1
|
Li X, Wang Y, Ren M, Liu Q, Li J, Zhang L, Yao S, Tang L, Wen G, An J, Jin H, Tuo B. The role of chloride intracellular channel 4 in tumors. Cancer Cell Int 2025; 25:118. [PMID: 40140845 PMCID: PMC11948840 DOI: 10.1186/s12935-025-03737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Tumors are among the most predominant health problems in the world, and the annual incidence of cancer is increasing globally; therefore, there is an urgent need to identify effective therapeutic targets. Chloride intracellular channel 4 (CLIC4) belongs to the family of chloride intracellular channels (CLICs), which are widely expressed in various tissues and organs, such as the brain, lung, pancreas, colorectum, and ovary, and play important roles in promoting apoptosis, promoting angiogenesis, maintaining normal proliferation of endothelial cells, and regulating the assembly and reconstruction of the cytoskeleton. The expression and function of CLIC4 in tumors varies. It has been reported that CLIC4 is low expressed in gastric cancer, skin cancer and prostate cancer, suggesting a tumor suppressor role. Interestingly, CLIC4 is overexpressed in pancreatic, ovarian and breast cancers, indicating a cancer-promoting role. CLIC4 expression is dysregulated in some solid tumors, which may be because CLIC4 is involved in the growth, migration or invasion of some cancer cells through various mechanisms. Regulation of CLIC4 expression may be a potential therapeutic strategy for some tumors. CLIC4 may be a promising therapeutic target and a biomarker for some cancers. In this study, we review the role of CLIC4 in several cancers and its value in the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Minmin Ren
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Nursing School of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Lulu Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
2
|
Wang P, Fares M, Eladwy RA, Bhuyan DJ, Wu X, Lewis W, Loeb SJ, Macreadie LK, Gale PA. Platinum-based metal complexes as chloride transporters that trigger apoptosis. Chem Sci 2024; 15:11584-11593. [PMID: 39055016 PMCID: PMC11268493 DOI: 10.1039/d4sc02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
In this paper we demonstrate that Pt(ii) complexes can function as efficient transmembrane chloride transporters. A series of Pt(ii) metal complexes with urea-appended isoquinoline ligands were synthesised and operate via classical hydrogen bonding interactions rather than ligand exchange. A number of the complexes exhibited potent transmembrane chloride activity in vesicle studies, while also showing strong antiproliferative activity in cisplatin-resistant cell lines via induction of apoptosis and inhibition of intracellular ROS.
Collapse
Affiliation(s)
- Patrick Wang
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Radwa A Eladwy
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Deep J Bhuyan
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 Fujian China
| | - William Lewis
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Ontario N9B 3P4 Canada
| | | | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Ultimo NSW 2007 Australia
| |
Collapse
|
3
|
Elaraby NM, Ahmed HA, Dawoud H, Ashaat NA, Azmy A, Galal ER, Elhusseny Y, Awady HE, Metwally AM, Ashaat EA. Clinical and molecular characterization of myotonia congenita using whole-exome sequencing in Egyptian patients. Mol Biol Rep 2024; 51:766. [PMID: 38877370 DOI: 10.1007/s11033-024-09646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.
