1
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
2
|
Abstract
Although tumourigenesis occurs due to genetic mutations, the role of epigenetic dysregulations in cancer is also well established. Epigenetic dysregulations in cancer may occur as a result of mutations in genes encoding histone/DNA-modifying enzymes and chromatin remodellers or mutations in histone protein itself. It is also true that misregulated gene expression without genetic mutations in these factors could also support tumour initiation and progression. Interestingly, metabolic rewiring has emerged as a hallmark of cancer due to gene mutations in specific metabolic enzymes or dietary/environmental factors. Recent studies report an intricate cross-talk between epigenetic and metabolic reprogramming in cancer. This review discusses the role of epigenetic and metabolic dysregulations and their cross-talk in tumourigenesis with a special focus on gliomagenesis. We also discuss the role of recently developed human embryonic stem cells/induced pluripotent stem cells-derived organoid models of gliomas and how these models are proving instrumental in uncovering human-specific cellular and molecular complexities of gliomagenesis.
Collapse
Affiliation(s)
- Bismi Phasaludeen
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Khan A, Papadakos S, Louka AM, Scordilis DM, Shkodina A, Varmpompiti K, Batiha GES, Alexiou A. Current Trends of Stem Cells in Neurodegenerative Diseases. NUTRITIONAL NEUROSCIENCES 2022:311-339. [DOI: 10.1007/978-981-15-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
4
|
Nguyen VTT, König S, Eggert S, Endres K, Kins S. The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 2021; 403:3-26. [PMID: 34449171 DOI: 10.1515/hsz-2021-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Svenja König
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Soeda S, Saito R, Fujii A, Tojo S, Tokumura Y, Taniura H. Abnormal DNA methylation in pluripotent stem cells from a patient with Prader-Willi syndrome results in neuronal differentiation defects. Stem Cell Res 2021; 53:102351. [PMID: 33895503 DOI: 10.1016/j.scr.2021.102351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
DNA methylation is a common method of gene expression regulation, and this form of regulation occurs in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Gene expression regulation via methylation is important for humans, although there is little understanding of the role of methylation in neuronal differentiation. We characterized the cellular differentiation potential of iPS cells derived from a patient with PWS with abnormal methylation (M-iPWS cells). A comparative genomic hybridization (CGH) array revealed that, unlike iPWS cells (deletion genes type), the abnormally methylated M-iPWS cells had no deletion in the15q11.2-q13 chromosome region. In addition, methylation-specific PCR showed that M-iPWS cells had strong methylation in CpG island of the small nuclear ribonucleoprotein polypeptide N (SNRPN) on both alleles. To assess the effect of abnormal methylation on cell differentiation, the M-iPWS and iPWS cells were induced to differentiate into embryoid bodies (EBs). The results suggest that iPWS and M-iPWS cells are defective at differentiation into ectoderm. Neural stem cells (NSCs) and neurons derived from M-iPWS cells had fewer NSCs and mature neurons with low expression of NSCs and neuronal markers. We conclude that expression of the downstream of genes in the PWS region regulated by methylation is involved in neuronal differentiation.
Collapse
Affiliation(s)
- Shuhei Soeda
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan.
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kanagawa 215-0026, Japan; Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Ai Fujii
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shusei Tojo
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuka Tokumura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
6
|
Pen AE, Jensen UB. Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurol Scand 2017; 135:57-72. [PMID: 26748435 DOI: 10.1111/ane.12545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- A. E. Pen
- Department of Molecular Biology and Genetics; Aarhus University; Tjele Denmark
| | - U. B. Jensen
- Department of Clinical Genetics; Aarhus University Hospital; Skejby Denmark
| |
Collapse
|
7
|
Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M, Sidhu K, Münch G, Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci Rep 2016; 6:31450. [PMID: 27514990 PMCID: PMC4981845 DOI: 10.1038/srep31450] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin. The iPSC-derived AD neurons demonstrated a hyper-excitable calcium signalling phenotype, elevated levels of nitrite, increased cytotoxicity and apoptosis, reduced neurite length and increased susceptibility to inflammatory stress challenge from activated murine microglia, in comparison to control neurons. We identified that apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells. In addition, we show that apigenin is able to protect iPSC-derived AD neurons via multiple means by reducing the frequency of spontaneous Ca(2+) signals and significantly reducing caspase-3/7 mediated apoptosis. These data demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model.
Collapse
Affiliation(s)
- Rachelle Balez
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nicole Steiner
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dadong Wang
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Pascal Vallotton
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Michael O’Connor
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Molecular Medicine Research Group, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing School of Medicine, University of New South Wales, High Street, Kensington,. NSW, 2052, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
- Centre of Complementary Medicine Research (CompleMed), Western Sydney University, Locked bag 1797, Penrith, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
8
|
Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases. Stem Cells Int 2016; 2016:2958210. [PMID: 27239201 PMCID: PMC4864561 DOI: 10.1155/2016/2958210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.
