1
|
Sadler RL, Greenman AC, Methawasin M, Fan J, Harris SP. The L348P point mutation in cardiac myosin binding protein-C alters transient responses to stretch, slows cardiac relaxation, and is embryonic lethal in homozygous CRISPR gene-edited mice. J Mol Cell Cardiol 2025; 203:35-46. [PMID: 40222553 DOI: 10.1016/j.yjmcc.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Mutations in cardiac myosin binding protein-C (cMyBP-C) are a common cause of hypertrophic cardiomyopathy (HCM), an inherited autosomal dominant disease affecting 1 in 250-500 people. We previously identified a single amino acid substitution (L348P) in the regulatory motif (M-domain) of cMyBP-C that slowed relaxation and caused diastolic dysfunction in transgenic mice. Here we attempted to increase expression of the mutant protein by creating a CRISPR gene-edited knock-in mouse model (L348P-CR) and breeding mice to homozygosity for the mutant allele. Results showed that L348P-CR homozygous mice died in utero, but that heterozygous knock-in mice developed contractile deficits and diastolic dysfunction comparable to transgenic mice. To overcome the lethal homozygous expression of the L348P mutation, we used our "cut-and-paste" approach to fully replace endogenous wild-type cMyBP-C with recombinant L348P cMyBP-C in permeabilized cardiomyocytes from SpyC3 mice. Results showed that replacement of wild-type cMyBP-C with recombinant L348P recapitulated mechanical effects seen in transgenic and L348P-CR mice, validating the utility of our cut-and-paste method for evaluating functional effects of cMyBP-C. We conclude that L348P-CR knock-in mice are a robust model of diastolic dysfunction due to a single point mutation in cMyBP-C and that the cut-and-paste approach offers a rapid and cost-effective approach for evaluating mutations in cMyBP-C, especially those that are lethal in traditional animal models.
Collapse
Affiliation(s)
- Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Angela C Greenman
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Julie Fan
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha P Harris
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
2
|
Vintrych P, Al-Obeidallah M, Horák J, Chvojka J, Valešová L, Nalos L, Jarkovská D, Matějovič M, Štengl M. Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia. Front Physiol 2023; 13:1094199. [PMID: 36703923 PMCID: PMC9871395 DOI: 10.3389/fphys.2022.1094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Infectious diseases, which often result in deadly sepsis or septic shock, represent a major global health problem. For understanding the pathophysiology of sepsis and developing new treatment strategies, reliable and clinically relevant animal models of the disease are necessary. In this review, two large animal (porcine) models of sepsis induced by either peritonitis or bacteremia are introduced and their strong and weak points are discussed in the context of clinical relevance and other animal models of sepsis, with a special focus on cardiovascular and immune systems, experimental design, and monitoring. Especially for testing new therapeutic strategies, the large animal (porcine) models represent a more clinically relevant alternative to small animal models, and the findings obtained in small animal (transgenic) models should be verified in these clinically relevant large animal models before translation to the clinical level.
