1
|
Zheng X, Bo X, Jin K, He X, Jia Y, Zhou Z, Xu C, Nan Y, Wu C. Porcine ISG15 fused IFN-λ3 as a novel antiviral agent for treating porcine reproductive and respiratory syndrome virus infection in vivo. Int J Biol Macromol 2025; 287:138242. [PMID: 39645133 DOI: 10.1016/j.ijbiomac.2024.138242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
IFN-λs hold promise as therapeutic candidates against mutable respiratory viruses, but their efficacy against porcine reproductive and respiratory syndrome virus (PRRSV) remains unclear. In this study, we expressed a recombinant fusion protein consisting of porcine ISG15 linked porcine IFN-λ3 (ISG15-IFN-λ3) via a rigid protein linker in Escherichia coli (E. coli). In vitro experiments demonstrated that treatment of porcine alveolar macrophage (PAM)-derived CRL-2843 cells with ISG15-IFN-λ3 induced upregulation of several Interferon-stimulated Genes (ISGs) proteins, including ISG15, ISG56, and HERC5. CRL-2843 cells pretreated with ISG15-IFN-λ3 exhibited heightened resistance to Newcastle disease virus infection, while PRRSV-permissive cells treated with ISG15-IFN-λ3 before and during PRRSV exposure showed significantly inhibited PRRSV replication as well. In animal experiments, at 21 days post-infection, ISG15-IFN-λ3-treated piglets displayed milder lung tissue pathology and significantly reduced serum PRRSV-RNA, indicating enhanced viral clearance and faster recovery. Additionally, PAMs collected from ISG15-IFN-λ3-treated piglets showed significantly reduced mRNA expression of representative cytokines, chemokines, suggesting that ISG15-IFN-λ3 treatment may mitigate pneumonia severity by reducing the levels of these inflammatory mediators. These findings indicate that recombinant ISG15-IFN-λ3 expressed in E. coli may serve as a novel, effective, and affordable agent for treating severe PRRSV infection in piglets, potentially benefiting the pork industry.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueying Bo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keyu Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin He
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqin Jia
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenying Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Cheng H, Zhao Y, Hou X, Ling F, Wang J, Wang Y, Cao Y. Unveiling the therapeutic prospects of IFNW1 and IFNA21: insights into glioma pathogenesis and clinical significance. Neurogenetics 2024; 25:337-350. [PMID: 38958838 DOI: 10.1007/s10048-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Glioma, a type of brain tumor, poses significant challenges due to its heterogeneous nature and limited treatment options. Interferon-related genes (IRGs) have emerged as potential players in glioma pathogenesis, yet their expression patterns and clinical implications remain to be fully elucidated. We conducted a comprehensive analysis to investigate the expression patterns and functional enrichment of IRGs in glioma. This involved constructing protein-protein interaction networks, heatmap analysis, survival curve plotting, diagnostic and prognostic assessments, differential expression analysis across glioma subgroups, GSVA, immune infiltration analysis, and drug sensitivity analysis. Our analysis revealed distinct expression patterns and functional enrichment of IRGs in glioma. Notably, IFNW1 and IFNA21 were markedly downregulated in glioma tissues compared to normal tissues, and higher expression levels were associated with improved overall survival and disease-specific survival. Furthermore, these genes showed diagnostic capabilities in distinguishing glioma tissues from normal tissues and were significantly downregulated in higher-grade and more aggressive gliomas. Differential expression analysis across glioma subgroups highlighted the association of IFNW1 and IFNA21 expression with key pathways and biological processes, including metabolic reprogramming and immune regulation. Immune infiltration analysis revealed their influence on immune cell composition in the tumor microenvironment. Additionally, elevated expression levels were associated with increased resistance to chemotherapeutic agents. Our findings underscore the potential of IFNW1 and IFNA21 as diagnostic biomarkers and prognostic indicators in glioma. Their roles in modulating glioma progression, immune response, and drug sensitivity highlight their significance as potential therapeutic targets. These results contribute to a deeper understanding of glioma biology and may inform the development of personalized treatment strategies for glioma patients.
Collapse
Affiliation(s)
- Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China.
| | - Yingjie Zhao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Cardiovascular Medicine, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Xiaoli Hou
- Yangzhou Vocational University Medical College, Yangzhou, 225000, Jiangsu, China
| | - Fang Ling
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Otorhinolaryngology, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Medicine Section, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Yixia Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Yasen Cao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| |
Collapse
|
3
|
Xia Y, Yang Q, Wu SY, Wu Z, Li Q, Du J. Interferon lambda modulates proinflammatory cytokines production in PBMCs from patients with chronic kidney disease. Hum Immunol 2023; 84:464-470. [PMID: 37394297 DOI: 10.1016/j.humimm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND CKD is a major cause of morbidity and mortality worldwide. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Recent investigations have demonstrated that IFNλ plays an important role in the pathogenesis of autoimmune and inflammatory diseases. However, the association of IFNλ with CKD is still poorly understood. OBJECTIVE To analyze the correlation between IFNλ levels and pro-inflammatory cytokines, and to investigate the effect of IFNλ on PBMCs in patients with CKD. METHODS PBMCs were harvested from patients with CKD and healthy controls for measuring the expression level of inflammatory cytokines by RT-qPCR. Spearman correlation test was used to analyze correlation between IFNλ and cytokines as well as eGFR. PBMCs from healthy individuals and CKD patients were subjected to IFNλ protein stimulation. IL6, TNFα, IL10, ISG15 and MX1 mRNA level were measured by RT-PCR, STAT1 and phosphorylated STAT1 protein level were measured by Western blot. RESULTS Patients with CKD showed higher levels of IFNλ in PBMCs compared to healthy controls. IFNλ mRNA levels were associated with cytokines and eGFR. The transcription of IL6, TNFα, and IL10 was significantly increased in healthy human PBMCs after IFNλ stimulation. In addition, IFNλ acts on PBMCs by p-STAT1 and ISG15 as well as MX1. CONCLUSION High expression of IFNλ was found in CKD patients and was associated with eGFR and disease-related cytokines. More importantly, IFNλ promoted the expression of pro-inflammatory cytokines in PBMCs, suggesting a potential pro-inflammatory role of IFNλ in CKD.
Collapse
Affiliation(s)
- Yuhao Xia
- Weifang Medical University, Shandong, China; Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qiannan Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Shang Ying Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhicheng Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qian Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Fujimura NA, Fatima SE, Ahmed N, Akram M, Tahir S, Khan MA, Amirzada I, Nadeem T, Bashir H, Malik K. Evaluation of exosomes encapsulated recombinant Interleukin-29 for its in vitro anticancer studies. J Biotechnol 2023; 373:24-33. [PMID: 37394182 DOI: 10.1016/j.jbiotec.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Exosomes have recently been considered ideal biotherapeutic nanocarriers that broaden the frontiers of current drug delivery systems to overcome the shortcomings associated with cytokine-based immunotherapy. Using this approach, the current study aimed to assess anti-proliferative activity of purified IL-29 and exosomes encapsulated IL-29. The IL-29+pET-28a construct was transformed into Rosetta 2(DE3) cells which was used for the large-scale production of IL-29. Exosomes isolated from H1HeLa, and SF-767 cells using Total Exosome Isolation reagent were loaded with IL-29 via sonication. Isolation of exosomes was validated using their core protein signature by western blotting and specific miRNA profiles by RT-PCR. The drug loading efficiency of exosomes derived from H1HeLa cells was higher than that of SF-767-derived exosomes. The drug release kinetics of IL-29 encapsulated exosomes exhibited stable release of the recombinant drug. Around 50% of all cancer cell lines survived when IL-29 was administered at a concentration of 20 µg/mL. A survival rate of less than 10% was observed when cells were treated with 20 µg/mL IL-29 loaded exosomes. It was concluded that IL-29 loaded exosomes had a more significant cytotoxic effect against cancer cells, which might be attributed to sustained drug release, improved half-life, superior targeting efficacy, capacity to harness endogenous intracellular trafficking pathways, and heightened biocompatibility of exosomes.
Collapse
Affiliation(s)
- Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Seerat E Fatima
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Akram
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSAT University, Abbottabad, Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Munir A, Ahmed N, Akram M, Fujimura NA, Tahir S, Malik K. Enhanced soluble expression of active recombinant human interleukin-29 using champion pET SUMO system. Biotechnol Lett 2023:10.1007/s10529-023-03402-x. [PMID: 37266881 DOI: 10.1007/s10529-023-03402-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Current research focuses on the soluble and high-level expression of biologically active recombinant human IL-29 protein in Escherichia coli. The codon-optimized IL-29 gene was cloned into the Champion™ pET SUMO expression system downstream of the SUMO tag under the influence of the T7 lac promoter. The expression of SUMO-fused IL-29 protein was compared in E. coli Rosetta 2(DE3), Rosetta 2(DE3) pLysS, and Rosetta-gami 2(DE3). The release of the SUMO fusion partner resulted in approximately 98 mg of native rhIL-29 protein with a purity of 99% from 1 l of fermentation culture. Purified rhIL-29 was found to be biologically active, as evaluated by its anti-proliferation assay. It was found that Champion™ pET SUMO expression system can be used to obtained high yield of biologically active soluble recombinant human protein compared to other expression vector.
