao
- Mallinckrodt Pharmaceuticals, Hampton, New Jersey, USA
| | - Eva Tarau
- Mallinckrodt Pharmaceuticals, Hampton, New Jersey, USA
| | | | - Derrick Robertson
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Aaron Miller
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
6
|
Wirta D, McLaurin E, Ousler G, Liu J, Kacmaz RO, Grieco J. Repository Corticotropin Injection (Acthar ® Gel) for Refractory Severe Noninfectious Keratitis: Efficacy and Safety from a Phase 4, Multicenter, Open-Label Study. Ophthalmol Ther 2021; 10:1077-1092. [PMID: 34669183 PMCID: PMC8589919 DOI: 10.1007/s40123-021-00400-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction Noninfectious keratitis is a painful corneal inflammation treated with topical cyclosporine and other immunosuppressants. Additional treatment options are needed for keratitis that does not improve with standard therapies. Repository corticotropin injection (RCI; Acthar® Gel) is approved to treat severe acute and chronic allergic and inflammatory processes involving the eye and its adnexa, including keratitis. This phase 4, multicenter, open-label study assessed the efficacy and safety of RCI for refractory severe noninfectious keratitis. Methods Patients were ≥ 18 years old with persistent severe keratitis despite treatment with topical immunosuppressants. Patients received 80 U of RCI subcutaneously twice weekly for 12 weeks followed by a 4-week taper. Assessments included all domains of the Impact of Dry Eye on Everyday Life (IDEEL) Questionnaire, Ocular Discomfort and 4-Symptom Questionnaire, and Visual Analog Scale (VAS). Corneal fluorescein and conjunctival lissamine green staining, Conjunctival Redness Scale, tear production (Schirmer’s test), visual acuity, slit lamp examination, and intraocular pressure were also assessed. Safety was evaluated via treatment-emergent adverse events. Analyses were performed using the modified intent-to-treat (mITT) population (patients who received ≥ 1 dose of RCI and contributed any post-baseline efficacy data). Results In the mITT population (N = 35), 50.0% (95% confidence interval, 33.2% to 66.8%) of patients experienced clinically important improvements in the symptom bother domain of the IDEEL Questionnaire at week 12 of RCI therapy. All domains of the IDEEL and the Ocular Discomfort and 4-Symptom Questionnaire showed improvements at week 12 of RCI treatment. The most pronounced improvements in the VAS at week 12 were for eye dryness and eye discomfort. Corneal staining, conjunctival staining, conjunctival redness, and tear production showed early improvements that were sustained through week 12. No new safety signals for RCI were identified. Conclusions RCI is safe and effective for refractory severe noninfectious keratitis that has not improved with other approved therapies. Trial registration number ClinicalTrials.gov NCT04169061. Supplementary Information The online version contains supplementary material available at 10.1007/s40123-021-00400-y.
Collapse
Affiliation(s)
- David Wirta
- Eye Research Foundation, 520 Superior Ave. #235, Newport Beach, CA, 92663, USA.
| | | | | | - Jingyu Liu
- Mallinckrodt Pharmaceuticals, Hampton, NJ, USA
| | | | | |
Collapse
|
7
|
Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101007. [PMID: 34681232 PMCID: PMC8537856 DOI: 10.3390/ph14101007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a melanocyte-derived skin cancer that has a high heterogeneity due to its phenotypic plasticity, a trait that may explain its ability to survive in the case of physical or molecular aggression and to develop resistance to therapy. Therefore, the therapy modulation of phenotypic switching in combination with other treatment modalities could become a common approach in any future therapeutic strategy. In this paper, we used the syngeneic model of B16F10 melanoma implanted in C57BL/6 mice to evaluate the phenotypic changes in melanoma induced by therapy with iron oxide nanoparticles functionalized with salicylic acid (SaIONs). The results of this study showed that the oral administration of the SaIONs aqueous dispersion was followed by phenotypic switching to highly pigmented cells in B16F10 melanoma through a cytotoxicity-induced cell selection mechanism. The hyperpigmentation of melanoma cells by the intra- or extracellular accumulation of melanic pigment deposits was another consequence of the SaIONs therapy. Additional studies are needed to assess the reversibility of SaIONs-induced phenotypic switching and the impact of tumor hyperpigmentation on B16F10 melanoma’s progression and metastasis abilities.