Collapse
Affiliation(s)
- Pavel Vintrych
- Department of Cardiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Horák
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jiří Chvojka
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lenka Valešová
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Martin Matějovič
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,*Correspondence: Milan Štengl,
| |
Collapse
|
3
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
van der Pijl RJ, Hudson B, Granzier-Nakajima T, Li F, Knottnerus AM, Smith J, Chung CS, Gotthardt M, Granzier HL, Ottenheijm CAC. Deleting Titin's C-Terminal PEVK Exons Increases Passive Stiffness, Alters Splicing, and Induces Cross-Sectional and Longitudinal Hypertrophy in Skeletal Muscle. Front Physiol 2020; 11:494. [PMID: 32547410 PMCID: PMC7274174 DOI: 10.3389/fphys.2020.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 μm). In contrast, measured passive tension (sarcomere length 3.0 μm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Brian Hudson
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | | | - Frank Li
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne M Knottnerus
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - John Smith
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Charles S Chung
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Michael Gotthardt
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany.,Cardiology, Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Henk L Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Coen A C Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
5
|
Khokhlova A, Konovalov P, Iribe G, Solovyova O, Katsnelson L. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models. Front Physiol 2020; 11:171. [PMID: 32256377 PMCID: PMC7091561 DOI: 10.3389/fphys.2020.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Transmural differences in ventricular myocardium are maintained by electromechanical coupling and mechano-calcium/mechano-electric feedback. In the present study, we experimentally investigated the influence of preload on the force characteristics of subendocardial (Endo) and subepicardial (Epi) single ventricular cardiomyocytes stretched by up to 20% from slack sarcomere length (SL) and analyzed the results with the help of mathematical modeling. Mathematical models of Endo and Epi cells, which accounted for regional heterogeneity in ionic currents, Ca2+ handling, and myofilament contractile mechanisms, showed that a greater slope of the active tension–length relationship observed experimentally in Endo cardiomyocytes could be explained by greater length-dependent Ca2+ activation in Endo cells compared with Epi ones. The models also predicted that greater length dependence of Ca2+ activation in Endo cells compared to Epi ones underlies, via mechano-calcium-electric feedback, the reduction in the transmural gradient in action potential duration (APD) at a higher preload. However, the models were unable to reproduce the experimental data on a decrease of the transmural gradient in the time to peak contraction between Endo and Epi cells at longer end-diastolic SL. We hypothesize that preload-dependent changes in viscosity should be involved alongside the Frank–Starling effects to regulate the transmural gradient in length-dependent changes in the time course of contraction of Endo and Epi cardiomyocytes. Our experimental data and their analysis based on mathematical modeling give reason to believe that mechano-calcium-electric feedback plays a critical role in the modulation of electrophysiological and contractile properties of myocytes across the ventricular wall.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Pavel Konovalov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gentaro Iribe
- Department of Physiology, Asahikawa Medical University, Hokkaido, Japan.,Department of Cardiovascular Physiology, Okayama University, Okayama, Japan
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Leonid Katsnelson
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
6
|
Herzog W. Passive force enhancement in striated muscle. J Appl Physiol (1985) 2019; 126:1782-1789. [PMID: 31070958 PMCID: PMC6620658 DOI: 10.1152/japplphysiol.00676.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Passive force enhancement is defined as the increase in passive, steady-state, isometric force of an actively stretched muscle compared with the same muscle stretched passively to that same length. Passive force enhancement is long lasting, increases with increasing muscle length and increasing stretch magnitudes, contributes to the residual force enhancement in skeletal and cardiac muscle, and is typically only observed at muscle lengths at which passive forces occur naturally. Passive force enhancement is typically equal to or smaller than the total residual force enhancement, it persists when a muscle is deactivated and reactivated, but can be abolished instantaneously when a muscle is shortened quickly from its stretched length. There is strong evidence that the passive force enhancement is caused by the filamentous sarcomeric protein titin, although the detailed molecular mechanisms underlying passive force enhancement remain unknown. Here I propose a tentative mechanism based on experimental evidence that associates passive force enhancement with the shortening of titin's free spring length in the I-band region of sarcomeres. I suggest that this shortening is accomplished by titin binding to actin and that the trigger for titin-actin interactions is associated with the formation of strongly bound cross bridges between actin and myosin that exposes actin attachment sites for titin through movement of the regulatory proteins troponin and tropomyosin.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