Collapse
|
9
|
Biomedical and clinical promises of human pluripotent stem cells for neurological disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:656531. [PMID: 24171168 PMCID: PMC3793324 DOI: 10.1155/2013/656531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/13/2013] [Indexed: 01/25/2023]
Abstract
Neurological disorders are characterized by the chronic and progressive loss of neuronal structures and functions. There is a variability of the onsets and causes of clinical manifestations. Cell therapy has brought a new concept to overcome brain diseases, but the advancement of this therapy is limited by the demands of specialized neurons. Human pluripotent stem cells (hPSCs) have been promised as a renewable resource for generating human neurons for both laboratory and clinical purposes. By the modulations of appropriate signalling pathways, desired neuron subtypes can be obtained, and induced pluripotent stem cells (iPSCs) provide genetically matched neurons for treating patients. These hPSC-derived neurons can also be used for disease modeling and drug screening. Since the most urgent problem today in transplantation is the lack of suitable donor organs and tissues, the derivation of neural progenitor cells from hPSCs has opened a new avenue for regenerative medicine. In this review, we summarize the recent reports that show how to generate neural derivatives from hPSCs, and discuss the current evidence of using these cells in animal studies. We also highlight the possibilities and concerns of translating these hPSC-derived neurons for biomedical and clinical uses in order to fight against neurological disorders.
Collapse
|
10
|
Yuan SH, Shaner M. Bioengineered stem cells in neural development and neurodegeneration research. Ageing Res Rev 2013; 12:739-48. [PMID: 23651546 DOI: 10.1016/j.arr.2013.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 01/26/2023]
Abstract
The recent discovery of a simple method for making induced pluripotent stem cells (iPSC) from human somatic cells was a major scientific advancement that opened the way for many promising new developments in the study of developmental and degenerative diseases. iPSC have already been used to model many different types of neurological diseases, including autism, schizophrenia, Alzheimer's disease and Parkinson's disease. Because of their pluripotent property, iPSC offer the possibility of modeling human development in vitro. Their differentiation seems to follow the developmental timeline and obeys environmental cues. Clinically relevant phenotypes of neurodegenerative pathologies have also been observed using iPSC derived human neuronal cultures. Options for treatment are still some way off. Although some early research in mouse models has been encouraging, major obstacles remain for neural stem cell (NSC) transplantation therapy. However, iPSC now offer the prospect of an unlimited amount of human neurons or astrocytes for drug testing. The aim of this review is to summarize the recent progress in modeling neural development and neurological diseases using iPSC and to describe their applications for aging research and personalized medicine.
Collapse
Affiliation(s)
- Shauna H Yuan
- University of California, San Diego, Department of Neurosciences, 9500 Gilman Dr. MC 0624, MTF Room 151, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
11
|
Paulsen BDS, da Silveira MS, Galina A, Rehen SK. Pluripotent stem cells as a model to study oxygen metabolism in neurogenesis and neurodevelopmental disorders. Arch Biochem Biophys 2012; 534:3-10. [PMID: 23111185 DOI: 10.1016/j.abb.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 10/17/2012] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) and oxygen (O2) have been implicated in neurogenesis and self-renewal of neural progenitor cells (NPCs). On the other hand, oxidative unbalance, either by an impairment of antioxidant defenses or by an intensified production of ROS, is increasingly related to risk factors of neurodevelopmental disorders, such as schizophrenia. In this scenario, human induced pluripotent stem cells (hiPSCs) emerged as an interesting platform for the study of cellular and molecular aspects of this mental disorder, by complementing other experimental models, with exclusive advantages such as the recapitulation of brain development. Herein we discuss the role of O2/ROS signaling for neuronal differentiation and how its unbalance could be related to neurodevelopmental disorders, such as schizophrenia. Identifying the role of O2/ROS in neurogenesis as well as tackling oxidative stress and its disturbances in schizophrenic patients' derived cells will provide an interesting opportunity for the study of neural stem cells differentiation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Bruna da Silveira Paulsen
- Laboratório Nacional de Células-Tronco Embrionárias, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro RJ 21941-913, Brazil
| | | | | | | |
Collapse
|
12
|
Devalle S, Sartore RC, Paulsen BS, Borges HL, Martins RAP, Rehen SK. Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci 2012; 6:36. [PMID: 22973193 PMCID: PMC3433681 DOI: 10.3389/fncel.2012.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/18/2012] [Indexed: 12/29/2022] Open
Abstract
Understanding the cellular basis of neurological disorders have advanced at a slow pace, especially due to the extreme invasiveness of brain biopsying and limitations of cell lines and animal models that have been used. Since the derivation of pluripotent stem cells (PSCs), a novel source of cells for regenerative medicine and disease modeling has become available, holding great potential for the neurology field. However, safety for therapy and accurateness for modeling have been a matter of intense debate, considering that genomic instability, including the gain and loss of chromosomes (aneuploidy), has been repeatedly observed in those cells. Despite the fact that recent reports have described some degree of aneuploidy as being normal during neuronal differentiation and present in healthy human brains, this phenomenon is particularly controversial since it has traditionally been associated with cancer and disabling syndromes. It is therefore necessary to appreciate, to which extent, aneuploid pluripotent stem cells are suitable for regenerative medicine and neurological modeling and also the limits that separate constitutive from disease-related aneuploidy. In this review, recent findings regarding chromosomal instability in PSCs and within the brain will be discussed.
Collapse
Affiliation(s)
- Sylvie Devalle
- National Laboratory for Embryonic Stem Cells, Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|