Collapse
|
8
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
9
|
Nguyen QD, Anesi SD, Chexal S, Chu DS, Dayani PN, Leng T, Meleth AD, Sallam AA, Sheppard JD, Silverstein SM, Toyos M, Wang RC, Foster CS. Management of repository corticotropin injection therapy for non-infectious uveitis: a Delphi study. Acta Ophthalmol 2021; 99:669-678. [PMID: 33751822 PMCID: PMC10863995 DOI: 10.1111/aos.14702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Diagnosis and management of non-infectious uveitis (NIU), a major cause of blindness worldwide, are challenging. Corticosteroids, the cornerstone of therapy, are not appropriate for long-term use, and while non-biologic and biologic immunomodulators may be used for some patients, data on their efficacy and safety in this population are limited. Repository corticotropin injection (RCI), believed to affect uveitis by multiple mechanisms, has received regulatory approval for treatment of ophthalmic diseases including posterior uveitis, but is not widely used or discussed in guidelines for the management of uveitis and ocular inflammatory diseases. METHODS The index study employed a modified Delphi process with a panel of 14 US-based ophthalmologists. Consensus recommendations were developed through a series of three questionnaires. Panellists rated statements on a Likert scale from -5 (strongly disagree) to +5 (strongly agree). RESULTS The Delphi panel provided consensus recommendations on examinations and testing needed for diagnosis, treatment goals, and the use of corticosteroids, as well as the use of non-biologic and biologic immunomodulators. The panel reached consensus that RCI may be considered for posterior and pan-uveitis, and dosing should be individualized for each patient. Dose reduction/discontinuation should be considered for excessive RCI-related toxicity, hyperglycaemia and/or diabetic complications, excessive costs, or remission ≥ 2 years. Patients should be weaned from RCI if uveitis is stable and well controlled. Adverse events during RCI therapy can be managed by appropriate interventions, with dose reduction/discontinuation considered if events are severe or recurrent. CONCLUSIONS Expert consensus suggests RCI may be an appropriate treatment option for some patients with uveitis when other therapies are ineffective or intolerable.
Collapse
Affiliation(s)
- Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stephen D. Anesi
- Massachusetts Eye Research & Surgery Institution (MERSI), Waltham, MA, USA
| | | | - David S. Chu
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, NJ, USA
- Metropolitan Eye Research and Surgery Institute, Palisades Park, NJ, USA
| | - Pouya N. Dayani
- Retina-Vitreous Associates Medical Group, Los Angeles, CA, USA
| | - Theodore Leng
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Ahmed A. Sallam
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lonati C, Battistin M, Dondossola DE, Bassani GA, Brambilla D, Merighi R, Leonardi P, Carlin A, Meroni M, Zanella A, Catania A, Gatti S. NDP-MSH treatment recovers marginal lungs during ex vivo lung perfusion (EVLP). Peptides 2021; 141:170552. [PMID: 33865932 DOI: 10.1016/j.peptides.2021.170552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022]
Abstract
The increasing use of marginal lungs for transplantation encourages novel approaches to improve graft quality. Melanocortins and their receptors (MCRs) exert multiple beneficial effects in pulmonary inflammation. We tested the idea that treatment with the synthetic α-melanocyte-stimulating hormone analogue [Nle4,D-Phe7]-α-MSH (NDP-MSH) during ex vivo lung perfusion (EVLP) could exert positive influences in lungs exposed to different injuries. Rats were assigned to one of the following protocols (N = 10 each): 1) ischemia/reperfusion (IR) or 2) cardiac death (CD) followed by ex vivo perfusion. NDP-MSH treatment was performed in five rats of each protocol before lung procurement and during EVLP. Pulmonary function and perfusate concentration of gases, electrolytes, metabolites, nitric-oxide, mediators, and cells were assessed throughout EVLP. ATP content and specific MCR expression were investigated in perfused lungs and in biopsies collected from rats in resting conditions (Native, N = 5). NDP-MSH reduced the release of inflammatory mediators in perfusates of both the IR and the CD groups. Treatment was likewise associated with a lesser amount of leukocytes (IR: p = 0.034; CD: p = 0.002) and reduced lactate production (IR: p = 0.010; CD: p = 0.008). In lungs exposed to IR injury, the NDP-MSH group showed increased ATP content (p = 0.040) compared to controls. In CD lungs, a significant improvement of vascular (p = 0.002) and airway (Ppeak: p < 0.001, compliance: p < 0.050, pO2: p < 0.001) parameters was observed. Finally, the expression of MC1R and MC5R was detected in both native and ex vivo-perfused lungs. The results indicate that NDP-MSH administration preserves lung function through broad positive effects on multiple pathways and suggest that exploitation of the melanocortin system during EVLP could improve reconditioning of marginal lungs before transplantation.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy.