7
|
Pant S, Corsini C, Baker C, Hsia TY, Pennati G, Vignon-Clementel IE. A Lumped Parameter Model to Study Atrioventricular Valve Regurgitation in Stage 1 and Changes Across Stage 2 Surgery in Single Ventricle Patients. IEEE Trans Biomed Eng 2018; 65:2450-2458. [DOI: 10.1109/tbme.2018.2797999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Herzog W. The multiple roles of titin in muscle contraction and force production. Biophys Rev 2018; 10:1187-1199. [PMID: 29353351 PMCID: PMC6082311 DOI: 10.1007/s12551-017-0395-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022] Open
Abstract
Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Slater RE, Strom JG, Granzier H. Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction. J Mol Cell Cardiol 2017; 108:24-33. [PMID: 28476659 DOI: 10.1016/j.yjmcc.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome, characterized by increased diastolic stiffness and a preserved ejection fraction, with no effective treatment options. Here we studied the therapeutic potential of exercise for improving diastolic function in a mouse model with HFpEF-like symptoms, the TtnΔIAjxn mouse model. TtnΔIAjxn mice have increased diastolic stiffness and reduced exercise tolerance, mimicking aspects of HFpEF observed in patients. We investigated the effect of free-wheel running exercise on diastolic function. Mechanical studies on cardiac muscle strips from the LV free wall revealed that both TtnΔIAjxn and wildtype (WT) exercised mice had a reduction in passive stiffness, relative to sedentary controls. In both genotypes, this reduction is due to an increase in the compliance of titin whereas ECM-based stiffness was unaffected. Phosphorylation of titin's PEVK and N2B spring elements were assayed with phospho-site specific antibodies. Exercised mice had decreased PEVK phosphorylation and increased N2B phosphorylation both of which are predicted to contribute to the increased compliance of titin. Since exercise lowers the heart rate we examined whether reduction in heart rate per se can improve passive stiffness by administering the heart-rate-lowering drug ivabradine. Ivabradine lowered heart rate in our study but it did not affect passive tension, in neither WT nor TtnΔIAjxn mice. We conclude that exercise is beneficial for decreasing passive stiffness and that it involves beneficial alterations in titin phosphorylation.
Collapse
Affiliation(s)
- Rebecca E Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Joshua G Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
10
|
Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA. Residual Force Enhancement Following Eccentric Contractions: A New Mechanism Involving Titin. Physiology (Bethesda) 2017; 31:300-12. [PMID: 27252165 DOI: 10.1152/physiol.00049.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Eccentric muscle properties are not well characterized by the current paradigm of the molecular mechanism of contraction: the cross-bridge theory. Findings of force contributions by passive structural elements a decade ago paved the way for a new theory. Here, we present experimental evidence and theoretical support for the idea that the structural protein titin contributes to active force production, thereby explaining many of the unresolved properties of eccentric muscle contraction.
Collapse
Affiliation(s)
- W Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - G Schappacher
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - M DuVall
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - T R Leonard
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - J A Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Tiffany H, Sonkar K, Gage MJ. The insertion sequence of the N2A region of titin exists in an extended structure with helical characteristics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:1-10. [PMID: 27742555 DOI: 10.1016/j.bbapap.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
The giant sarcomere protein titin is the third filament in muscle and is integral to maintaining sarcomere integrity as well as contributing to both active and passive tension. Titin is a multi-domain protein that contains regions of repeated structural elements. The N2A region sits at the boundary between the proximal Ig region of titin that is extended under low force and the PEVK region that is extended under high force. Multiple binding interactions have been associated with the N2A region and it has been proposed that this region acts as a mechanical stretch sensor. The focus of this work is a 117 amino acid portion of the N2A region (N2A-IS), which resides between the proximal Ig domains and the PEVK region. Our work has shown that the N2A-IS region is predicted to contain helical structure in the center while both termini are predicted to be disordered. Recombinantly expressed N2A-IS protein contains 13% α-helical structure, as measured via circular dichroism. Additional α-helical structure can be induced with 2,2,2-trifluoroethanol, suggesting that there is transient helical structure that might be stabilized in the context of the entire N2A region. The N2A-IS region does not exhibit any cooperativity in either thermal or chemical denaturation studies while size exclusion chromatography and Fluorescence Resonance Energy Transfer demonstrates that the N2A-IS region has an extended structure. Combined, these results lead to a model of the N2A-IS region having a helical core with extended N- and C-termini.