Collapse
Affiliation(s)
- Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Dawoud
- Pediatric Department, Tanta University, Gharbia, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Ashraf Azmy
- Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Eman Reda Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yasmine Elhusseny
- Lecturer of Medical Biochemistry and Molecular Biology, School of Medicine, Newgiza University, Giza, Egypt
| | - Heba El Awady
- Pediatric Department, Fayoum University Hospitals, Fayoum, Egypt
| | - Ammal M Metwally
- Community Medicine Research Department/Medical Research, Clinical Studies Institute/National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
5
|
Jacobsen LN, Stemmerik MG, Skriver SV, Pedersen JJ, Løkken N, Vissing J. Contractile properties and magnetic resonance imaging-assessed fat replacement of muscles in myotonia congenita. Eur J Neurol 2024; 31:e16207. [PMID: 38270354 PMCID: PMC11235747 DOI: 10.1111/ene.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND PURPOSE Myotonia congenita (MC) is a muscle channelopathy in which pathogenic variants in a key sarcolemmal chloride channel Gene (CLCN1) cause myotonia. This study used muscle magnetic resonance imaging (MRI) to quantify contractile properties and fat replacement of muscles in a Danish cohort of MC patients. METHODS Individuals with the Thomsen (dominant) and Becker (recessive) variants of MC were studied. Isometric muscle strength, whole-body MRI, and clinical data were collected. The degree of muscle fat replacement of thigh, calf, and forearm muscles was quantitively calculated on Dixon MRI as fat fractions (FFs). Contractility was evaluated as the muscle strength per contractile muscle cross-sectional area (PT/CCSA). Muscle contractility was compared with clinical data. RESULTS Intramuscular FF was increased and contractility reduced in calf and in forearm muscles compared with controls (FF = 7.0-14.3% vs. 5.3-9.6%, PT/CCSA = 1.1-4.9 Nm/cm2 vs. 1.9-5.8 Nm/cm2 [p < 0.05]). Becker individuals also showed increased intramuscular FF and reduced contractility of thigh muscles (FF = 11.9% vs. 9.2%, PT/CCSA = 1.9 Nm/cm2 vs. 3.2 Nm/cm2 [p < 0.05]). Individual muscle analysis showed that increased FF was limited to seven of 18 examined muscles (p < 0.05). There was a weak correlation between reduced contractility and severity of symptoms. CONCLUSIONS Individuals with MC have increased fat replacement and reduced contractile properties of muscles. Nonetheless, changes were small and likely did not impact clinically on their myotonic symptoms.
Collapse
Affiliation(s)
- Laura Nørager Jacobsen
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Mads Godtfeldt Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sofie Vinther Skriver
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Jalili Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
7
|
Sparber P, Sharova M, Filatova A, Shchagina O, Ivanova E, Dadali E, Skoblov M. Recessive myotonia congenita caused by a homozygous splice site variant in CLCN1 gene: a case report. BMC MEDICAL GENETICS 2020; 21:197. [PMID: 33092578 PMCID: PMC7579786 DOI: 10.1186/s12881-020-01128-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 02/01/2023]
Abstract
Background Myotonia congenita is a rare neuromuscular disease, which is characterized by a delay in muscle relaxation after evoked or voluntary contraction. Myotonia congenita can be inherited in a dominant (Thomsen disease) and recessive form (Becker disease) and both are caused by pathogenic variants in the CLCN1 gene. Noncanonical splice site variants are often classified as variants of uncertain significance, due to insufficient accuracy of splice-predicting tools. Functional analysis using minigene plasmids is widely used in such cases. Moreover, functional analysis is very useful in investigation of the disease pathogenesis, which is necessary for development of future therapeutic approaches. To our knowledge only one noncanonical splice site variant in the CLCN1 gene was functionally characterized to date. We further contribute to this field by evaluation the molecular mechanism of splicing alteration caused by the c.1582 + 5G > A in a homozygous state. Case presentation We report a clinical case of an affected 6-y.o boy with athletic appearance due to muscle hypertrophy, calf muscle stiffness, cramping and various myotonic signs in a consanguineous family with no history of neuromuscular disorders. The neurological examination showed percussion-activated myotonia in the hands and legs. Plasma creatine kinase enzyme and transaminases levels were normal. Electromyography at the time of examination shows myotonic runs in the upper and lower extremities. Conclusions Functional analysis of the variant in a minigene system showed alteration of splicing leading to loss of function, thereby confirming that the variant is pathogenic.