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico of Milan, via Francesco Sforza 35, 20100, Italy
| | - Daniele E Dondossola
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20100, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Giulia A Bassani
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Daniela Brambilla
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Riccardo Merighi
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Patrizia Leonardi
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Andrea Carlin
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan, 20122, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy; Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20100, Milan, Italy
| | - Anna Catania
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; Emeritus, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| |
Collapse
|
11
|
Extracellular Soluble Membranes from Retinal Pigment Epithelial Cells Mediate Apoptosis in Macrophages. Cells 2021; 10:cells10051193. [PMID: 34068205 PMCID: PMC8153131 DOI: 10.3390/cells10051193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
A central characterization of retinal immunobiology is the prevention of proinflammatory activity by macrophages. The retinal pigment epithelial cells (RPEs) are a major source of soluble anti-inflammatory factors. This includes a soluble factor that induces macrophage apoptosis when the activity of the immunomodulating neuropeptide alpha-melanocyte-stimulating hormone (α-MSH) is neutralized. In this manuscript, isolated extracellular soluble membranes (ESMs) from primary RPE were assayed to see if they could be the soluble mediator of apoptosis. Our results demonstrated that RPE ESMs mediated the induction of macrophage apoptosis that was suppressed by α-MSH. In contrast, the RPE line ARPE-19, cultured under conditions that induce similar anti-inflammatory activity to primary RPEs, did not activate apoptosis in the macrophages. Moreover, only the ESMs from primary RPE cultures, and not those from the ARPE-19 cell cultures, expressed mFasL. The results demonstrate that RPE ESMs are a soluble mediator of apoptosis and that this may be a mechanism by which the RPEs select for the survival of α-MSH-induced suppressor cells.
Collapse
|
12
|
Anesi SD, Chang PY, Maleki A, Stephenson A, Montieth A, Filipowicz A, Syeda S, Asgari S, Walsh M, Metzinger JL, Foster CS. Treatment of Noninfectious Retinal Vasculitis Using Subcutaneous Repository Corticotropin Injection. J Ophthalmic Vis Res 2021; 16:219-233. [PMID: 34055260 PMCID: PMC8126741 DOI: 10.18502/jovr.v16i2.9086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To show whether subcutaneous repository corticotropin injection (RCI, Acthar® Gel, a repository corticotropin injection, can be an effective potential therapeutic agent for noninfectious retinal vasculitis. METHODS Patients with active retinal vasculitis were followed with serial ultra-wide-field fluorescein angiograms and treated with 80 units of subcutaneous repository corticotropin injection twice weekly. RESULTS Primary outcome of ≥ 50% improvement in response level (RL) for retinal vasculitis and percent improvement in retinal vasculitis severity scoring (RVSS) by more than one quartile ( ≥ 25%) at week 12 was met in 15 and 16 of the 30 total eyes, respectively, including 1 eye with severe retinal vasculitis in each group. Complete resolution of retinal vasculitis was seen in seven eyes with a mean time of 17.1 weeks. Intraocular pressure elevation requiring therapy and cataract progression were noted in two and three eyes, respectively. One patient stopped medication due to side effects (injection site reaction). CONCLUSION Repository corticotropin injection was well-tolerated overall. Repository corticotropin injection may be an effective therapeutic agent in the treatment of noninfectious retinal vasculitis.
Collapse
Affiliation(s)
- Stephen D. Anesi
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Peter Y. Chang
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Arash Maleki
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Andrew Stephenson
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Alyssa Montieth
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Artur Filipowicz
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Sarah Syeda
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Soheila Asgari
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Marisa Walsh
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Jamie Lynne Metzinger
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - C. Stephen Foster
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
- Harvard Medical School, Department of Ophthalmology, Boston, MA, United States
| |
Collapse
|
13
|