Collapse
Affiliation(s)
- Ayesha Munir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Weir SA, Kc K, Shoaib S, Yusuf N. The Immunotherapeutic Role of Type I and III Interferons in Melanoma and Non-Melanoma Skin Cancers. Life (Basel) 2023; 13:1310. [PMID: 37374093 DOI: 10.3390/life13061310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons (IFNs) have demonstrated therapeutic potential in various skin cancers, specifically squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanoma. The precise mechanism through which type I IFNs exert their antitumor effects in skin cancers is still being studied. However, intralesional type I IFN can be used as an alternative to surgery for select patient populations, and high-dose systemic IFN therapy has been shown to be promising in patients with operable high-risk or metastatic melanoma. Despite the therapeutic potential of IFNs in skin cancer treatment, the toxicity profile often prevents the completion of treatment and further expansion of its clinical application. Type I and III IFNs use the same Janus Kinases (JAKs) for signal transduction, which are pathways initiated at a cell surface receptor that mediates the activation of target genes in the nucleus, based on this shared signaling pathway. Due to selective tumor targeting and the ability to generate both innate and adaptive immune responses, we concluded that type III IFNs have minimal side effects compared with established treatments due to selective tumor targeting. While IFN-λ, a type III IFN, shows therapeutic potential as stand-alone or in combination with another IFN, further studies need to be conducted to explore the therapeutic potential of IFN-λ in skin cancer and the underlying physiological roles and mechanisms of action. In this review, we evaluate whether treatment of skin cancer with type III IFN will have minimal side effects compared with established treatments.
Collapse
Affiliation(s)
- Sydney A Weir
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kailash Kc
- School of Medicine, Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, UP, India
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
8
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
9
|
Elazar M, Glenn JS. Combination of Novel Therapies for HDV. Viruses 2022; 14:v14020268. [PMID: 35215860 PMCID: PMC8877160 DOI: 10.3390/v14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.
Collapse
Affiliation(s)
- Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Palo Alto Veterans Administration, Palo Alto, CA 94305, USA
- Correspondence:
| |
Collapse
|
10
|
IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells 2021; 10:cells10050999. [PMID: 33922837 PMCID: PMC8145483 DOI: 10.3390/cells10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.
Collapse
|
11
|
Photochemotherapy Induces Interferon Type III Expression via STING Pathway. Cells 2020; 9:cells9112452. [PMID: 33182724 PMCID: PMC7697763 DOI: 10.3390/cells9112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
DNA-damaging cancer therapies induce interferon expression and stimulate the immune system, promoting therapy responses. The immune-activating STING (Stimulator of Interferon Genes) pathway is induced when DNA or double-stranded RNA (dsRNA) is detected in the cell cytoplasm, which can be caused by viral infection or by DNA damage following chemo- or radiotherapy. Here, we investigated the responses of cutaneous T-cell lymphoma (CTCL) cells to the clinically applied DNA crosslinking photochemotherapy (combination of 8–methoxypsoralen and UVA light; 8–MOP + UVA). We showed that this treatment evokes interferon expression and that the type III interferon IFNL1 is the major cytokine induced. IFNL1 upregulation is dependent on STING and on the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS). Furthermore, 8–MOP + UVA treatment induced the expression of genes in pathways involved in response to the tumor necrosis factor, innate immune system and acute inflammatory response. Notably, a subset of these genes was under control of the STING–IFNL1 pathway. In conclusion, our data connected DNA damage with immune system activation via the STING pathway and contributed to a better understanding of the effectiveness of photochemotherapy.
Collapse
|
12
|
Goedegebuure RSA, Vonk C, Kooij LP, Derks S, Thijssen VLJL. Combining Radiation Therapy With Interferons: Back to the Future. Int J Radiat Oncol Biol Phys 2020; 108:56-69. [PMID: 32068114 DOI: 10.1016/j.ijrobp.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
Radiation therapy has been linked to the induction of an intratumoral type I interferon (IFN) response, which positively affects the response to treatment. This has spiked the interest to combine radiation therapy with IFN-based treatment. Interestingly, this combination treatment has been considered previously, since preclinical studies demonstrated a radiosensitizing effect of interferons. As a result, multiple clinical trials have been performed combining radiation therapy with interferons in different tumor types. Although potential benefit has been suggested, the outcomes of the trials are diverse and challenging to interpret. In addition, increased grade ≥3 toxicity frequently resulted in a negative recommendation regarding the combination therapy. The latter appears premature because many studies were small and several aspects of the combination treatment have not yet been sufficiently explored to justify such a definite conclusion. This review summarizes the available literature on this combination therapy, with a focus on IFN-α and IFN-β. Based on preclinical studies and clinical trials, we evaluated the potential opportunities and describe the current challenges. In addition, we identify several issues that should be addressed to fully exploit the potential benefit of this combinatorial treatment approach.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Christian Vonk
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Laura P Kooij
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sarah Derks
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Victor L J L Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476:1-12. [PMID: 32044356 DOI: 10.1016/j.canlet.2020.02.002] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Gliomas are intrinsic brain tumors that originate from neuroglial progenitor cells. Conventional therapies, including surgery, chemotherapy, and radiotherapy, have achieved limited improvements in the prognosis of glioma patients. Immunotherapy, a revolution in cancer treatment, has become a promising strategy with the ability to penetrate the blood-brain barrier since the pioneering discovery of lymphatics in the central nervous system. Here we detail the current management of gliomas and previous studies assessing different immunotherapies in gliomas, despite the fact that the associated clinical trials have not been completed yet. Moreover, several drugs that have undergone clinical trials are listed as novel strategies for future application; however, these clinical trials have indicated limited efficacy in glioma. Therefore, additional studies are warranted to evaluate novel therapeutic approaches in glioma treatment.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Donde R, Gupta MK, Gouda G, Dash SK, Behera L, Vadde R. Immune Cell Therapy Against Gastrointestinal Tract Cancers. IMMUNOTHERAPY FOR GASTROINTESTINAL MALIGNANCIES 2020:61-77. [DOI: 10.1007/978-981-15-6487-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
15
|
Abstract
Chronic hepatitis D (CHD) results from an infection with the hepatitis B virus and hepatitis D virus (HDV). CHD is the most severe form of human viral hepatitis. Current treatment options consist of interferon alfa, which is effective only in a minority of patients. Study of HDV molecular virology has resulted in new approaches entering clinical trials, with phase-3 studies the most advanced. These include the entry inhibitor bulevirtide, the nucleic acid polymer REP 2139-Ca, the farnesyltransferase inhibitor lonafarnib, and pegylated interferon lambda. This article summarizes the available data on these emerging therapeutics.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ben L. Da
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Luo Q, Zhang L, Luo C, Jiang M. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy. Cancer Lett 2019; 454:191-203. [PMID: 30998963 DOI: 10.1016/j.canlet.2019.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy holds great potential to battle cancer by exerting a durable immunity effect. However, this process might be limited by various constraints existing in the tumor microenvironment (TME), such as the lack of available neoantigen, insufficient T cells from the naive repertoire, or immunosuppressive networks in which immunogenic tissue is protected from immune attacks. Certain chemotherapeutic drugs could elicit immune-potentiating effects by either inducing immunogenicity or relieving tumor-induced immunosuppression. Some also leave tumors directly susceptible to cytotoxic T cell attacks. Mounting evidence accumulated from preclinical and clinical studies suggests that these two treatment modalities might be mutually reinforcing as an effective "chemo-immunotherapy" strategy. Herein, we reviewed the latest advances in cancer immunotherapy and related mechanisms involved in chemotherapeutic-mediated immune activation. The emerging combination strategies and synergistic effects in response to chemo-immunotherapy are highlighted. We also discuss the challenges and critical considerations in its future development.
Collapse
Affiliation(s)
- Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, 155 Nanjing South Street, Shenyang, Liaoning Province, 110016, PR China; Department of Pharmacy, China Medical University, 155 Nanjing South Street, Shenyang, Liaoning Province, 110016, PR China.