Collapse
Affiliation(s)
- Peter Sparber
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia.
| | - Margarita Sharova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Alexandra Filatova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Olga Shchagina
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Evgeniya Ivanova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Elena Dadali
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Mikhail Skoblov
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| |
Collapse
|
8
|
Stunnenberg BC, LoRusso S, Arnold WD, Barohn RJ, Cannon SC, Fontaine B, Griggs RC, Hanna MG, Matthews E, Meola G, Sansone VA, Trivedi JR, van Engelen BG, Vicart S, Statland JM. Guidelines on clinical presentation and management of nondystrophic myotonias. Muscle Nerve 2020; 62:430-444. [PMID: 32270509 PMCID: PMC8117169 DOI: 10.1002/mus.26887] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. In the absence of genetic confirmation, the diagnosis is supported by detailed electrophysiological testing, exclusion of other related disorders, and analysis of a variant of uncertain significance if present. Symptomatic treatment with a sodium channel blocker, such as mexiletine, is usually the first step in management, as well as educating patients about potential anesthetic complications.
Collapse
Affiliation(s)
- Bas C. Stunnenberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samantha LoRusso
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - W. David Arnold
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Richard J. Barohn
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen C. Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Bertrand Fontaine
- Assistance Publique-Hôpitaix de Paris, Sorbonne Université, INSERM, Service of Neuro-Myology and UMR 974, Institute of Myology, University Hospital Pitié-Salpêtrière, Paris, France
| | - Robert C. Griggs
- Department of Neurology, University of Rochester, Rochester, New York
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, United Kingdom
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, United Kingdom
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valeria A. Sansone
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Neurorehabilitation Unit, University of Milan, NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Jaya R. Trivedi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Savine Vicart
- Assistance Publique-Hôpitaix de Paris, Sorbonne Université, INSERM, Service of Neuro-Myology and UMR 974, Institute of Myology, University Hospital Pitié-Salpêtrière, Paris, France
| | - Jeffrey M. Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
9
|
Meyer AP, Roggenbuck J, LoRusso S, Kissel J, Smith RM, Kline D, Arnold WD. Genotype-Phenotype Correlations and Characterization of Medication Use in Inherited Myotonic Disorders. Front Neurol 2020; 11:593. [PMID: 32670189 PMCID: PMC7332828 DOI: 10.3389/fneur.2020.00593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Inherited myotonic disorders are genetically heterogeneous and associated with overlapping clinical features of muscle stiffness, weakness, and pain. Data on genotype-phenotype correlations are limited. In this study, clinical features and treatment patterns in genetically characterized myotonic disorders were compared. Methods: A retrospective chart review was completed in patients with genetic variants in CLCN1, SCN4A, DMPK, and CNBP to document clinical signs and symptoms, clinical testing, and antimyotonia medication use. Results: A total of 142 patients (27 CLCN1, 15 SCN4A, 89 DMPK, and 11 CNBP) were reviewed. The frequency of reported symptoms (stiffness, weakness, and pain) and electromyographic spontaneous activity were remarkably similar across genotypes. Most patients were not treated with antimyotonia agents, but those with non-dystrophic disorders were more likely to be on a treatment. Discussion: Among the features reviewed, we did not identify clinical or electrophysiological differences to distinguish CLCN1- and SCN4A-related myotonia. Weakness and pain were more prevalent in non-dystrophic disorders than previously identified. In addition, our results suggest that medical treatments in myotonic disorders may be under-utilized.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Human Genetics, The Ohio State University, Columbus, OH, United States
| | - Jennifer Roggenbuck
- Division of Human Genetics, The Ohio State University, Columbus, OH, United States
| | - Samantha LoRusso
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - John Kissel
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Rachel M Smith
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - David Kline
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Conte E, Fonzino A, Cibelli A, De Benedictis V, Imbrici P, Nicchia GP, Pierno S, Camerino GM. Changes in Expression and Cellular Localization of Rat Skeletal Muscle ClC-1 Chloride Channel in Relation to Age, Myofiber Phenotype and PKC Modulation. Front Pharmacol 2020; 11:714. [PMID: 32499703 PMCID: PMC7243361 DOI: 10.3389/fphar.2020.00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