Cuzzubbo S, Carpentier AF. Applications of Melanin and Melanin-Like Nanoparticles in Cancer Therapy: A Review of Recent Advances. Cancers (Basel) 2021; 13:1463. [PMID: 33806772 PMCID: PMC8004930 DOI: 10.3390/cancers13061463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Thanks to the growing knowledge about cancers and their interactions with the immune system, a huge number of therapeutic cancer vaccines have been developed in the past two decades. Despite encouraging results in pre-clinical models, cancer vaccines have not yet achieved significant clinical efficacy. Several factors may contribute to such poor results, including the difficulty of triggering a strong immune response and the immunosuppressive tumor microenvironment. Many strategies are currently being explored. Different types of adjuvants have been incorporated into vaccine formulations to improve their efficacy, as cancer antigens are usually poorly immunogenic. Nanoparticle systems are promising tools as they act as carriers for antigens and can be surface-modified so that they specifically target antigen-presenting cells in lymph nodes. Bioinspired nanomaterials are ideal candidates thanks to their biocompatibility. Recently, melanin-based nanoparticles were reported to efficiently localize into draining lymphoid tissues and trigger immune responses against loaded antigens. In addition, by virtue of their photochemical properties, melanin-based nanoparticles can also play an immunomodulatory role to promote anti-cancer responses in the context of photothermal therapy. In this review, we discuss the above-mentioned properties of melanin, and summarize the promising results of the melanin-based cancer vaccines recently reported in preclinical models.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015 Paris, France;
- Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Antoine F. Carpentier
- Université de Paris, Paris Diderot, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Service de Neurologie, 1, Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
14
|
Ng TF, Manhapra A, Cluckey D, Choe Y, Vajram S, Taylor AW. Melanocortin 5 Receptor Expression and Recovery of Ocular Immune Privilege after Uveitis. Ocul Immunol Inflamm 2021; 30:876-886. [PMID: 33617397 DOI: 10.1080/09273948.2020.1849735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The therapeutic use of the RPE-neuropeptide α-MSH suppresses experimental autoimmune uveitis (EAU). This suppression is partially through the α-MSH melanocortin 5 receptor (MC5r). Therefore, we examined the possible role of MC5r-expression in the recovery of RPE suppression of phagolysosome-activation in macrophages following α-MSH-treatment of EAUMethods: The conditioned media of cultured in situ RPE-eyecup from α-MSH-treated EAU wild-type and MC5r(-/-) mice were used to treat macrophages to assay for phagolysosome activation.Results: MC5r(-/-) mice treated with α-MSH recovered from EAU, but with greater retinal damage, and the RPE suppressed phagolysosome activation in wild type but not in MC5r(-/-) macrophages. In addition, α-MSH did not suppress phagolysosome activation in MC5r(-/-) macrophages, and resting-MC5r(-/-) macrophages had augmented phagocytic activity.Conclusion: α-MSH treatment of EAU mediates a MC5r-dependent recovery of RPE suppression of phagolysosome activation in macrophages possibly altering antigen processing and presentation. Also, MC5r-expression helps protect the retina from inflammatory damage. In addition, MC5r-expression is important in the homeostatic maintenance of phagosome-maturation within macrophages.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ambika Manhapra
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David Cluckey
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yoona Choe
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Srujan Vajram
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Dinparastisaleh R, Mirsaeidi M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel) 2021; 14:ph14010045. [PMID: 33430064 PMCID: PMC7827684 DOI: 10.3390/ph14010045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile.
Collapse
Affiliation(s)
- Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33146, USA
- Correspondence: ; Tel.: +1-305-243-1377
| |
Collapse
|
16
|
Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl Trop Dis 2020; 14:e0008905. [PMID: 33382688 PMCID: PMC7774838 DOI: 10.1371/journal.pntd.0008905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical description has recently attracted more attention and publications, the underlying pathophysiological mechanisms are only sparsely elucidated, which is partly due to the inherent difficulties to establish relevant animal models. Furthermore, the particularities of the ocular environment explain why the abundant knowledge on systemic toxoplasmosis cannot be just transferred to the ocular situation. However, studies undertaken in mouse models have revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17 (IL17), in ocular pathology and parasite control. These studies also show the importance of the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic strains show a completely different pathophysiology, which translates in a different clinical outcome. These elements should lead to more individualized therapy. Furthermore, the recent advance in understanding the immune response during OT paved the way to new research leads, involving immune pathways poorly studied in this particular setting, such as type I and type III interferons. In any case, deeper knowledge of the mechanisms of this pathology is needed to establish new, more targeted treatment schemes.
Collapse
Affiliation(s)
- Valentin Greigert
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Faiza Bittich-Fahmi
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
17
|
Lonati C, Gatti S, Catania A. Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Front Endocrinol (Lausanne) 2020; 11:569241. [PMID: 33362713 PMCID: PMC7758465 DOI: 10.3389/fendo.2020.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
18
|