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing South Street, Shenyang, Liaoning Province, 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Mingyan Jiang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, 155 Nanjing South Street, Shenyang, Liaoning Province, 110016, PR China; Department of Pharmacy, China Medical University, 155 Nanjing South Street, Shenyang, Liaoning Province, 110016, PR China
| |
Collapse
|
17
|
Amir Kalvanagh P, Ebtekar M, Kokhaei P, Soleimanjahi H. Preparation and Characterization of PLGA Nanoparticles Containing Plasmid DNA Encoding Human IFN-lambda-1/IL-29. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:156-167. [PMID: 31089352 PMCID: PMC6487415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During the 15 years since the discovery of type III human interferons [IFN-λ1(IL-29), IFN-λ2(IL-28A), and IFN-λ3(IL-28B)], numerous biological properties such as anticancer, antiviral, and immunomodulatory activities of this new IFN family have been investigated. Several studies have shown that the encapsulation of pcDNA with PLGA nanoparticles (NPs) protects them against DNase enzyme action and increases the efficiency of gene delivery to the cells. The purpose of this study was to encapsulate pcDNA encoding IFN-λ1 (pIFN-λ1) with a simple and cost-effective method using PLGA NPs. The pIFN-λ1-loaded PLGA NPs were produced by a double-emulsion-solvent evaporation method and characterized in terms of size, size distribution, and zeta potential by DLS and morphologically by SEM and TEM. The bioactivity of NPs was also examined by fluorescent microscopy. The results showed that IFN-λ1 expressed by HEK293T cells could protect HepC-2 cells from the cytopathic effects of EMCV. The NPs were spherical in shape with a mean diameter of 380 ± 3 nm, a zeta potential of -3.3 ± 7.6 mV, an encapsulation efficiency of 75 ± 5%, and a loading capacity of 0.83 ± 0.06. The NPs were also bioactive and easily engulfed by RAW264.7 cells. The pIFN-λ1 could be sustainably released from NPs. Due to the facility and affordability of encapsulation of pIFN-λ1 in the PLGA NPs proposed in this study and the advantages of encapsulation by PLGA, it appeared rational to use pIFN-λ1-loaded NPs instead of naked pIFN-λ1 to determine other unexplained activities of this new cytokine or to use it as an alternative or adjunct to current IFN-α therapy.
Collapse
Affiliation(s)
- Parisa Amir Kalvanagh
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Lasfar A, Zloza A, Silk AW, Lee LY, Cohen-Solal KA. Interferon Lambda: Toward a Dual Role in Cancer. J Interferon Cytokine Res 2019; 39:22-29. [DOI: 10.1089/jir.2018.0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ann W. Silk
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Leonard Y. Lee
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey
| | - Karine A. Cohen-Solal
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
19
|
Koh C, Heller T, Glenn JS. Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology 2019; 156:461-476.e1. [PMID: 30342879 PMCID: PMC6340762 DOI: 10.1053/j.gastro.2018.09.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) infection of humans was first reported in 1977, and now it is now estimated that 15-20 million people are infected worldwide. Infection with HDV can be an acute or chronic process that occurs only in patients with an hepatitis B virus infection. Chronic HDV infection commonly results in the most rapidly progressive form of viral hepatitis; it is the chronic viral infection that is most likely to lead to cirrhosis, and it is associated with an increased risk of hepatocellular carcinoma. HDV infection is the only chronic human hepatitis virus infection without a therapy approved by the US Food and Drug Administration. Peginterferon alfa is the only recommended therapy, but it produces unsatisfactory results. We review therapeutic agents in development, designed to disrupt the HDV life cycle, that might benefit patients with this devastating disease.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Bou-Hanna C, Jarry A, Mosnier JF, Bossard C, Laboisse CL. The double stranded RNA analog poly-IC elicits both robust IFN-λ production and oncolytic activity in human gastrointestinal cancer cells. Oncotarget 2018; 9:34471-34484. [PMID: 30349642 PMCID: PMC6195374 DOI: 10.18632/oncotarget.26121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose Type III IFN (IFN-λ) is the dominant frontline response over type I IFN in human normal intestinal epithelial cells upon viral infection, this response being mimicked by the dsRNA analog poly-IC. Poly-IC also induces cell death in murine intestinal crypts ex vivo. Here we examined whether these innate defense functions of normal intestinal epithelial cells are recapitulated in gastrointestinal carcinoma cells so that they could be harnessed to exert both immunoadjuvant and oncolytic functions, an unknown issue yet. Experimental design Four human gastrointestinal carcinoma cell lines versus the Jurkat lymphoma cell line were used to assess the effects of intracellular poly-IC on i) IFN-λ secretion and cell proliferation and ii) role of NFκB signaling using the NFκB inhibitory peptide SN50 as a screening probe and a siRNA approach. Results Poly-IC induced in all cell lines except Jurkat both a robust IFN-λ secretion and a cytoreductive effect on adherent cells, restricted to proliferating cells and associated with cellular shedding and reduced clonogenicity of the shed cells. Collectively these findings demonstrate the oncolytic activity of poly-IC. Inhibiting NFκB in T84 cells using a siRNA approach decreased IFN-λ production without protecting the cells from the poly-IC oncolytic effects. In line with these findings IFN-λ, that upregulated the anti-viral protein MxA, was unable per se to alter T84 cell proliferation. Conclusion Our demonstration that poly-IC-induced concomitant recapitulation of two innate functions of normal intestine, i.e. IFN-λ production and cell death, by human gastrointestinal cancer cells opens new perspectives in gastrointestinal cancer treatment.
Collapse
Affiliation(s)
| | - Anne Jarry
- University of Nantes, EA4273 Biometadys, Nantes, France.,Current address: CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean-François Mosnier
- University of Nantes, EA4273 Biometadys, Nantes, France.,Pathology Department, Nantes University Hospital, Nantes, France
| | - Céline Bossard
- University of Nantes, EA4273 Biometadys, Nantes, France.,Current address: CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Pathology Department, Nantes University Hospital, Nantes, France
| | - Christian L Laboisse
- University of Nantes, EA4273 Biometadys, Nantes, France.,Pathology Department, Nantes University Hospital, Nantes, France
| |
Collapse
|
21
|
Viral Modulation of TLRs and Cytokines and the Related Immunotherapies for HPV-Associated Cancers. J Immunol Res 2018; 2018:2912671. [PMID: 29854832 PMCID: PMC5954921 DOI: 10.1155/2018/2912671] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The modulation of the host innate immune system is a well-established carcinogenesis feature of several tumors, including human papillomavirus- (HPV-) related cancers. This virus is able to interrupt the initial events of the immune response, including the expression of Toll-like receptors (TLRs), cytokines, and inflammation. Both TLRs and cytokines play a central role in HPV recognition, cell maturation and differentiation as well as immune signalling. Therefore, the imbalance of this sensitive control of the immune response is a key factor for developing immunotherapies, which strengthen the host immune system to accomplish an efficient defence against HPV and HPV-infected cells. Based on this, the review is aimed at exposing the HPV immune evasion mechanisms involving TLRs and cytokines and at discussing existing and potential immunotherapeutic TLR- and cytokine-related tools.
Collapse
|
22
|
Lindgren M, Samuelsson J, Nilsson L, Knutsen H, Ghanima W, Westin J, Johansson PL, Andréasson B. Genetic variation in IL28B (IFNL3) and response to interferon-alpha treatment in myeloproliferative neoplasms. Eur J Haematol 2018; 100:419-425. [PMID: 29369421 DOI: 10.1111/ejh.13034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myeloproliferative neoplasms (MPN), interferon-alpha (IFN-α) is an effective treatment with disease-modifying properties but currently with no clear predictors of treatment outcome. Recent genomewide association studies in chronic hepatitis C have found a strong influence of genetic polymorphism near the IL28B (IFNL3) gene in response to IFN-α treatment. In this study, we sought to evaluate the prognostic impact of IL28B rs12979860, rs8099917, and rs12980275 on IFN-α treatment response in myeloproliferative neoplasms. METHOD We retrospectively evaluated 100 patients with MPN treated with IFN-α. The hematologic treatment response on IFN-α was compared between patients and correlated with host genetic variations in IL28B. The genotypes of IL28B were determined by allelic discrimination assays. RESULTS The CC genotype of rs12979860 was found significantly associated with hematologic response in polycythemia vera (PV) with a complete response (CR) in 79% (CC) compared to 48% (non-CC), (P = .036). No association between the genotypes and treatment response on hydroxyurea was found. CONCLUSION These results imply an effect of IL28B genotype on the outcome of IFN-α treatment in MPN.