Collapse
Affiliation(s)
- Holly Tiffany
- Department of Biology, Northern Arizona University, Flagstaff, AZ, United States
| | - Kanchan Sonkar
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States; Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States; Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States.
| |
Collapse
|
12
|
Hu K, Ertl G. A new porcine model of hypertensive cardiomyopathy: a helpful tool to explore the HFpEF mystique. Am J Physiol Heart Circ Physiol 2015; 309:H1390-1. [PMID: 26386114 DOI: 10.1152/ajpheart.00713.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kai Hu
- Department of Internal Medicine I, University of Würzburg, Würzburg, Germany; and Comprehensive Heart Failure Center, Würzburg, Germany
| | - Georg Ertl
- Department of Internal Medicine I, University of Würzburg, Würzburg, Germany; and Comprehensive Heart Failure Center, Würzburg, Germany
| |
Collapse
|
13
|
Campbell KS, Sorrell VL. Cell- and molecular-level mechanisms contributing to diastolic dysfunction in HFpEF. J Appl Physiol (1985) 2015; 119:1228-32. [PMID: 25911687 DOI: 10.1152/japplphysiol.01168.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/12/2015] [Indexed: 02/08/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the default diagnosis for patients who have symptoms of heart failure, an ejection fraction >0.5, and evidence of diastolic dysfunction. The clinical condition, which was largely unrecognized 30 years ago, is now a major health problem and currently accounts for 50% of all patients with heart failure. Clinical studies show that patients with HFpEF exhibit increased passive stiffness of the ventricles and a slower rate of pressure decline during diastole. This review discusses some of the cell- and molecular-level mechanisms that contribute to these effects and focuses on data obtained using human samples. Collagen cross linking, modulation of protein kinase G-related pathways, Ca(2+) handling, and strain-dependent detachment of cross bridges are highlighted as potential factors that could be modulated to improve ventricular function in patients with HFpEF.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Department of Physiology and Center for Muscle Biology, Linda and Jack Gill Heart Institute, University of Kentucky, Lexington, Kentucky; and
| | - Vincent L Sorrell
- Division of Cardiovascular Medicine, Linda and Jack Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Schappacher-Tilp G, Leonard T, Desch G, Herzog W. A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One 2015; 10:e0117634. [PMID: 25816319 PMCID: PMC4376863 DOI: 10.1371/journal.pone.0117634] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/29/2014] [Indexed: 12/18/2022] Open
Abstract
We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.
Collapse
Affiliation(s)
| | - Timothy Leonard
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Gertrud Desch
- Department of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol (1985) 2014; 116:1407-17. [DOI: 10.1152/japplphysiol.00069.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to isometric and shortening contractions, many observations made on actively lengthening muscles cannot be readily explained with the sliding filament and cross-bridge theory. Specifically, residual force enhancement, the persistent increase in force following active muscle lengthening, beyond what one would expect based on muscle length, has not been explained satisfactorily. Here, we summarize the experimental evidence on residual force enhancement, critically evaluate proposed mechanisms for the residual force enhancement, and propose a mechanism for residual force enhancement that explains all currently agreed upon experimental observations. The proposed mechanism is based on the engagement of the structural protein titin upon muscle activation and an increase in titin's resistance to active compared with passive stretching. This change in resistance from the passive to the active state is suggested to be based on 1) calcium binding by titin upon activation, 2) binding of titin to actin upon activation, and 3) as a consequence of titin-actin binding—a shift toward stiffer titin segments that are used in active compared with passive muscle elongation. Although there is some experimental evidence for the proposed mechanism, it must be stressed that much of the details proposed here remain unclear and should provide ample research opportunities for scientists in the future. Nevertheless, the proposed mechanism for residual force enhancement explains all basic findings in this area of research.