Sun B, Vatanen T, Jayasinghe TN, McKenzie E, Murphy R, O'Sullivan JM. Desacetyl-α-MSH and α-MSH have sex specific interactions with diet to influence mouse gut morphology, metabolites and microbiota. Sci Rep 2020; 10:18957. [PMID: 33144604 PMCID: PMC7641164 DOI: 10.1038/s41598-020-75786-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The melanocortin peptides have an important role in regulating body weight and appetite. Mice that lack the desacetyl-α-MSH and α-MSH peptides (Pomctm1/tm1) develop obesity. This effect is exacerbated by a high fat diet (HFD). However, development of obesity in female Pomctm1/tm1 mice during chronic HFD conditions is not fully accounted for by the increased energy intake. We hypothesized that the protection against chronic HFD-induced obesity imparted by MSH peptides in females is mediated by sex-specific alterations in the gut structure and gut microbiota. We determined that female WT mice had reduced jejunum villus length and increased crypt depth in response to chronic HFD. WT males and Pomctm1/tm1 mice lacked this adaptation to a chronic HFD. Both Pomctm1/tm1 genotype and chronic HFD were significantly associated with gut microbiota composition. Sex-specific associations between Pomctm1/tm1 genotype and gut microbiota were observed in the presence of a chronic HFD. Pomctm1/tm1 females had significantly reduced fecal acetate and propionate concentrations when compared to WT females. We conclude that MSH peptides influence jejunum villus length, crypt depth and the structure of the gut microbiota. These effects favor reduced nutrient absorption and occur in addition to the recognized roles of desacetyl-α-MSH and α-MSH peptides in appetite control.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Thilini N Jayasinghe
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Elizabeth McKenzie
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Rinki Murphy
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Department of Medicine, Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
- Department of Medicine, Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
19
|
Neelam S, Niederkorn JY. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Invest Ophthalmol Vis Sci 2020; 61:25. [PMID: 32305043 PMCID: PMC7401639 DOI: 10.1167/iovs.61.4.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/28/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Severing corneal nerves during orthotopic corneal transplantation elicits the elaboration of the neuropeptide substance P (SP), which induces the generation of CD11c+ contrasuppressor (CS) cells. CS cells disable T regulatory cells (Tregs) that are induced when antigens enter the anterior chamber (AC), either by direct injection or by orthotopic corneal transplantation. This study examined the crucial cell surface molecules on Tregs that are adversely affected by CS cells that are generated by severing corneal nerves. Methods CS cells were induced by producing shallow 2.0-mm circular incisions in the corneal epithelium in BALB/c mice. CD8+ Tregs were generated by injecting ovalbumin into the AC. The effects of CS cells and SP on the expression and function of two cell surface molecules (CD103 and the receptor of interferon-γ) that are crucial for the induction and function of CD8+ Tregs were analyzed. Results SP converted CD11c+, but not CD11c- , dendritic cells (DCs) to CS cells. Severing corneal nerves resulted in a 66% reduction in the expression of CD103 on CD8+ AC-associated immune deviation (ACAID) Tregs, and a 50% reduction in the interferon-γ receptor (IFN-γR). These effects could be mimicked in vitro by coculturing CS cells with CD8+ ACAID Tregs. Conclusions The elaboration of SP in response to corneal nerve ablation converts CD11c+ DCs to CS cells. CS cells disable CD8+ ACAID Tregs by downregulating two crucial cell surface molecules, CD103 and IFN-γR, by an SP-dependent pathway. Blocking this pathway may provide a means of restoring ocular immune privilege in corneas subjected to corneal nerve injury.
Collapse
Affiliation(s)
- Sudha Neelam
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
20
|
Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster CS, Larson TA, Ding K, Dvorak JD, Lee DJ. PD-1 + melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep 2019; 9:16941. [PMID: 31729418 PMCID: PMC6858311 DOI: 10.1038/s41598-019-53297-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis marked by ocular autoantigen-specific regulatory immunity in the spleen. The melanocortin 5 receptor (MC5r) and adenosine 2 A receptor (A2Ar) are required for induction of post-EAU regulatory T cells (Tregs) which provide resistance to EAU. We show that blocking the PD-1/PD-L1 pathway prevented suppression of EAU by post-EAU Tregs. A2Ar induction of PD-1+FoxP3+ Tregs in uveitis patients was similar compared to healthy controls, but was significantly reduced with melanocortin stimulation. Further, lower body mass index correlated with responsiveness to stimulation of this pathway. These observations indicate an importance of the PD-1/PD-L1 pathway to provide resistance to relapsing uveitis and shows a reduced capacity of uveitis patients to induce Tregs when stimulated through melanocortin receptors, but that it is possible to bypass this part of the pathway through direct stimulation of A2Ar.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dawei Wang
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alyssa Montieth
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Stacey Lee
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Janine Preble
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa A Larson
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kai Ding
- College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin D Dvorak