Collapse
Affiliation(s)
- Marie Lindgren
- Department of Medicine, Kalmar County Hospital, Kalmar, Sweden
| | - Jan Samuelsson
- Department of Medicine, Stockholm South Hospital, Stockholm, Sweden
| | - Lars Nilsson
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Håvar Knutsen
- Department of Hematology, Ullevål University Hospital, Oslo, Norway
| | - Waleed Ghanima
- Department of Medicine, Östfold Hospital, Fredrikstad, Norway
| | - Johan Westin
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter L Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Hematology, NU Hospital, Uddevalla, Sweden
| | - Björn Andréasson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Hematology, NU Hospital, Uddevalla, Sweden
| |
Collapse
|
23
|
Hamana A, Takahashi Y, Uchida T, Nishikawa M, Imamura M, Chayama K, Takakura Y. Evaluation of antiviral effect of type I, II, and III interferons on direct-acting antiviral-resistant hepatitis C virus. Antiviral Res 2017; 146:130-138. [PMID: 28864074 DOI: 10.1016/j.antiviral.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Treatment of hepatitis C virus (HCV) infection has greatly improved in the last 5 years because of the identification of direct-acting antivirals (DAAs). However, concerns exist regarding the emergence of drug resistance-associated substitutions (RASs). In this study, we evaluated the in vivo antiviral effect of three classes of interferons (IFNs), namely, types I, II, and III IFNs, on DAA-resistant HCVs. IFN-α2, IFN-γ, and IFN-λ1 were selected as typical types I, II, and III IFNs, respectively. Human hepatocyte-transplanted chimeric mice were infected with NS3-D168, NS5A-L31-, and NS5A-Y93-mutated HCVs, and the antiviral effect of IFN-α2, IFN-γ, and IFN-λ1 on these HCV RASs was examined. Chimeric mice infected with NS3- and NS5A-mutated HCVs were hydrodynamically injected with IFN-expressing plasmids to evaluate the antiviral effect of IFNs. Serum concentrations of IFNs were maintained for at least 42 days. We found that serum HCV level significantly decreased and serum and hepatic HCV levels reached below detection limit in 5/5 and 3/5 chimeric mice injected with IFN-γ- and IFN-λ1-expressing plasmids, respectively. The antiviral effect of IFN-α2 on DAA-resistant HCVs was weaker than that of IFN-γ and IFN-λ1. Serum ALT levels showed a small and transient increase in mice injected with the IFN-γ-expressing plasmid but not in mice injected with the IFN-λ1-expressing plasmid. However, no apparent histological damage was observed in the liver sections of mice injected with the IFN-γ-expressing plasmid. These results indicate that IFN-γ and IFN-λ1 are an attractive therapeutic option for treating infection caused by NS3- and NS5A-mutated HCV.
Collapse
Affiliation(s)
- Atsushi Hamana
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
24
|
Kim S, Kim MJ, Kim CH, Kang JW, Shin HK, Kim DY, Won TB, Han DH, Rhee CS, Yoon JH, Kim HJ. The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection. Am J Respir Cell Mol Biol 2017; 56:202-212. [PMID: 27632156 DOI: 10.1165/rcmb.2016-0174oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we studied the IFN-regulated innate immune response against influenza A virus (IAV) infection in the mouse lung and the therapeutic effect of IFN-λ2/3 in acute IAV lung infection. For viral infections, IAV (WS/33, H1N1, PR8 H1N1, H5N1) were inoculated into wild-type mice by intranasal delivery, and IAV mRNA level and viral titer were measured. To compare the antiviral effect of IFNs in vivo in the lung, neutralizing antibodies and recombinant IFNs were used. After intranasal inoculation of IAV into mice, viral infection peaked at 7 days postinfection, and the IAV titer also reached its peak at this time. We found that IFN-β and IFN-λ2/3 were preferentially induced after IAV infection and the IFN-λ2/3-mediated innate immune response was specifically required for the induction of IFN-stimulated genes (ISGs) transcription in the mouse respiratory tract. Neutralization of secreted IFN-λ2/3 aggravated acute IAV lung infection in mice with intact IFN-β induction; consistent with this finding, the transcription of ISGs was significantly reduced. Intranasal administration of IFN-λ2/3 significantly suppressed various strains of IAV infection, including WS/33 (H1N1), PR (H1N1), and H5N1 in the mouse lung, and was accompanied by greater up-regulation of ISGs. Taken together, our data indicate that the IFN-λ2/3-mediated innate immune response is necessary to protect the lungs from IAV infection, and intranasally delivered IFN-λ2/3 has the potential to be a useful therapeutic strategy for treating acute IAV lung infection.
Collapse
Affiliation(s)
| | - Min-Ji Kim
- 2 Research Center for Human Natural Defense System
| | - Chang-Hoon Kim
- 2 Research Center for Human Natural Defense System.,3 The Airway Mucus Institute, and.,4 Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Wan Kang
- 5 Department of Otorhinolaryngology, Jeju National University, Jeju, Korea
| | | | - Dong-Young Kim
- 7 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Bin Won
- 7 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hee Han
- 7 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Chae Seo Rhee
- 7 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- 1 BK 21 Project for Medical Science.,2 Research Center for Human Natural Defense System.,3 The Airway Mucus Institute, and.,4 Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jik Kim
- 3 The Airway Mucus Institute, and.,7 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Elazar M, Koh C, Glenn JS. Hepatitis delta infection - Current and new treatment options. Best Pract Res Clin Gastroenterol 2017; 31:321-327. [PMID: 28774414 DOI: 10.1016/j.bpg.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
In humans, hepatitis D virus (HDV) infection only occurs in the presence of a concomitant hepatitis B virus (HBV) infection, and induces the most severe form of human viral hepatitis. Even though HDV is spread worldwide and is endemic in some regions, screening and treatment has been often neglected in part due to the lack of an effective therapy. Moreover, HDV prevalence rates are increasing in many countries driven by immigration from areas of high endemicity. Currently, no FDA-approved anti-HDV therapy is available, although interferon (IFN) alpha therapy has demonstrated benefit in a minority of patients. In this review, we present a current view of our understanding of the epidemiology, molecular virology and management of HDV infection. We additionally discuss new treatment approaches in development and describe the most promising results of recent and ongoing clinical trials of these new potential agents.
Collapse
Affiliation(s)
- Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, CRC, 5-2740 Bethesda, MD 20892 USA.
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Administration Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
26
|
Wang X, Wang H, Liu MQ, Li JL, Zhou RH, Zhou Y, Wang YZ, Zhou W, Ho WZ. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages. Front Immunol 2017; 8:210. [PMID: 28321215 PMCID: PMC5337814 DOI: 10.3389/fimmu.2017.00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023] Open
Abstract
Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - He Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Man-Qing Liu
- Wuhan Center for Disease Prevention and Control , Wuhan , China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Run-Hong Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Yi-Zhong Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Wang Zhou
- Wuhan Center for Disease Prevention and Control , Wuhan , China
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
27
|
Lasfar A, Zloza A, de la Torre A, Cohen-Solal KA. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections. Front Immunol 2016; 7:598. [PMID: 28018361 PMCID: PMC5156659 DOI: 10.3389/fimmu.2016.00598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Section of Surgical Oncology Research, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Andrew de la Torre
- Department of Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; St Joseph's Medical Center, Paterson, NJ, USA
| | - Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Section of Surgical Oncology Research, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone and patients with metastatic disease or recurrences continue to have very poor outcomes. Unfortunately, little prognostic improvement has been generated from the last 20 years of research and a new perspective is warranted. OS is extremely heterogeneous in both its origins and manifestations. Although multiple associations have been made between the development of osteosarcoma and race, gender, age, various genomic alterations, and exposure situations among others, the etiology remains unclear and controversial. Noninvasive diagnostic methods include serum markers like alkaline phosphatase and a growing variety of imaging techniques including X-ray, computed tomography, magnetic resonance imaging, and positron emission as well as combinations thereof. Still, biopsy and microscopic examination are required to confirm the diagnosis and carry additional prognostic implications such as subtype classification and histological response to neoadjuvant chemotherapy. The current standard of care combines surgical and chemotherapeutic techniques, with a multitude of experimental biologics and small molecules currently in development and some in clinical trial phases. In this review, in addition to summarizing the current understanding of OS etiology, diagnostic methods, and the current standard of care, our group describes various experimental therapeutics and provides evidence to encourage a potential paradigm shift toward the introduction of immunomodulation, which may offer a more comprehensive approach to battling cancer pleomorphism.