The ClC-1 chloride channel 1 is important for muscle function as it stabilizes resting membrane potential and helps to repolarize the membrane after action potentials. We investigated the contribution of ClC-1 to adaptation of skeletal muscles to needs induced by the different stages of life. We analyzed the ClC-1 gene and protein expression as well as mRNA levels of protein kinase C (PKC) alpha and theta involved in ClC-1 modulation, in soleus (SOL) and extensor digitorum longus (EDL) muscles of rats in all stage of life. The cellular localization of ClC-1 in relation to age was also investigated. Our data show that during muscle development ClC-1 expression differs according to phenotype. In fast-twitch EDL muscles ClC-1 expression increased 10-fold starting at 7 days up to 8 months of life. Conversely, in slow-twitch SOL muscles ClC-1 expression remained constant until 33 days of life and subsequently increased fivefold to reach the adult value. Aging induced a downregulation of gene and protein ClC-1 expression in both muscle types analyzed. The mRNA of PKC-theta revealed the same trend as ClC-1 except in old age, whereas the mRNA of PKC-alpha increased only after 2 months of age. Also, we found that the ClC-1 is localized in both membrane and cytoplasm, in fibers of 12-day-old rats, becoming perfectly localized on the membrane in 2-month-old rats. This study could represent a point of comparison helpful for the identification of accurate pharmacological strategies for all the pathological situations in which ClC-1 protein is altered.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Vito De Benedictis
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
11
|
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, Maduke M. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl -/H + transport cycle. eLife 2020; 9:53479. [PMID: 32310757 PMCID: PMC7253180 DOI: 10.7554/elife.53479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl– for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change – which occurs in all conventional transporter mechanisms – has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl– substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl– transport that reconciles existing data on all CLC-type proteins. Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Antoine Koehl
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
12
|
Jeng CJ, Fu SJ, You CY, Peng YJ, Hsiao CT, Chen TY, Tang CY. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol 2020; 11:76. [PMID: 32117034 PMCID: PMC7026490 DOI: 10.3389/fneur.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying You
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Morales F, Pusch M. An Up-to-Date Overview of the Complexity of Genotype-Phenotype Relationships in Myotonic Channelopathies. Front Neurol 2020; 10:1404. [PMID: 32010054 PMCID: PMC6978732 DOI: 10.3389/fneur.2019.01404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic disorders are inherited neuromuscular diseases divided into dystrophic myotonias and non-dystrophic myotonias (NDM). The latter is a group of dominant or recessive diseases caused by mutations in genes encoding ion channels that participate in the generation and control of the skeletal muscle action potential. Their altered function causes hyperexcitability of the muscle membrane, thereby triggering myotonia, the main sign in NDM. Mutations in the genes encoding voltage-gated Cl− and Na+ channels (respectively, CLCN1 and SCN4A) produce a wide spectrum of phenotypes, which differ in age of onset, affected muscles, severity of myotonia, degree of hypertrophy, and muscle weakness, disease progression, among others. More than 200 CLCN1 and 65 SCN4A mutations have been identified and described, but just about half of them have been functionally characterized, an approach that is likely extremely helpful to contribute to improving the so-far rather poor clinical correlations present in NDM. The observed poor correlations may be due to: (1) the wide spectrum of symptoms and overlapping phenotypes present in both groups (Cl− and Na+ myotonic channelopathies) and (2) both genes present high genotypic variability. On the one hand, several mutations cause a unique and reproducible phenotype in most patients. On the other hand, some mutations can have different inheritance pattern and clinical phenotypes in different families. Conversely, different mutations can be translated into very similar phenotypes. For these reasons, the genotype-phenotype relationships in myotonic channelopathies are considered complex. Although the molecular bases for the clinical variability present in myotonic channelopathies remain obscure, several hypotheses have been put forward to explain the variability, which include: (a) differential allelic expression; (b) trans-acting genetic modifiers; (c) epigenetic, hormonal, or environmental factors; and (d) dominance with low penetrance. Improvements in clinical tests, the recognition of the different phenotypes that result from particular mutations and the understanding of how a mutation affects the structure and function of the ion channel, together with genetic screening, is expected to improve clinical correlation in NDMs.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud, Universidad de Costa, San José, Costa Rica