- College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Darren J Lee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
21
|
Spana C, Taylor AW, Yee DG, Makhlina M, Yang W, Dodd J. Probing the Role of Melanocortin Type 1 Receptor Agonists in Diverse Immunological Diseases. Front Pharmacol 2019; 9:1535. [PMID: 30692924 PMCID: PMC6339910 DOI: 10.3389/fphar.2018.01535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background: The melanocortin α-melanocyte stimulating hormone (α-MSH), an endogenous peptide with high affinity for the melanocortin 1 receptor (MC1r), has demonstrated prevention and reversal of intestinal and ocular inflammation in animal models. Preclinical studies were performed to determine whether two MC1r receptor agonists, PL-8177 and PL-8331, exhibit actions and efficacy similar to α-MSH in preventing and reversing intestinal and ocular inflammation. Methods: Both PL-8177 and PL-8331 were assessed in a Eurofins LeadProfilingScreen selectivity panel including 72 in vitro assays. PL-8177 and PL-8331 were evaluated in an in vitro assay using human whole blood stimulated by lipopolysaccharide to determine inhibition of tumor necrosis factor alpha (TNF-α); for comparison, adrenocorticotropic hormone (ACTH) and α-MSH were used as positive controls. PL-8177, dosed at 0.5, 1.5, and 5.0 μg, was assessed in a cannulated rat model of dinitrobenzene sulfonic acid (DNBS)-induced bowel inflammation versus vehicle and oral sulfasalazine. PL-8177 was also dosed at 0.3 mg/kg/mouse injected intraperitoneally versus untreated controls and α-MSH treatment in mice with experimental autoimmune uveitis (EAU). PL-8331 at 3 doses, 3 times daily, was evaluated in a murine model of scopolamine-induced dry eye disease (SiccaSystemTM model), versus twice-daily Restasis® and Xiidra®. Results: Both PL-8177 and PL-8331 demonstrated no significant activity at the 1 μm concentration in any of the 72 in vitro assays. PL-8177 and PL-8331 inhibited lipopolysaccharide-induced TNF-α to a similar degree as ACTH and α-MSH. In the DNBS rat model of bowel inflammation, PL-8177 was significantly superior to untreated controls at all 3 doses (P < 0.05) in reducing bowel inflammation parameters, with effects similar to sulfasalazine. In the murine EAU model, PL-8177 significantly reduced retinal inflammation scores versus untreated controls (P = 0.0001) over 3–5 weeks, and to a similar degree as α-MSH. In the murine scopolamine-induced model of dry eye disease, PL-8331 reduced corneal fluorescein staining scores at all doses, significantly (P = 0.02) for the highest dose (1 × 10-5 mg⋅mL-1), and similarly to Restasis®; Xiidra® demonstrated no effect. Conclusion: The MC1r receptor agonists PL-8177 and PL-8331 exhibited actions similar to those of α-MSH in preventing and reversing intestinal and ocular inflammation in preclinical disease models.
Collapse
Affiliation(s)
- Carl Spana
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - David G Yee
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | | | - Wei Yang
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - John Dodd
- Palatin Technologies, Inc., Cranbury, NJ, United States
| |
Collapse
|
22
|
Shaban E, Bayliss G, Malhotra DK, Shemin D, Wang LJ, Gohh R, Dworkin LD, Gong R. Targeting Regulatory T Cells for Transplant Tolerance: New Insights and Future Perspectives. KIDNEY DISEASES 2018; 4:205-213. [PMID: 30574497 DOI: 10.1159/000490703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 01/15/2023]
Abstract
Background Organ transplantation is considered the ultimate therapy for end-stage organ disease. While pharmacologic immunosuppression is the mainstay of therapeutic strategies to prolong the survival of the graft, long-term use of immunosuppressive medications carries the risk of organ toxicity, malignancies, serious opportunistic infections, and diabetes. Therapies that promote recipient tolerance in solid organ transplantation are able to improve patient outcomes by eliminating the need for long-term immunosuppression. Summary Establishing tolerance to an allograft has become an area of intense study and would be the ideal therapy in clinical practice. The discovery of a subset of T cells naturally committed to perform immunoregulation has led to further investigation into their role in the immunopathogenesis of transplantation. Evidence suggests that regulatory T cells (Tregs) are fundamentally involved in promoting allograft tolerance. Efforts to characterize specific markers for Tregs, while challenging, have identified Foxp3 gene expression as a crucial step in promoting the tolerance-inducing features of Tregs. A number of approaches, including those based on targeting the glycogen synthase kinase 3β signaling pathway or activating the melanocortinergic pathway, have been tested as a way to promote Treg lineage commitment and maintenance as well as to facilitate immune tolerance. In order to be effective in clinical practice, Tregs must be allospecific and possess a specific phenotype to avoid suppression of other aspects of the immune system or increasing the risk of malignancy or infections. Multiple experimental and clinical studies have demonstrated the impact of currently used immunosuppressants on the immunoregulatory activities of Tregs and their Foxp3 expression status. Pharmacological induction of tolerogenic Tregs for inducing transplant tolerance, including epigenetic therapies, is in the ascendant. Key Messages Therapies that promote Treg function and survival may represent a novel strategy for achieving immune tolerance in transplant patients.