Collapse
Affiliation(s)
- Walter Herzog
- Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
16
|
Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014; 141:235-49. [PMID: 24140081 PMCID: PMC3947198 DOI: 10.1016/j.pharmthera.2013.10.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA.
| |
Collapse
|
17
|
Chung CS, Campbell KS. Temperature and transmural region influence functional measurements in unloaded left ventricular cardiomyocytes. Physiol Rep 2013; 1:e00158. [PMID: 24400159 PMCID: PMC3871472 DOI: 10.1002/phy2.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022] Open
Abstract
Intact cardiomyocytes are increasingly being used to investigate the molecular mechanisms of contraction and to screen new therapeutic compounds. The function of the cardiomyocytes is often measured from the calcium transients and sarcomere length profiles. We studied the role of experimental temperature and transmural region on indices of function in freshly isolated, unloaded cardiomyocytes. Intact cardiomyocytes were isolated from the subendocardium, midmyocardium, and subepicardium of 3-month-old Sprague-Dawley rats. Myocytes from each region were studied at 25°C, 31°C, and 37°C. Cytosolic calcium transients were measured using Fura-2 fluorescence, whereas sarcomere length shortening and relengthening profiles were measured using high-speed video capture. For both the calcium transients and sarcomere length profiles, the time to peak and the time to half relaxation decreased significantly with increasing temperature. Increasing temperature also raised the minimum and maximum calcium levels of all cells. Of note, there was a reduced coefficient of variation (standard deviation divided by the mean) at higher temperatures for calcium fluorescence amplitudes, time to peak calcium, and rates of sarcomeric shortening and relengthening. The amplitudes and minimum of the calcium transients were significantly dependent on transmural region, and several sarcomere length parameters exhibited statistical interactions between temperature and transmural region. Together, these results show that biological variability can be reduced by performing experiments at 37°C rather than at room temperature, and by isolating cells from a specific transmural region. Adopting these procedures will improve the statistical power of subsequent analyses and increase the efficiency of future experiments.
Collapse
Affiliation(s)
- Charles S Chung
- Department of Physiology and Center for Muscle Biology, University of Kentucky Lexington, Kentucky
| | - Kenneth S Campbell
- Department of Physiology and Center for Muscle Biology, University of Kentucky Lexington, Kentucky
| |
Collapse
|
18
|
Vikhlyantsev IM, Okuneva AD, Shumilina UV, Salmov NN, Bobylev AG, Molochkov NV, Podlubnaya ZA. Method for isolation of intact titin (connectin) molecules from mammalian cardiac muscle. BIOCHEMISTRY (MOSCOW) 2013; 78:455-62. [PMID: 23848147 DOI: 10.1134/s0006297913050039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiac titin was isolated from rabbit and ground squirrel ventricular muscles by a method that was used earlier to obtain myofibrils with intact minor proteins located in A-bands of sarcomeres (Podlubnaya, Z. A., et al. (1989) J. Mol. Biol., 210, 655-658). Small pieces of cardiac muscle were incubated for 2-3 weeks at 4°C in Ca²⁺-depleting solution before their homogenization to decrease activity of Ca²⁺-dependent proteases. Then the muscle was homogenized, and titin was isolated by the method of Soteriou, A., et al. (1993) J. Cell Sci., 14, 119-123. In control experiments, titin was isolated from cardiac muscle without its preincubation in Ca²⁺-depleting solution. Sometimes control titin preparations contained only T2-fragment, but generally they contained ~5-20% N2B-isoform of titin along with its T2-fragment. Preparations of titin obtained from rabbit cardiac muscle by our method contained ~30-50% of N2BA- and N2B-titin isoforms along with its T2-fragment. The content of α-structures in titin isolated by our method was increased. Actomyosin ATPase activity in vitro increased in the presence of titin preparations containing more intact molecules. This result confirms the significant role of titin in the regulation of actin-myosin interaction in muscles. The method used by us to preserve titin might be used for isolation of other proteins that are substrates of Ca²⁺-dependent proteases.