| | | |
Collapse
|
14
|
Wei Z, Huaxing M, Xiaomei W, Juan W, Xueli C, Jing Z, Junhong G. Identification of two novel compound heterozygous CLCN1 mutations associated with autosomal recessive myotonia congenita. Neurol Res 2019; 41:1069-1074. [PMID: 31566103 DOI: 10.1080/01616412.2019.1672392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objectives: Myotonia congenita (MC) is a rare genetic muscular disorder caused by CLCN1 mutations, which codes for skeletal muscle chloride channel CLC1. MC is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness. This study aimed to identify the genetic etiology of a Chinese family affected with recessive MC. Methods: Whole exome sequencing was performed to identify the disease-associated variants. The candidate causal genes discovered by WES were then confirmed by Sanger sequencing and co-segregation analyses were also conducted. Results: Two novel compound heterozygous mutations in CLCN1 gene, p.D94Y (paternal allele) and p.Y206* (maternal allele), were successfully identified as the pathogenic mutations by whole-exome sequencing (WES). The mutations were confirmed with Sanger sequencing in the family members and cosegregated with the MC phenotype. The two mutations have not been reported in the HGMD, dbSNP, 1000 Genomes project, ClinVar database, ExAC, and gnomAD previously. Mutation p.D94Y is predicted to be deleterious by using in silico tools and p.Y206* is a nonsense mutation, causing protein synthesis termination. Conclusions: Molecular genetics analysis offers an accurate method for diagnosing MC. Our results expand the mutational spectrum of recessive MC.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Meng Huaxing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Wang Xiaomei
- Department of Geological Engineering, Shanxi Institute of Enegy , Taiyuan , China
| | - Wang Juan
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Chang Xueli
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Zhang Jing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Guo Junhong
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| |
Collapse
|
15
|
Hoppe K, Chaiklieng S, Lehmann‐Horn F, Jurkat‐Rott K, Wearing S, Klingler W. Elevation of extracellular osmolarity improves signs of myotonia congenita in vitro: a preclinical animal study. J Physiol 2019; 597:225-235. [PMID: 30284249 PMCID: PMC6312412 DOI: 10.1113/jp276528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During myotonia congenita, reduced chloride (Cl- ) conductance results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Repetitive contraction of myotonic muscle decreases or even abolishes myotonic muscle stiffness, a phenomenon called 'warm up'. Pharmacological inhibition of low Cl- channels by anthracene-9-carboxylic acid in muscle from mice and ADR ('arrested development of righting response') muscle from mice showed a relaxation deficit under physiological conditions compared to wild-type muscle. At increased osmolarity up to 400 mosmol L-1 , the relaxation deficit of myotonic muscle almost reached that of control muscle. These effects were mediated by the cation and anion cotransporter, NKCC1, and anti-myotonic effects of hypertonicity were at least partly antagonized by the application of bumetanide. ABSTRACT Low chloride-conductance myotonia is caused by mutations in the skeletal muscle chloride (Cl- ) channel gene type 1 (CLCN1). Reduced Cl- conductance of the mutated channels results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Exercise decreases muscle stiffness, a phenomena called 'warm up'. To gain further insight into the patho-mechanism of impaired muscle stiffness and the warm-up phenomenon, we characterized the effects of increased osmolarity on myotonic function. Functional force and membrane potential measurements were performed on muscle specimens of ADR ('arrested development of righting response') mice (an animal model for low gCl- conductance myotonia) and pharmacologically-induced myotonia. Specimens were exposed to solutions of increasing osmolarity at the same time as force and membrane potentials were monitored. In the second set of experiments, ADR muscle and pharmacologically-induced myotonic muscle were exposed to an antagonist of NKCC1. Upon osmotic stress, ADR muscle was depolarized to a lesser extent than control wild-type muscle. High osmolarity diminished myotonia and facilitated the warm-up phenomenon as depicted by a faster muscle relaxation time (T90/10 ). Osmotic stress primarily resulted in the activation of the NKCC1. The inhibition of NKCC1 with bumetanide prevented the depolarization and reversed the anti-myotonic effect of high osmolarity. Increased osmolarity decreased signs of myotonia and facilitated the warm-up phenomenon in different in vitro models of myotonia. Activation of NKCC1 activity promotes warm-up and reduces the number of contractions required to achieve normal relaxation kinetics.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of AnaesthesiaCritical Care Medicine and Pain TherapyUniversity of FrankfurtFrankfurtGermany