Collapse
Affiliation(s)
- Eman Shaban
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Transplant Center, University of Michigan, Ann Arbor, Michigan, USA
| | - George Bayliss
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Pathology, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Deepak K Malhotra
- Division of Nephrology, Department of Medicine, The University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Douglas Shemin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Li Juan Wang
- Department of Pathology, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Reginald Gohh
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, The University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Division of Nephrology, Department of Medicine, The University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
23
|
Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle) 2018; 7:209-231. [PMID: 29984112 PMCID: PMC6032665 DOI: 10.1089/wound.2017.0761] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: The immune system plays a central role in orchestrating the tissue healing process. Hence, controlling the immune system to promote tissue repair and regeneration is an attractive approach when designing regenerative strategies. This review discusses the pathophysiology of both acute and chronic wounds and possible strategies to control the immune system to accelerate chronic wound closure and promote skin regeneration (scar-less healing) of acute wounds. Recent Advances: Recent studies have revealed the key roles of various immune cells and immune mediators in skin repair. Thus, immune components have been targeted to promote chronic wound repair or skin regeneration and several growth factors, cytokines, and biomaterials have shown promising results in animal models. However, these novel strategies are often struggling to meet efficacy standards in clinical trials, partly due to inadequate drug delivery systems and safety concerns. Critical Issues: Excess inflammation is a major culprit in the dysregulation of normal wound healing, and further limiting inflammation effectively reduces scarring. However, current knowledge is insufficient to efficiently control inflammation and specific immune cells. This is further complicated by inadequate drug delivery methods. Future Directions: Improving our understanding of the molecular pathways through which the immune system controls the wound healing process could facilitate the design of novel regenerative therapies. Additionally, better delivery systems may make current and future therapies more effective. To promote the entry of current regenerative strategies into clinical trials, more evidence on their safety, efficacy, and cost-effectiveness is also needed.
Collapse
Affiliation(s)
- Jacqueline Larouche
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Sumit Sheoran
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Kenta Maruyama
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| |
Collapse
|
24
|
Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol 2018; 39:288-301. [PMID: 29248310 PMCID: PMC5880704 DOI: 10.1016/j.it.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
The ocular surface is a unique mucosal immune compartment in which anatomical, physiological, and immunological features act in concert to foster a particularly tolerant microenvironment. These mechanisms are vital to the functional competence of the eye, a fact underscored by the devastating toll of excessive inflammation at the cornea - blindness. Recent data have elucidated the contributions of specific anatomical components, immune cells, and soluble immunoregulatory factors in promoting homeostasis at the ocular surface. We highlight research trends at this distinctive mucosal barrier and identify crucial gaps in our current knowledge.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; University College London (UCL) Institute of Ophthalmology, University College London, London, UK
| | - Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Taylor AW, Ng TF. Negative regulators that mediate ocular immune privilege. J Leukoc Biol 2018; 103:1179-1187. [PMID: 29431864 PMCID: PMC6240388 DOI: 10.1002/jlb.3mir0817-337r] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 08/13/2023] Open
Abstract
The ocular microenvironment has adapted several negative regulators of inflammation to maintain immune privilege and health of the visual axis. Several constitutively produced negative regulators within the eye TGF-β2, α-melanocyte stimulating hormone (α-MSH), Fas ligand (FasL), and PD-L1 standout because of their capacity to influence multiple pathways of inflammation, and that they are part of promoting immune tolerance. These regulators demonstrate the capacity of immune privilege to prevent the activation of inflammation, and to suppress activation of effector immune cells even under conditions of ocular inflammation induced by endotoxin and autoimmune disease. In addition, these negative regulators promote and expand immune cells that mediate regulatory and tolerogenic immunity. This in turn makes the immune cells themselves negative regulators of inflammation. This provides for a greater understanding of immune privilege in that it includes both molecular and cellular negative regulators of inflammation. This would mean that potentially new approaches to the treatment of autoimmune disease can be developed through the use of molecules and cells as negative regulators of inflammation.
Collapse
Affiliation(s)
- Andrew W Taylor
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tat Fong Ng
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Clemson CM, Yost J, Taylor AW. The Role of Alpha-MSH as a Modulator of Ocular Immunobiology Exemplifies Mechanistic Differences between Melanocortins and Steroids. Ocul Immunol Inflamm 2016; 25:179-189. [PMID: 26807874 PMCID: PMC5769144 DOI: 10.3109/09273948.2015.1092560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanocortins are a highly conserved family of peptides and receptors that includes multiple proopiomelanocortin-derived peptides and five defined melanocortin receptors. The melanocortins have an important role in maintaining immune homeostasis and in suppressing inflammation. Within the healthy eye, the melanocortins have a central role in preventing inflammation and maintaining immune privilege. A central mediator of the anti-inflammatory activity is the non-steroidogenic melanocortin peptide alpha-melanocyte stimulating hormone. In this review we summarize the major findings of melanocortin regulation of ocular immunobiology with particular interest in the ability of melanocortin to induce immune tolerance and cytoprotection. The melanocortins have therapeutic potential because their mechanisms of action in regulating immunity are distinctly different from the actions of steroids.