Collapse
Affiliation(s)
- Brock A Lindsey
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.
| | - Justin E Markel
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
29
|
Finotti G, Tamassia N, Cassatella MA. Synergistic production of TNFα and IFNα by human pDCs incubated with IFNλ3 and IL-3. Cytokine 2016; 86:124-131. [PMID: 27513213 DOI: 10.1016/j.cyto.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022]
Abstract
In this study, we investigated whether IFNλ3 and IL-3 reciprocally influence their capacity to activate various functions of human plasmacytoid dendritic cells (pDCs). In fact, we preliminarily observed that IFNλ3 upregulates the expression of the IL-3Rα (CD123), while IL-3 augments the expression of IFNλR1 in pDCs. As a result, we found that combination of IFNλ3 and IL-3 induces a strong potentiation in the production of TNFα, IFNα, as well as in the expression of Interferon-Stimulated Gene (ISG) mRNAs by pDCs, as compared to either IFNλ3 or IL-3 alone. In such regard, we found that endogenous IFNα autocrinally promotes the expression of ISG mRNAs in IL-3-, but not in IFNλ3 plus IL-3-, treated pDCs. Moreover, we uncovered that the production of IFNα by IFNλ3 plus IL-3-treated pDCs is mostly dependent on endogenously produced TNFα. Altogether, our data demonstrate that IFNλ3 and IL-3 collaborate to promote, at maximal levels, discrete functional responses of human pDCs.
Collapse
Affiliation(s)
- Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.
| |
Collapse
|
30
|
Kelm NE, Zhu Z, Ding VA, Xiao H, Wakefield MR, Bai Q, Fang Y. The role of IL-29 in immunity and cancer. Crit Rev Oncol Hematol 2016; 106:91-8. [PMID: 27637354 PMCID: PMC7129698 DOI: 10.1016/j.critrevonc.2016.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin-29 (IL-29) is a new member of the recently discovered interferon λ (IFNλ) family. It is produced predominantly by maturing dendritic cells and macrophages. It has been implicated in numerous immunological responses and has shown antiviral activity similar to the Type I interferons, although its target cell population is more limited than the Type I interferons. In recent years, the role of IL-29 in the pathogenesis of various cancers has also been extensively studied. In this review, we will discuss the recent advances of IL-29 in immunological processes and the pathogenesis of various cancer.
Collapse
Affiliation(s)
- Noah E Kelm
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Vivi A Ding
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States.
| |
Collapse
|
31
|
Bu X, Li M, Zhao Y, Liu S, Wang M, Ge J, Bu Z, Yan Y. Genetically engineered Newcastle disease virus expressing human interferon-λ1 induces apoptosis in gastric adenocarcinoma cells and modulates the Th1/Th2 immune response. Oncol Rep 2016; 36:1393-402. [PMID: 27430534 DOI: 10.3892/or.2016.4925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/09/2016] [Indexed: 11/05/2022] Open
Abstract
Interferon-λ1 (IFN-λ1), a recently discovered cytokine of the type III IFN family, was found to be a therapeutic alternative to type I IFN in terms of tumors. Using reverse genetics technique, we generated a recombinant Newcastle disease virus (NDV) LaSota strains named as human IFN‑λ1 recombinant adenovirus (rL-hIFN-λ1) containing human IFN-λ1 gene and further evaluated the expressing of IFN-λ1 in human gastric adenocarcinoma cell line SGC-7901 after infected with rL-hIFN-λ1 by using western blot analysis, RT-PCR and immunofluorescence analyses. IFN-λl specific receptor IFNLR1 was detected on several gastric tumor cell lines including SGC-7901 and AGS and on PBMCs.The expression of the IFN-λ1 proteins reached a high level detected in the supernatant harvested 24 h after the infection of tumor cells. The proliferation changes of SGC infected with rL-hIFN-λ1 was significantly inhibited compared with NDV-infected group. Apoptosis was significantly induced by rL-hIFN-λ1 in gastric cancer cells compared with NDV virus tested by TUNEL assay, western blot analysis and Annexin V flow cytometry. Due to the high dose of IFN-λ1 expressed by the rL-hIFN-λ1-infected tumor cells, the immune study showed that rL-hIFN-λ1 increased IFN-γ production [the T helper cell subtype 1 (Th1) response] and inhibited interleukin (IL)-13 production [the T helper cell subtype 2 (Th2) response] to change the Th1/Th2 response of tumor microenvironment which inhibited tumor growth. This study aims at building recombinant NDV rL-hIFN-λ1 as an efficient antitumor agent.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Mi Li
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Yinghai Zhao
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Sha Liu
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Mubin Wang
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Jinying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150001, P.R. China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150001, P.R. China
| | - Yulan Yan
- Department of Internal Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
32
|
Quaranta P, Focosi D, Freer G, Pistello M. Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells Dev 2016; 25:1321-41. [PMID: 27476883 DOI: 10.1089/scd.2016.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells.
Collapse
Affiliation(s)
- Paola Quaranta
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy
| | - Daniele Focosi
- 2 North-Western Tuscany Blood Bank, Pisa University Hospital , Pisa, Italy
| | - Giulia Freer
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| | - Mauro Pistello
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| |
Collapse
|
33
|
Lasfar A, Gogas H, Zloza A, Kaufman HL, Kirkwood JM. IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy 2016; 8:877-88. [PMID: 27381684 PMCID: PMC5619162 DOI: 10.2217/imt-2015-0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 02/08/2023] Open
Abstract
Interferon-lambda (IFN-λ) is a new IFN type, related to IFN-α, that is commonly used in the clinic. However, significant side effects accompanying IFN-α treatment limit enthusiasm for IFN-α. In this review, we discuss the current landscape of IFN-α use in oncology and describe the biologic characteristics of IFN-λ. IFN-λ offers unique advantages, including a more tumor cell selective targeting, lower off-target binding and an ability to generate both innate and adaptive immune responses. IFN-λ has also demonstrated therapeutic benefit in murine cancer models. IFN-λ may be used in clinic as a single agent or in combination with other immunotherapy agents, such as immune checkpoint inhibitors. Further clinical trials will be needed to fully elucidate the potential of this novel agent in oncology.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Helen Gogas
- First Department of Medicine, Medical School, University of Athens, Athens, Greece
| | - Andrew Zloza
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Howard L Kaufman
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, PA, USA
| |
Collapse
|
34
|
Chan HLY, Ahn SH, Chang TT, Peng CY, Wong D, Coffin CS, Lim SG, Chen PJ, Janssen HLA, Marcellin P, Serfaty L, Zeuzem S, Cohen D, Critelli L, Xu D, Wind-Rotolo M, Cooney E. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B). J Hepatol 2016; 64:1011-1019. [PMID: 26739688 DOI: 10.1016/j.jhep.2015.12.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Peginterferon lambda-1a (lambda) is a Type-III interferon, which, like alfa interferons, has antiviral activity in vitro against hepatitis B virus (HBV) and hepatitis C virus (HCV); however, lambda has a more limited extra-hepatic receptor distribution. This phase 2b study (LIRA-B) evaluated lambda in patients with chronic HBV infection. METHODS Adult HBeAg+ interferon-naive patients were randomized (1:1) to weekly lambda (180 μg) or peginterferon alfa-2a (alfa) for 48 weeks. The primary efficacy endpoint was HBeAg seroconversion at week 24 post-treatment; lambda non-inferiority was demonstrated if the 80% confidence interval (80% CI) lower bound was >-15%. RESULTS Baseline characteristics were balanced across groups (lambda N=80; alfa N=83). Early on-treatment declines in HBV-DNA and qHBsAg through week 24 were greater with lambda. HBeAg seroconversion rates were comparable for lambda and alfa at week 48 (17.5% vs. 16.9%, respectively); however lambda non-inferiority was not met at week 24 post-treatment (13.8% vs. 30.1%, respectively; lambda vs. alfa 80% CI lower bound -24%). Results for other key secondary endpoints (virologic, serologic, biochemical) and post hoc combined endpoints (HBV-DNA <2000 IU/ml plus HBeAg seroconversion or ALT normalization) mostly favored alfa. Overall adverse events (AE), serious AE, and AE-discontinuation rates were comparable between arms but AE-spectra differed (more cytopenias, flu-like, and musculoskeletal symptoms observed with alfa, more ALT flares and bilirubin elevations seen with lambda). Most on-treatment flares occurred early (weeks 4-12), associated with HBV-DNA decline; all post-treatment flares were preceded by HBV-DNA rise. CONCLUSIONS On-treatment, lambda showed greater early effects on HBV-DNA and qHBsAg, and comparable serologic/virologic responses at end-of-treatment. However, post-treatment, alfa-associated HBeAg seroconversion rates were higher, and key secondary results mostly favored alfa. ClinicalTrials.gov number: NCT01204762.