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
- Faculty of Public HealthKhon Knen UniversityMuang Khon KaenThailand
| | - Frank Lehmann‐Horn
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
| | - Karin Jurkat‐Rott
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
| | - Scott Wearing
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
| | - Werner Klingler
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
- Department of AnaesthesiologyIntensive Care Medicine and Pain TherapySRH KlinikumSigmarringenGermany
| |
Collapse
|
16
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
17
|
Coote DJ, Davis MR, Cabrera M, Needham M, Laing NG, Nowak KJ. Clinical Utility Gene Card for: autosomal dominant myotonia congenita (Thomsen Disease). Eur J Hum Genet 2018; 26:1072-1077. [PMID: 29695755 DOI: 10.1038/s41431-017-0065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- David J Coote
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia; and Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Mark R Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Macarena Cabrera
- Department of Neurology and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Seville, 41013, Spain
| | - Merrilee Needham
- Western Australian Neuroscience Institute, QEII Medical Centre, Nedlands, Western Australia 6009; Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia; and Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, WA, 6009, Australia.,Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Kristen J Nowak
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia; and Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, WA, 6009, Australia. .,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia. .,Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, East Perth, WA, 6004, Australia.
| |
Collapse
|
18
|
|
19
|
M De la Fuente I, Malaina I, Pérez-Samartín A, Boyano MD, Pérez-Yarza G, Bringas C, Villarroel Á, Fedetz M, Arellano R, Cortes JM, Martínez L. Dynamic properties of calcium-activated chloride currents in Xenopus laevis oocytes. Sci Rep 2017; 7:41791. [PMID: 28198817 PMCID: PMC5304176 DOI: 10.1038/srep41791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two decades highlight the great importance and broad physiological role of chloride currents mediated anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In addition, dysfunction of Cl− channels is involved in a variety of human diseases such as epilepsy, osteoporosis and different cancer types. Historically, chloride channels have been of less interest than the cation channels. In fact, there seems to be practically no quantitative studies of the dynamics of chloride currents. Here, for the first time, we have quantitatively studied experimental calcium-activated chloride fluxes belonging to Xenopus laevis oocytes, and the main results show that the experimental Cl− currents present an informational structure characterized by highly organized data sequences, long-term memory properties and inherent “crossover” dynamics in which persistent correlations arise at short time intervals, while anti-persistent behaviors become dominant in long time intervals. Our work sheds some light on the understanding of the informational properties of ion currents, a key element to elucidate the physiological functional coupling with the integrative dynamics of metabolic processes.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, Spain.,Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Álvaro Villarroel
- Biophysics Unit, CSIC, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Fedetz
- Department of Biochemistry and Pharmacology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Rogelio Arellano
- Laboratory of Cellular Neurophysiology, Neurobiology Institute, UNAM, Querétaro, México
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain.,BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
20
|
Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. ACTA ACUST UNITED AC 2016; 147:291-308. [PMID: 27022190 PMCID: PMC4810071 DOI: 10.1085/jgp.201611582] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl− ions. Thus, in resting human muscle, ClC-1 Cl− ion channels account for ∼80% of the membrane conductance, and because active Cl− transport is limited in muscle fibers, the equilibrium potential for Cl− lies close to the resting membrane potential. These conditions—high membrane conductance and passive distribution—enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K+ and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and/or oxidation. The present review summarizes the current knowledge of the physiological factors that control ClC-1 function in active muscle.
Collapse
Affiliation(s)
| | - Anders Riisager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | | |
Collapse
|
21
|
Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita. Neuromolecular Med 2015; 17:285-96. [PMID: 26007199 PMCID: PMC4534513 DOI: 10.1007/s12017-015-8356-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker’s disease) or dominant (Thomsen’s disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.