Collapse
Affiliation(s)
- Christine M Clemson
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - John Yost
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - Andrew W Taylor
- b Department of Ophthalmology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
27
|
Loram LC, Culp ME, Connolly-Strong EC, Sturgill-Koszycki S. Melanocortin peptides: potential targets in systemic lupus erythematosus. Inflammation 2015; 38:260-71. [PMID: 25323206 PMCID: PMC4312383 DOI: 10.1007/s10753-014-0029-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease resulting in loss of self-tolerance with multiple organs, such as the kidney, skin, joints, and the central nervous system (CNS), being targeted. Numerous immunosuppressant therapies are currently being used for the treatment of SLE, but their clinical utility is somewhat variable because of the clinical heterogeneity. Melanocortins are a family of peptides derived from the common precursor protein pro-opiomelanocortin. These multifunctional peptides activate five subtypes of melanocortin receptors expressed on immune, skin, muscle, bone, and kidney cells and cells within the CNS. Melanocortin peptides have demonstrated a variety of biologic actions including immunomodulation, melanogenesis, and renoprotection. This review aims to introduce the melanocortin system and explore the mechanisms by which they may be beneficial in diseases such as SLE.
Collapse
Affiliation(s)
- Lisa Carole Loram
- Mallinckrodt Pharmaceuticals (formerly Questcor), 26118 Research Road, Hayward, CA, 94545, USA
| | | | | | | |
Collapse
|
28
|
Fang J, Han D, Hong J, Zhang H, Ying Y, Tian Y, Zhang L, Lin J. SVα-MSH, a novel α-melanocyte stimulating hormone analog, ameliorates autoimmune encephalomyelitis through inhibiting autoreactive CD4(+) T cells activation. J Neuroimmunol 2014; 269:9-19. [PMID: 24518673 DOI: 10.1016/j.jneuroim.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) plays a crucial role in the regulation of immune and inflammatory reactions. Here we report that SVα-MSH, a novel α-MSH analog, could ameliorate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in a preventive and therapeutic manner. SVα-MSH treatment induced the production of regulatory T (Treg) cells and reduced the Th17 cells in the CNS of EAE mice. SVα-MSH-treated PLP peptide 139-151-specific T cells showed a down-regulation of T cell activation markers CD69 and CD134. SVα-MSH did not induce apoptosis but blocked the G1/S phase transition, reduced the expression of cyclin E, Cdk2 and the activity of NFAT and AP-1 transcription factors. Thus, SVα-MSH acts as a novel immunotherapeutic approach in the treatment of autoimmune attack on the CNS.
Collapse
Affiliation(s)
- Jie Fang
- Department of Dermatology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Deping Han
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Jinsheng Hong
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hengshan Zhang
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ying Ying
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yeping Tian
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Lurong Zhang
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jianhua Lin
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
29
|
Taylor AW. Alpha-melanocyte stimulating hormone (α-MSH) is a post-caspase suppressor of apoptosis in RAW 264.7 macrophages. PLoS One 2013; 8:e74488. [PMID: 24009773 PMCID: PMC3757010 DOI: 10.1371/journal.pone.0074488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023] Open
Abstract
The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is an important regulator of immune cell activity within the immunosuppressive ocular microenvironment. Its constitutive presence not only suppresses macrophage inflammatory activity, it also participates in retinal pigment epithelial cell (RPE) mediated activation of macrophages to function similar to myeloid suppressor cells. In addition, α-MSH promotes survival of the alternatively activated macrophages where without α-MSH RPE induce apoptosis in the macrophages, which is seen as increased TUNEL stained cells. Since there is little know about α-MSH as an anti-apoptotic factor, the effects of α-MSH on caspase activity, mitochondrial membrane potential, Bcl2 to BAX expression, along with TUNEL staining, and Annexin V binding were examined in RAW 264.7 macrophages under serum-starved conditions that trigger apoptosis. There was no effect of α-MSH on activated Caspase 9 and Caspase 3 while there was suppression of Caspase 8 activity. In addition, α-MSH did not improve mitochondrial membrane potential, change the ratio between Bcl-2 and BAX, nor reduce Annexin V binding. These results demonstrate that the diminution in TUNEL staining by α-MSH is through α-MSH mediating suppression of the apoptotic pathway that is post-Caspase 3, but before DNA fragmentation. Therefore, as α-MSH promotes the alternative activation of macrophages it also provides a survival signal, and the potential for the caspases to participate in non-apoptotic activities that can contribute to an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
30
|
Abstract
Immune privilege protects vital organs and their functions from the destructive interference of inflammation. Because the eye is easily accessible for surgical manipulation and for assessing and imaging the outcomes, the eye has been a major tissue for the study of immune privilege. Here, we focus on the immune regulatory mechanisms in the posterior eye, in part, because loss of immune privilege may contribute to development of certain retinal diseases in the aging population. We begin with a background in immune privilege and then focus on the select regulatory mechanisms that have been studied in the posterior eye. The review includes a description of the immunosuppressive environment, regulatory surface molecules expressed by cells in the eye, types of cells that participate in immune regulation and finally, discusses animal models of retinal laser injury in the context of mechanisms that overcome immune privilege.
Collapse
Affiliation(s)
- Joan Stein-Streilein
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye & Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|