Collapse
Affiliation(s)
- Henry L Y Chan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sang Hoon Ahn
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - David Wong
- Toronto Western Hospital University Health Network, Toronto, ON, Canada
| | - Carla S Coffin
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Pei-Jer Chen
- National Taiwan University Hospital, Taipei, Taiwan
| | - Harry L A Janssen
- Erasmus Medical Center, Rotterdam, Netherlands; University Health Network, Toronto, Canada
| | - Patrick Marcellin
- Hôpital Beaujon and INSERM CRI Université Paris Diderot, Clichy, France
| | | | - Stefan Zeuzem
- Johann Wolfgang Goethe University, Frankfurt, Germany
| | - David Cohen
- Bristol-Myers Squibb Research and Development, Wallingford, CT, USA
| | - Linda Critelli
- Bristol-Myers Squibb Research and Development, Wallingford, CT, USA
| | - Dong Xu
- Bristol-Myers Squibb Research and Development, Wallingford, CT, USA
| | - Megan Wind-Rotolo
- Bristol-Myers Squibb Research and Development, Lawrenceville, NJ, USA
| | - Elizabeth Cooney
- Bristol-Myers Squibb Research and Development, Wallingford, CT, USA.
| | | |
Collapse
|
35
|
Alase AA, El-Sherbiny YM, Vital EM, Tobin DJ, Turner NA, Wittmann M. IFNλ Stimulates MxA Production in Human Dermal Fibroblasts via a MAPK-Dependent STAT1-Independent Mechanism. J Invest Dermatol 2015; 135:2935-2943. [PMID: 26288353 DOI: 10.1038/jid.2015.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 02/07/2023]
Abstract
IFNλ is important for epidermal defense against viruses. It is produced by, and acts on, keratinocytes, whereas fibroblasts were previously considered to be unresponsive to this type III IFN. Herein we report findings revealing cell type-specific differences in IFNλ signaling and function in skin resident cells. In dermal fibroblasts, IFNλ induced the expression of myxovirus protein A (MxA), a potent antiviral factor, but not other IFN signature genes as it does in primary keratinocytes. In contrast to its effect on keratinocytes, IFNλ did not phosphorylate signal transducer and activator of transcription 1 in fibroblasts, but instead activated mitogen activated protein kinases (MAPK). Accordingly, inhibition of MAPK activation (p38 and p42/44) blocked the expression of MxA protein in fibroblasts but not in keratinocytes. Functionally, IFNλ inhibited proliferation in keratinocytes but not in fibroblasts. Moreover, IFNλ upregulated the expression of Tumor growth factor beta 1 (TGFβ1)-induced collagens in fibroblasts. Taken together, our findings identify primary human dermal fibroblasts as responder cells to IFNλ. Our study shows cutaneous cell type-specific IFN signaling and suggests that IFNλ, although important for epidermal antiviral competence, may also have a regulatory role in the dermal compartment balancing type I IFN-induced inhibition of tissue repair processes.
Collapse
Affiliation(s)
- Adewonuola A Alase
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK; Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Neil A Turner
- Division of Cardiovascular and Diabetes Research, Leeds Institute for Cardiovascular and Diabetes Research (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Dermatology, Bradford Teaching Hospitals NHS Foundation Trust, St Luke's Hospital, Bradford, UK; Leeds Musculoskeletal Biomedical Research Unit, National Institute of Health Research (NIHR), Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
36
|
Meissl K, Macho-Maschler S, Müller M, Strobl B. The good and the bad faces of STAT1 in solid tumours. Cytokine 2015; 89:12-20. [PMID: 26631912 DOI: 10.1016/j.cyto.2015.11.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription (STAT) 1 is part of the Janus kinase (JAK)/STAT signalling cascade and is best known for its essential role in mediating responses to all types of interferons (IFN). STAT1 regulates a variety of cellular processes, such as antimicrobial activities, cell proliferation and cell death. It exerts important immune modulatory activities both in the innate and the adaptive arm of the immune system. Based on studies in mice and data from human patients, STAT1 is generally considered a tumour suppressor but there is growing evidence that it can also act as a tumour promoter. This review aims at contrasting the two faces of STAT1 in tumourigenesis and providing an overview on the current knowledge of the underlying mechanisms or pathways.
Collapse
Affiliation(s)
- Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
37
|
Lasfar A, Zloza A, Cohen-Solal KA. IFN-lambda therapy: current status and future perspectives. Drug Discov Today 2015; 21:167-171. [PMID: 26552337 DOI: 10.1016/j.drudis.2015.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/02/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022]
Abstract
Interferon-lambda (IFN-λ), the most recently described type III IFN, plays a crucial part by acting on specific cell types, controlling viral infections and establishing robust innate immunity against cancer. In contrast to IFN-α or IFN-γ, IFN-λ has a restricted cell response pattern, which could make this new IFN a better choice for disease targeting and reducing adverse events. Although IFN-λ is considered to have pivotal roles in cancer, viral infections and autoimmune diseases, clinical trials have only been conducted for treatment of chronic hepatitis C virus infection. In this review, we discuss the current and the potential clinical applications of IFN-λ in the context of current IFN therapy.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Andrew Zloza
- Section of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology, Rutgers, State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
38
|
Choobin H, Bamdad T, Soleimanjahi H, Razavinikoo H. Antitumor effect of mIFN-λ3 in C57BL/6 mice model for papilloma tumors. Mol Biol 2015. [DOI: 10.1134/s0026893315050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Hu JL, Hua YJ, Chen Y, Yu B, Gao S. Structural analysis of tumor-related single amino acid mutations in human MxA protein. CHINESE JOURNAL OF CANCER 2015; 34:583-93. [PMID: 26411585 PMCID: PMC4593380 DOI: 10.1186/s40880-015-0055-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022]
Abstract
Background Human myxovirus resistant protein A (MxA), encoded by the myxovirus resistance 1 (Mx1) gene, is an interferon (IFN)-triggered dynamin-like multi-domain GTPase involved in innate immune responses against viral infections. Recent studies suggest that MxA is associated with several human cancers and may be a tumor suppressor and a promising biomarker for IFN therapy. Mx1 gene mutations in the coding region for MxA have been discovered in many types of cancer, suggesting potential biological associations between mutations in MxA protein and corresponding cancers. In this study, we performed a systematic analysis based on the crystal structures of MxA and elucidated how these mutations specifically affect the structure and therefore the function of MxA protein. Methods Cancer-associated Mx1 mutations were collected and screened from the COSMIC database. Twenty-two unique mutations that cause single amino acid alterations in the MxA protein were chosen for the analysis. Amino acid sequence alignment was performed using Clustal W to check the conservation level of mutation sites in Mx proteins and dynamins. Structural analysis of the mutants was carried out with Coot. Structural models of selected mutants were generated by the SWISS-MODEL server for comparison with the corresponding non-mutated structures. All structural figures were generated using PyMOL. Results We analyzed the conservation level of the single-point mutation sites and mapped them on different domains of MxA. Through individual structural analysis, we found that some mutations severely affect the stability and function of MxA either by disrupting the intra-/inter-molecular interactions supported by the original residues or by incurring unfavorable configuration alterations, whereas other mutations lead to gentle or no interference to the protein stability and function because of positions or polarity features. The potential clinical value of the mutations that lead to drastic influence on MxA protein is also assessed. Conclusions Among all of the reported tumor-associated single-point mutations, seven of them notably affect the structure and function of MxA and therefore deserve more attention with respect to potential clinical applications. Our research provides an example for systematic analysis and consequence evaluation of single-point mutations on a given cancer-related protein.
Collapse
Affiliation(s)
- Jia-Li Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Yi-Jun Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Yang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Bing Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Song Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| |
Collapse
|
40
|
Song B, Yang Y, Wang YL, Fan XH, Huang YM, Ci HS, Zuo JH. Adenovirus expressing IFN-λ (Ad/hIFN-λ) produced anti-tumor effects through inducing apoptosis in human tongue squamous cell carcinoma cell. Int J Clin Exp Med 2015; 8:12509-12518. [PMID: 26550161 PMCID: PMC4612846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the potential therapeutic effects of adenovirus expressing IFN-λ1 and IFN-λ2 (Ad/hIFN-λ) in treating squamous cell carcinoma of the oral tongue (SCCOT) and to explore the underlying mechanisms. METHODS Two SCCOT cell lines HSC-3 and Tca8113 were adopted as study objects. Cell Counting Kit-8 (CCK-8) cell proliferation and viability assay was performed to evaluate the antiproliferative effects of Ad/hIFN-λ and IFN-λ treatments at different dosages. Flow cytometry (FCM) was performed to investigate the apoptosis rate induced by Ad/hIFN-λ. In vivo study was performed through evaluating tumorigenicity and tumor volume on BALB/c nu/nu mice inoculated with HSC-3 cells with or without infection of Ad/hIFN-λ. qPCR was used to screen important apoptosis related genes expression and western blot (WB) was performed to verify the results. WB was also used to test the phosphorylation of STATs protein in the JAK/STAT signaling pathways. RESULTS Our results indicated an obvious antiproliferative effect of Ad/hIFN-λ in vitro on infected HSC-3 and Tca8113 cells. The antiproliferative effects started to appear at 48 h (day 2) after infection. IFN-λs alone treating HSC-3 and Tca8113 cells also showed a dose-dependent inhibitory manner. Though the antiproliferative effects did not show on 24 h (day 1), early apoptosis rate already increased significantly in cells infected with Ad/hIFN-λ (P<0.05) detected by FCM. The underlying mechanisms of antiproliferative activity rely on the IFN-λ signaling by phosphorylation of STATs protein. Expression of Bax, Bcl-2 and Caspase-3 were promoted by Ad/hIFN-λ leading to higher apoptosis rate. Upper stream of p21 and Rb dephosphorylation explained the Caspase-3 activation. Animal study showed that HSC-3 cells infected with Ad/hIFN-λ significantly promoted the survival rate and decreased mean tumor volume comparing to HSC-3 cells group. CONCLUSION Ad/hIFN-λ injection had obvious antiproliferative effects on HSC-3 and Tca8113 cells. Ad/hIFN-λ induced apoptosis in SCCOT cells through increasing Bcl-2, Bax and Caspase-3 expression. Ad/hIFN-λ is a potential therapeutic strategy in treating oral tongue carcinoma.