Collapse
Affiliation(s)
- I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chung CS, Mitov MI, Callahan LA, Campbell KS. Increased myocardial short-range forces in a rodent model of diabetes reflect elevated content of β myosin heavy chain. Arch Biochem Biophys 2013; 552-553:92-9. [PMID: 24012810 DOI: 10.1016/j.abb.2013.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/02/2013] [Accepted: 08/24/2013] [Indexed: 01/13/2023]
Abstract
Diastolic dysfunction is a clinically significant problem for patients with diabetes and often reflects increased ventricular stiffness. Attached cross-bridges contribute to myocardial stiffness and produce short-range forces, but it is not yet known whether these forces are altered in diabetes. In this study, we tested the hypothesis that cross-bridge-based short-range forces are increased in the streptozotocin (STZ) induced rat model of type 1 diabetes. Chemically permeabilized myocardial preparations were obtained from 12week old rats that had been injected with STZ or vehicle 4weeks earlier, and activated in solutions with pCa (=-log10[Ca(2+)]) values ranging from 9.0 to 4.5. The short-range forces elicited by controlled length changes were ∼67% greater in the samples from the diabetic rats than in the control preparations. This change was mostly due to an increased elastic limit (the length change at the peak short-range force) as opposed to increased passive muscle stiffness. The STZ-induced increase in short-ranges forces is thus unlikely to reflect changes to titin and/or collagen filaments. Gel electrophoresis showed that STZ increased the relative expression of β myosin heavy chain. This molecular mechanism can explain the increased short-ranges forces observed in the diabetic tissue if β myosin molecules remain bound between the filaments for longer durations than α molecules during imposed movements. These results suggest that interventions that decrease myosin attachment times may be useful treatments for diastolic dysfunction associated with diabetes.
Collapse
Affiliation(s)
- Charles S Chung
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Mihail I Mitov
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Leigh Ann Callahan
- Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Kenneth S Campbell
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
20
|
Vikhlyantsev IM, Podlubnaya ZA. New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions. BIOCHEMISTRY (MOSCOW) 2013; 77:1515-35. [PMID: 23379526 DOI: 10.1134/s0006297912130093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review summarizes results of our studies on titin isoform composition in vertebrate striated muscles under normal conditions, during hibernation, real and simulated microgravity, and under pathological conditions (stiff-person syndrome, post-apoplectic spasticity, dilated cardiomyopathy, cardiac hypertrophy). Experimental evidence for the existence in mammalian striated muscles of higher molecular weight isoforms of titin (NT-isoforms) in addition to the known N2A-, N2BA-, and N2B-titin isoforms was obtained. Comparative studies of changes in titin isoform composition and structure-functional properties of human and animal striated muscles during adaptive and pathological processes led to a conclusion about the key role of NT-isoforms of titin in maintenance of sarcomere structure and contractile function of these muscles.
Collapse
Affiliation(s)
- I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
21
|
Anderson BR, Bogomolovas J, Labeit S, Granzier H. Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism. J Biol Chem 2013; 288:5303-15. [PMID: 23297410 DOI: 10.1074/jbc.m112.401372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Titin plays crucial roles in sarcomere organization and cardiac elasticity by acting as an intrasarcomeric molecular spring. A mutation in the tenth Ig-like domain of titin's spring region is associated with arrhythmogenic cardiomyopathy, a disease characterized by ventricular arrhythmias leading to cardiac arrest and sudden death. Titin is the first sarcomeric protein linked to arrhythmogenic cardiomyopathy. To characterize the disease mechanism, we have used atomic force microscopy to directly measure the effects that the disease-linked point mutation (T16I) has on the mechanical and kinetic stability of Ig10 at the single molecule level. The mutation decreases the force needed to unfold Ig10 and increases its rate of unfolding 4-fold. We also found that T16I Ig10 is more prone to degradation, presumably due to compromised local protein structure. Overall, the disease-linked mutation weakens the structural integrity of titin's Ig10 domain and suggests an Ig domain disease mechanism.