Collapse
|
22
|
Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. JOURNAL OF BIOMOLECULAR NMR 2015; 61:209-26. [PMID: 25631353 PMCID: PMC4398623 DOI: 10.1007/s10858-015-9898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 05/03/2023]
Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).
Collapse
Affiliation(s)
- Sherwin J. Abraham
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Ricky C. Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Thomas A. Chew
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Chandra M. Khantwal
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, 299 Campus Drive West, D105 Fairchild Science Building, Stanford, CA 94305
| | - Shimei Gong
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
- corresponding author, , tel (650)-723-9075, fax (650)-725-8021
| |
Collapse
|
23
|
Gandolfi B, Daniel RJ, O'Brien DP, Guo LT, Youngs MD, Leach SB, Jones BR, Shelton GD, Lyons LA. A novel mutation in CLCN1 associated with feline myotonia congenita. PLoS One 2014; 9:e109926. [PMID: 25356766 PMCID: PMC4214686 DOI: 10.1371/journal.pone.0109926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022] Open
Abstract
Myotonia congenita (MC) is a skeletal muscle channelopathy characterized by inability of the muscle to relax following voluntary contraction. Worldwide population prevalence in humans is 1∶100,000. Studies in mice, dogs, humans and goats confirmed myotonia associated with functional defects in chloride channels and mutations in a skeletal muscle chloride channel (CLCN1). CLCN1 encodes for the most abundant chloride channel in the skeletal muscle cell membrane. Five random bred cats from Winnipeg, Canada with MC were examined. All cats had a protruding tongue, limited range of jaw motion and drooling with prominent neck and proximal limb musculature. All cats had blepharospasm upon palpebral reflex testing and a short-strided gait. Electromyograms demonstrated myotonic discharges at a mean frequency of 300 Hz resembling the sound of a ‘swarm of bees’. Muscle histopathology showed hypertrophy of all fiber types. Direct sequencing of CLCN1 revealed a mutation disrupting a donor splice site downstream of exon 16 in only the affected cats. In vitro translation of the mutated protein predicted a premature truncation and partial lack of the highly conserved CBS1 (cystathionine β-synthase) domain critical for ion transport activity and one dimerization domain pivotal in channel formation. Genetic screening of the Winnipeg random bred population of the cats' origin identified carriers of the mutation. A genetic test for population screening is now available and carrier cats from the feral population can be identified.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, School of Veterinary Medicine, University of Missouri – Columbia, Columbia, Missouri, United States of America
- * E-mail:
| | - Rob J. Daniel
- Department of Veterinary Medicine and Surgery, School of Veterinary Medicine, University of Missouri – Columbia, Columbia, Missouri, United States of America
| | - Dennis P. O'Brien
- Department of Veterinary Medicine and Surgery, School of Veterinary Medicine, University of Missouri – Columbia, Columbia, Missouri, United States of America
| | - Ling T. Guo
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | | | - Stacey B. Leach
- Department of Veterinary Medicine and Surgery, School of Veterinary Medicine, University of Missouri – Columbia, Columbia, Missouri, United States of America
| | - Boyd R. Jones
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - G. Diane Shelton
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, School of Veterinary Medicine, University of Missouri – Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
24
|
Yan Y, Ding Y, Ming B, Du W, Kong X, Tian L, Zheng F, Fang M, Tan Z, Gong F. Increase in hypotonic stress-induced endocytic activity in macrophages via ClC-3. Mol Cells 2014; 37:418-25. [PMID: 24850147 PMCID: PMC4044314 DOI: 10.14348/molcells.2014.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022] Open
Abstract
Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-α or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.