Collapse
Affiliation(s)
- Bing Song
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Yong Yang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Yan-Li Wang
- Department of Stomatology, Binzhou People’s HospitalBinzhou 256600, China
| | - Xiao-Hui Fan
- Department of Stomatology, Binzhou People’s HospitalBinzhou 256600, China
| | - Yu-Mei Huang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Hao-Su Ci
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Jin-Hua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| |
Collapse
|
41
|
Martínez VG, Canseco NM, Hidalgo L, Valencia J, Entrena A, Fernández-Sevilla LM, Hernández-López C, Sacedón R, Vicente A, Varas A. A discrete population of IFN λ-expressing BDCA3hi dendritic cells is present in human thymus. Immunol Cell Biol 2015; 93:673-8. [PMID: 25753268 DOI: 10.1038/icb.2015.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/19/2015] [Accepted: 02/01/2015] [Indexed: 12/24/2022]
Abstract
Human thymus contains two major subpopulations of dendritic cells (DCs), conventional DCs (cDCs) and plasmacytoid DCs (pDCs), which are mainly involved in central tolerance and also in protecting the thymus against infections. In blood and peripheral organs cDCs include the subpopulation of BDCA3(hi) DCs, considered as equivalents to mouse CD8α(+) DCs. In this study we describe in human thymus the presence of a discrete population of BDCA3(hi) DCs that, like their peripheral counterparts, express CD13, low-intermediate levels of CD11c, CLEC9A, high levels of XCR1, IRF8 and TLR3, and mostly lack the expression of CD11b, CD14 and TLR7. Thymic BDCA3(hi) DCs display immature features with a low expression of costimulatory molecules and HLA-DR, and a low allostimulatory capacity. Also, BDCA3(hi) DCs exhibit a strong response to TLR3 stimulation, producing high levels of interferon (IFN)-λ1 and CXCL10, which indicates that, similarly to thymic pDCs, BDCA3(hi) DCs can have an important role in thymus protection against viral infections.
Collapse
MESH Headings
- Antigens, Differentiation/analysis
- Antigens, Surface/analysis
- Apoptosis
- Cells, Cultured
- Chemokine CXCL10/analysis
- Child, Preschool
- Coculture Techniques
- Dendritic Cells/chemistry
- Dendritic Cells/classification
- Dendritic Cells/cytology
- HLA-DR Antigens/analysis
- Humans
- Infant
- Infant, Newborn
- Interferons
- Interleukins/analysis
- Interleukins/biosynthesis
- Interleukins/genetics
- Lectins, C-Type/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, G-Protein-Coupled/analysis
- Receptors, Mitogen/analysis
- Thrombomodulin
- Thymus Gland/cytology
- Thymus Gland/immunology
- Toll-Like Receptor 3/analysis
Collapse
Affiliation(s)
- Víctor G Martínez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Noelia M Canseco
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Laura Hidalgo
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Ana Entrena
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
42
|
Kanwal F, White DL, Jiao L, Tavakoli-Tabasi S, Sansgiry S, Ramsey DJ, Kuzniarek J, Spiegelman A, El-Serag HB. Genetic Variants in Interleukin-28B Are Associated with Diabetes and Diabetes-Related Complications in Patients with Chronic Hepatitis C Virus Infection. Dig Dis Sci 2015; 60:2030-7. [PMID: 25663241 DOI: 10.1007/s10620-015-3545-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Few studies have shown that host interleukin-28B (IL28B) genetic polymorphisms are associated with insulin resistance in patients with chronic hepatitis C virus (HCV) infection. However, the clinical relevance of this relationship is unclear. AIMS We examined the association between IL28B genotype for rs12980275 and risk of type 2 diabetes and diabetes-related complications. METHODS We used a cross-sectional study of prospectively recruited male veterans with chronic HCV. We employed logistic regression analysis and adjusted for patients' age, race, body mass index, and hepatic fibrosis. RESULTS A total of 528 participants were recruited (mean age 59.1 years; 38.5 % African-American; 40.3 % advanced fibrosis). Of these, 36.1 % were homozygous for favorable AA allele for rs12980275, 49.0 % were heterozygous (AG), and 14.0 % were homozygous for the unfavorable allele (GG). Prevalence of diabetes was significantly lower in patients with both favorable alleles (AA) than that with at least one unfavorable IL28B G allele (21.1 vs. 30.2 %, p = 0.02). Similarly, patients who were homozygous for the favorable alleles had lower prevalence of diabetes-related complications than patients with any unfavorable IL28B allele (5.7 vs. 12.2 %, p = 0.01). This association did not change after adjusting for sociodemographic characteristics, body mass index, and stage of hepatic fibrosis (adjusted ORdiabetes 0.56, 95 % CI 0.35-0.89; ORdiabetes-related complications 0.47, 95 % CI 0.23-0.96). CONCLUSIONS Patients who have favorable AA IL28B alleles have a lower prevalence of diabetes and related complications compared with patients with unfavorable IL28B rs12980275 genotype. IL28B genotype information may be used to counsel HCV patients regarding their individualized risk of diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Fasiha Kanwal
- Clinical Epidemiology and Comparative Effectiveness Program, Section of Health Services Research (IQuESt), Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cloning and expression of mink (Neovison vison) interferon-γ gene and development of an antiviral assay. Res Vet Sci 2015; 101:93-8. [PMID: 26267097 DOI: 10.1016/j.rvsc.2015.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/18/2015] [Accepted: 06/21/2015] [Indexed: 11/22/2022]
Abstract
Minks (Neovison vison) farming is under a threat of a variety of viral infections with increasingly growing number of breeding in Northeastern and Western China. While interferon is effective in controlling viral infection, IFN among different species rarely share high homology enough to provide cross protective effect on inhibition of virus replication. We cloned, sequenced, phlogenetically analyzed and expressed the miIFN-γ gene in prokaryotic and eukaryotic cells. The anti-vesicular stomatitis virus (VSV) activity of miIFN-γ protein was tested in MDCK cells using in vitro cytopathic inhibition assay. The recombinant miIFN-γ could inhibit VSV replication in MDCK cells, which was confirmed by that pre-incubation of rabbit anti-miIFN-γ antibodies with miIFN-γ abrogated the miIFN-γ protective effect. Our findings implicated that the miIFN-γ gene may be a potential counter measure against viral infection in the mink farming.