Collapse
Affiliation(s)
- Brian R Anderson
- Department of Physics, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
22
|
Hidalgo CG, Chung CS, Saripalli C, Methawasin M, Hutchinson KR, Tsaprailis G, Labeit S, Mattiazzi A, Granzier HL. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin's spring elements. J Mol Cell Cardiol 2012; 54:90-7. [PMID: 23220127 DOI: 10.1016/j.yjmcc.2012.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Titin-based passive stiffness is post-translationally regulated by several kinases that phosphorylate specific spring elements located within titin's elastic I-band region. Whether titin is phosphorylated by calcium/calmodulin dependent protein kinase II (CaMKII), an important regulator of cardiac function and disease, has not been addressed. The aim of this work was to determine whether CaMKIIδ, the predominant CaMKII isoform in the heart, phosphorylates titin, and to use phosphorylation assays and mass spectrometry to study which of titin's spring elements might be targeted by CaMKIIδ. It was found that CaMKIIδ phosphorylates titin in mouse LV skinned fibers, that the CaMKIIδ sites can be dephosphorylated by protein phosphatase 1 (PP1), and that under baseline conditions, in both intact isolated hearts and skinned myocardium, about half of the CaMKIIδ sites are phosphorylated. Mass spectrometry revealed that both the N2B and PEVK segments are targeted by CaMKIIδ at several conserved serine residues. Whether phosphorylation of titin by CaMKIIδ occurs in vivo, was tested in several conditions using back phosphorylation assays and phospho-specific antibodies to CaMKIIδ sites. Reperfusion following global ischemia increased the phosphorylation level of CaMKIIδ sites on titin and this effect was abolished by the CaMKII inhibitor KN-93. No changes in the phosphorylation level of the PEVK element were found suggesting that the increased phosphorylation level of titin in IR (ischemia reperfusion) might be due to phosphorylation of the N2B element. The findings of these studies show for the first time that titin can be phosphoryalated by CaMKIIδ, both in vitro and in vivo, and that titin's molecular spring region that determines diastolic stiffness is a target of CaMKIIδ.
Collapse
Affiliation(s)
- Carlos G Hidalgo
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huber T, Grama L, Hetényi C, Schay G, Fülöp L, Penke B, Kellermayer MSZ. Conformational dynamics of titin PEVK explored with FRET spectroscopy. Biophys J 2012; 103:1480-9. [PMID: 23062340 DOI: 10.1016/j.bpj.2012.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 01/05/2023] Open
Abstract
The proline-, glutamate-, valine-, and lysine-rich (PEVK) domain of the giant muscle protein titin is thought to be an intrinsically unstructured random-coil segment. Various observations suggest, however, that the domain may not be completely devoid of internal interactions and structural features. To test the validity of random polymer models for PEVK, we determined the mean end-to-end distances of an 11- and a 21-residue synthetic PEVK peptide, calculated from the efficiency of the fluorescence resonance energy transfer (FRET) between an N-terminal intrinsic tryptophan donor and a synthetically added C-terminal IAEDANS acceptor obtained in steady-state and time-resolved experiments. We find that the contour-length scaling of mean end-to-end distance deviates from predictions of a purely statistical polymer chain. Furthermore, the addition of guanidine hydrochloride decreased, whereas the addition of salt increased the FRET efficiency, pointing at the disruption of structure-stabilizing interactions. Increasing temperature between 10 and 50°C increased the normalized FRET efficiency in both peptides but with different trajectories, indicating that their elasticity and conformational stability are different. Simulations suggest that whereas the short PEVK peptide displays an overall random structure, the long PEVK peptide retains residual, loose helical configurations. Transitions in the local structure and dynamics of the PEVK domain may play a role in the modulation of passive muscle mechanics.
Collapse
Affiliation(s)
- Tamás Huber
- Department of Biophysics and Radiation Biology and MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|