Collapse
Affiliation(s)
- Yutao Yan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Yu Ding
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Bingxia Ming
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Wenjiao Du
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Xiaoling Kong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Li Tian
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Fang Zheng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Min Fang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Zheng Tan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| |
Collapse
|
25
|
Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life 2014; 66:257-67. [PMID: 24771413 DOI: 10.1002/iub.1266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/23/2023]
Abstract
The review describes molecular and functional properties of the volume regulated anion channel and Ca(2+)-dependent Cl(-) channels belonging to the anoctamin family with emphasis on physiological importance of these channels in regulation of cell volume, cell migration, cell proliferation, and programmed cell death. Finally, we discuss the role of Cl(-) channels in various diseases.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, 13 Universitetsparken, Copenhagen Ø, Denmark
| | | | | |
Collapse
|
26
|
Ha K, Kim SY, Hong C, Myeong J, Shin JH, Kim DS, Jeon JH, So I. Electrophysiological characteristics of six mutations in hClC-1 of Korean patients with myotonia congenita. Mol Cells 2014; 37:202-12. [PMID: 24625573 PMCID: PMC3969040 DOI: 10.14348/molcells.2014.2267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/03/2023] Open
Abstract
ClC-1 is a member of a large family of voltage-gated chloride channels, abundantly expressed in human skeletal muscle. Mutations in ClC-1 are associated with myotonia congenita (MC) and result in loss of regulation of membrane excitability in skeletal muscle. We studied the electrophysiological characteristics of six mutants found among Korean MC patients, using patch clamp methods in HEK293 cells. Here, we found that the autosomal dominant mutants S189C and P480S displayed reduced chloride conductances compared to WT. Autosomal recessive mutant M128I did not show a typical rapid deactivation of Cl(-) currents. While sporadic mutant G523D displayed sustained activation of Cl(-) currents in the whole cell traces, the other sporadic mutants, M373L and M609K, demonstrated rapid deactivations. V1/2 of these mutants was shifted to more depolarizing potentials. In order to identify potential effects on gating processes, slow and fast gating was analyzed for each mutant. We show that slow gating of the mutants tends to be shifted toward more positive potentials in comparison to WT. Collectively, these six mutants found among Korean patients demonstrated modifications of channel gating behaviors and reduced chloride conductances that likely contribute to the physiologic changes of MC.
Collapse
Affiliation(s)
- Kotdaji Ha
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| | - Sung-Young Kim
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| | | | | | - Ju-Hong Jeon
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
27
|
Hoche F, Qirshi M, Heidegger T, Kang JS, Koenig R, Kieslich M. Description of a novel c.374 G>A
mutation in becker disease. Muscle Nerve 2013; 47:616-7. [DOI: 10.1002/mus.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Franziska Hoche
- Department of Neuropediatrics; Goethe University; Frankfurt Germany
| | - Mayyada Qirshi
- Department of Neuropediatrics; Goethe University; Frankfurt Germany
| | - Tonio Heidegger
- Department of Neurology; Goethe University; Frankfurt Germany
| | - Jun-Suk Kang
- Department of Neurology; Goethe University; Frankfurt Germany
| | - Rainer Koenig
- Institute of Human Genetics; Goethe University; Frankfurt Germany
| | | |
Collapse
|
28
|
Novel mutations in the CLCN1 gene of myotonia congenita: 2 case reports. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:101-6. [PMID: 23483815 PMCID: PMC3584487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Myotonia Congenita is an inherited myotonia that is due to a mutation in the skeletal muscle chloride channel CLCN1. These mutations lead to reduced sarcolemmal chloride conductance, causing delayed muscle relaxation that is evident as clinical and electrical myotonia. METHODS We report the clinical presentations of two individuals with Myotonia Congenita (MC). RESULTS Patient 1 has been diagnosed with the recessive form of MC, known as the Becker variant, and Patient 2 has been diagnosed with the dominant form of MC, known as the Thomsen variant. In both patients, the diagnosis was made based on the clinical presentation, EMG and CLCN1 gene sequencing. Patient 1 also had a muscle biopsy. CONCLUSIONS Genetic testing in both patients reveals previously unidentified mutations in the CLCN1 gene specific to Myotonia Congenita. We report the salient clinical features of each patient and discuss the effects and common types of CLCN1 mutations and review the literature.
Collapse
|
29
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|