Collapse
|
44
|
Souza-Fonseca-Guimaraes F, Young A, Mittal D, Martinet L, Bruedigam C, Takeda K, Andoniou CE, Degli-Esposti MA, Hill GR, Smyth MJ. NK cells require IL-28R for optimal in vivo activity. Proc Natl Acad Sci U S A 2015; 112:E2376-84. [PMID: 25901316 PMCID: PMC4426428 DOI: 10.1073/pnas.1424241112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are naturally circulating innate lymphoid cells that protect against tumor initiation and metastasis and contribute to immunopathology during inflammation. The signals that prime NK cells are not completely understood, and, although the importance of IFN type I is well recognized, the role of type III IFN is comparatively very poorly studied. IL-28R-deficient mice were resistant to LPS and cecal ligation puncture-induced septic shock, and hallmark cytokines in these disease models were dysregulated in the absence of IL-28R. IL-28R-deficient mice were more sensitive to experimental tumor metastasis and carcinogen-induced tumor formation than WT mice, and additional blockade of interferon alpha/beta receptor 1 (IFNAR1), but not IFN-γ, further enhanced metastasis and tumor development. IL-28R-deficient mice were also more susceptible to growth of the NK cell-sensitive lymphoma, RMAs. Specific loss of IL-28R in NK cells transferred into lymphocyte-deficient mice resulted in reduced LPS-induced IFN-γ levels and enhanced tumor metastasis. Therefore, by using IL-28R-deficient mice, which are unable to signal type III IFN-λ, we demonstrate for the first time, to our knowledge, the ability of IFN-λ to directly regulate NK cell effector functions in vivo, alone and in the context of IFN-αβ.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia
| | - Arabella Young
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Ludovic Martinet
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Claudia Bruedigam
- Translational Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; and Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, QLD 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, St. Lucia, QLD 4006, Australia;
| |
Collapse
|
45
|
Egesten A, Herwald H. Interferon-λ: Inters Ferocity or Inter-Ferocities? J Innate Immun 2015; 7:223. [PMID: 25823916 DOI: 10.1159/000381250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Stiff A, Carson W. Investigations of interferon-lambda for the treatment of cancer. J Innate Immun 2015; 7:243-50. [PMID: 25661266 DOI: 10.1159/000370113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022] Open
Abstract
Interferon-lambda (IFN-λ), a recently discovered cytokine, overlaps broadly with type I IFN signaling, producing antiviral, antiproliferative, and proapoptotic responses. In comparison to type I IFNs, IFN-λ has a limited spectrum of responsive tissues due to variation in expression of the IFN-λ receptor IFNLR1. Type I IFNs have been investigated for their antitumor effects and used in the clinical setting for a number of different cancers. Given the overlap in signaling and function between IFN-λ and type I IFNs, IFN-λ has also drawn interest for the treatment of cancer. To date, a number of studies using both murine and human models of cancer have investigated the antitumor effects of IFN-λ. These studies have found that IFN-λ is capable of directly targeting cancer cells to reduce their tumorigenicity, induce cell cycle arrest, and cause apoptosis. In addition, IFN-λ has been shown to have indirect effects against cancer cells through immune system responses and immune modulatory effects. This review aims to detail the findings of studies investigating IFN-λ for the treatment of cancer as well as suggest areas of potential interest for future studies.
Collapse
Affiliation(s)
- Andrew Stiff
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
47
|
Cho CH, Yoon SY, Lee CK, Lim CS, Cho Y. Effect of Interleukin-29 on Interferon-α Secretion by Peripheral Blood Mononuclear Cells. CELL JOURNAL 2015; 16:528-37. [PMID: 25685743 PMCID: PMC4297491 DOI: 10.22074/cellj.2015.497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/19/2014] [Indexed: 01/12/2023]
Abstract
Objective The effect of interleukin (IL)-29, a new therapeutic agent similar to type I interferons (IFNs), on IFN-α secretion of human plasmacytoid dendritic cells (pDCs) has
not been studied. Therefore, in this study, we aimed to clarify the effect of IL-29 on IFN-α
secretion of pDCs using human peripheral blood mononuclear cells (PBMCs) in the presence of cytosine-phosphate-guanosinemotif-containing oligodeoxy nucleotides (CpG).
Materials and Methods In this experimental and prospective study, PBMCs were ob-
tained from 11 healthy volunteers and divided into four culture conditions: I. control, II.
CpG treatment, III. IL-29 treatment and IV. CpG plus IL-29 treatment. The amount of IFN-α
secretion was measured from each culture supernatant by flow cytometry using the flowcytomix apparatus (eBioscience, Vienna, Austria). Fractional IFN-α production of the cultured PBMCs was measured by intracellular staining using the cytomics FC 500 system
(Beckman Coulter, Brea, CA, USA) with CXP Software.
Results The mean ± standard deviation (SD) of supernatant IFN-α secretion per pDC/μL was
5.7 ± 9.3 pg/mL/count/µL for condition I, 1071.5 ± 1026.6 pg/mL/count/µL for condition II, 14.1
± 21.1 pg/mL/count/µL for condition III, and 1913.9 ± 1525.9 pg/mL/count/µL for condition IV.
There were statistically significant differences between conditions I and II as well as betweenconditions II and IV. Intracellular IFN-α production was only detectable in the pDC fraction from
one culture; the production amount was similar between the cells treated with CpG and those
treated with CpG plus IL-29. Natural killer (NK) cell production of IFN-α was observed in two out
of three cultures and one culture showed IFN- α production in the monocyte fraction.
Conclusion IL-29 alone did not show any effect on IFN-α secretion of PBMCs. However,
the addition of CpG along with IL-29 enhanced IFN-α secretion of PBMCs. Given that
pDCs are the major secretors of IFN-α in peripheral blood, this result has suggested the
possibility that IL-29 has an enhancing effect in human pDC IFN-α secretion. Although the
supernatant IFN-α secretion was not directly correlated with pDCs’s intracellular IFN-α
production in this study, prolonged incubation of pDC and other PB subsets with CpG
or IL-29 for over 4 hours could be applied in future studies. These studies would help to
elucidate the mechanism of action of IL-29 in human pDCs associated with viral infections.
Collapse
Affiliation(s)
- Chi Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Soo Young Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
48
|
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int J Mol Sci 2014; 15:21045-68. [PMID: 25405736 PMCID: PMC4264211 DOI: 10.3390/ijms151121045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
49
|
Lasfar A, Cook JR, Cohen Solal KA, Reuhl K, Kotenko SV, Langer JA, Laskin DL. Critical role of the endogenous interferon ligand-receptors in type I and type II interferons response. Immunology 2014; 142:442-52. [PMID: 24597649 DOI: 10.1111/imm.12273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/12/2023] Open
Abstract
Separate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs. We show that deficiency in IFNAR1 or IFNAR2 is associated with impairment of type II IFN activity. This impairment, presumably resulting from the disruption of the ligand-receptor complex, is obtained in all cell types tested. However, deficiency of IFNGR1, IFNGR2 or IFN-γ was associated with an impairment of type I IFN activity in spleen cells only, correlating with the constitutive expression of type II IFN (IFN-γ) observed on those cells. Therefore, in vitro the constitutive expression of both the receptors and the ligands of type I or type II IFN is critical for the enhancement of the IFN activity. Any IFN deficiency can totally or partially impair IFN activity, suggesting the importance of type I and type II IFN interactions. Taken together, our results suggest that type I and type II IFNs may regulate biological activities through distinct as well as common IFN receptor complexes.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki T, Kawamura K, Li Q, Okamoto S, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Yamaguchi N, Tagawa M. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer 2014; 14:713. [PMID: 25255777 PMCID: PMC4182771 DOI: 10.1186/1471-2407-14-713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transduction of human mesenchymal stem cells (MSCs) with type 5 adenoviruses (Ad5) is limited in the efficacy because of the poor expression level of the coxsackie adenovirus receptor (CAR) molecules. We examined a possible improvement of Ad-mediated gene transfer in MSCs by substituting the fiber region of type 5 Ad with that of type 35 Ad. METHODS Expression levels of CAR and CD46 molecules, which are the major receptors for type 5 and type 35 Ad, respectively, were assayed with flow cytometry. We constructed vectors expressing the green fluorescent protein gene with Ad5 or modified Ad5 bearing the type 35 fiber region (AdF35), and examined the infectivity to MSCs with flow cytometry. We investigated anti-tumor effects of MSCs transduced with interleukin (IL)-28A gene on human lung carcinoma cells with a colorimetric assay. Expression of IL-28A receptors was tested with the polymerase chain reaction. A promoter activity of transcriptional regulatory regions in MSCs was determined with a luciferase assay and a tumor growth-promoting ability of MSCs was tested with co-injection of human tumor cells in nude mice. RESULTS MSCs expressed CD46 but scarcely CAR molecules, and subsequently were transduced with AdF35 but not with Ad5. Growth of MSCs transduced with the IL-28A gene remained the same as that of untransduced cells since MSCs were negative for the IL-28A receptors. The IL-28A-transduced MSCs however suppressed growth of lung carcinoma cells co-cultured, whereas MSCs transduced with AdF35 expressing the β-galactosidase gene did not. A regulatory region of the cyclooygenase-2 gene possessed transcriptional activities greater than other tumor promoters but less than the cytomegalovirus promoter, and MSCs themselves did not support tumor growth in vivo. CONCLUSIONS AdF35 is a suitable vector to transduce MSCs that are resistant to Ad5-mediated gene transfer. MSCs infected with AdF35 that activate an exogenous gene by the cytomegalovirus promoter can be a vehicle to deliver the gene product to targeted cells.
Collapse
Affiliation(s)
- Takeo Suzuki
- />Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiyoko Kawamura
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Quanhai Li
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinya Okamoto
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- />Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- />Department of Pathology, Tokyo Women’s Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Naoto Yamaguchi
- />Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|