1
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
2
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
3
|
Ahmad MM, Hassan HA, Saadawy SF, Ahmad EA, Elsawy NAM, Morsy MM. Antox targeting AGE/RAGE cascades to restore submandibular gland viability in rat model of type 1 diabetes. Sci Rep 2024; 14:18160. [PMID: 39103403 PMCID: PMC11300852 DOI: 10.1038/s41598-024-68268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic disorder of glucose metabolism that threatens several organs, including the submandibular (SMG) salivary glands. Antox (ANX) is a strong multivitamin with significant antioxidant benefits. The goal of this study was to demonstrate the beneficial roles of ANX supplementation in combination with insulin in alleviating diabetic SMG changes. For four weeks, 30 rats were divided into equal five groups (n = 6): (1) control group; (2) diabetic group (DM), with DM induced by streptozotocin (STZ) injection (50 mg/kg i.p.); (3) DM + ANX group: ANX was administrated (10 mg/kg/day/once daily/orally); (4) DM + insulin group: insulin was administrated 1U once/day/s.c.; and (5) DM + insulin + ANX group: co-administrated insulin. The addition of ANX to insulin in diabetic rats alleviated hyposalivation and histopathological alterations associated with diabetic rats. Remarkably, combined ANX and insulin exerted significant antioxidant effects, suppressing inflammatory and apoptotic pathways associated with increased salivary advanced glycation end-product (AGE) production and receptor for advanced glycation end-product expression (RAGE) activation in diabetic SMG tissues. Combined ANX and insulin administration in diabetic rats was more effective in alleviating SMG changes (functions and structures) than administration of insulin alone, exerting suppressive effects on AGE production and frustrating RAGE downstream pathways.
Collapse
Affiliation(s)
- Marwa M Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 45519, Egypt
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, 61710, Jordan
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal Mohammad Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
The Cytokine and Bone Protein Expression by Ellagic Acid-Hydroxyapatite in Bone Remodelling Model. ScientificWorldJournal 2022; 2022:6740853. [PMID: 36561943 PMCID: PMC9767739 DOI: 10.1155/2022/6740853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Ellagic acid, a phenolic compound with anti-inflammatory potential, can be used to accelerate the bone healing process and affect human health, while hydroxyapatite is the most commonly used bone graft material. Using a combination of the two materials results in reduced inflammation and increased osteogenesis. This study aimed to determine the effects of combining ellagic acid and hydroxyapatite in bone marker remodelling by analysing the expression of tumour necrosis factor-α (TNF-α), interleukin 10 (IL-10), bone morphogenetic 4 protein (BMP-4), and osteopontin (OPN). Methods Thirty Wistar rats were used in the study. A defect was created in each animal's femur using a low-speed diamond bur. In the control group, the bone was then treated with polyethylene glycol (PEG). In one of the other groups, the bone was treated with hydroxyapatite, and in the other, with ellagic acid-hydroxyapatite. The femur was biopsied 7 days after the procedure and again 14 days after the procedure, and an indirect immunohistochemical (IHC) examination was performed for TNF-α, IL-10, BMP-4, and OPN expression. Results The ellagic acid-hydroxyapatite decreased TNF-α expression in the bone tissue after 7 days and again after 14 days (p < 0.05). On the other hand, it increased IL-10, BMP-4, and OPN expression (p < 0.05) during the same time periods. Conclusion Ellagic acid-hydroxyapatite plays a role in bone marker remodelling by decreasing the expression of TNF-α and increasing the expression of IL-10, BMP-4, and OPN. This hydroxyapatite combination can therefore be recommended for use as bone graft material.
Collapse
|
5
|
Liang G, Kow ASF, Tham CL, Ho YC, Lee MT. Ameliorative Effect of Tocotrienols on Perimenopausal-Associated Osteoporosis-A Review. Antioxidants (Basel) 2022; 11:2179. [PMID: 36358550 PMCID: PMC9686558 DOI: 10.3390/antiox11112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2023] Open
Abstract
Osteoporosis, or bone loss, is a disease that affects many women globally. As life expectancy increases, the risk of osteoporosis in women also increases, too, and this will create a burden on the healthcare and economic sectors of a country. Osteoporosis was once thought to be a disease that would occur only after menopause. However, many studies have shown that osteoporosis may develop even in the perimenopausal stage. Due to the erratic levels of estrogen and progesterone during the perimenopausal stage, studies suggest that women are exposed to the risk of developing osteoporosis even at this stage. The erratic hormonal changes result in the production of proinflammatory mediators and cause oxidative stress, which leads to the progressive loss of bone-building activities. Tocotrienols, members of vitamin E, have many health-promoting properties. Due to their powerful anti-oxidative and anti-inflammatory properties, tocotrienols have shown positive anti-osteoporotic properties in post-menopausal studies. Hence, we propose here that tocotrienols could also possibly alleviate perimenopausal osteoporosis by discussing in this review the connection between inflammatory mediators produced during perimenopause and the risk of osteoporosis. Tocotrienols could potentially be an anti-osteoporotic agent, but due to their low bioavailability, they have not been as effective as they could be. Several approaches have been evaluated to overcome this issue, as presented in this review. As the anti-osteoporotic effects of tocotrienols were mostly studied in post-menopausal models, we hope that this review could pave the way for more research to be done to evaluate their effect on peri-menopausal models so as to reduce the risk of osteoporosis from an earlier stage.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
In Vitro and In Vivo Anti-Arthritic Potential of Caralluma tuberculata N. E. Brown. and Its Chemical Characterization. Molecules 2022; 27:molecules27196323. [PMID: 36234860 PMCID: PMC9572219 DOI: 10.3390/molecules27196323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.
Collapse
|
7
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
8
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
9
|
Kopańska M, Batoryna M, Banaś-Ząbczyk A, Błajda J, Lis MW. The Effect of α-Tocopherol on the Reduction of Inflammatory Processes and the Negative Effect of Acrylamide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030965. [PMID: 35164231 PMCID: PMC8838943 DOI: 10.3390/molecules27030965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Our research aimed to show acrylamide's influence on inflammatory processes, the oxidative stress it causes in the cholinergic system, and the possibility of reducing inflammation via supplementation with α-tocopherol. For this purpose, an in ovo model was used where the embryos were exposed to acrylamide, α-tocopherol and a cocktail of these substances. After 48 h of exposure, we collected brain samples and performed biochemical assays to examine the effect of the chosen substances on oxidative stress (malondialdehyde-MDA and reduced glutathione-GSH) and acetylcholinesterase activity (AChE). The results showed that acrylamide decreased AChE activity in the examined brain samples by about 25% in comparison to the control group, and this effect was decreased by administering α-tocopherol. The concentration of malondialdehyde significantly increased in the group given acrylamide, while, in the group with α-tocopherol, the observed concentration was lower in comparison to the control group. Moreover, a decrease in glutathione concentration was observed after the administration of acrylamide; however, the protective effect of α-tocopherol was only slightly visible in this case. In conclusion, α-tocopherol minimizes the harmful effects of acrylamide on AchE, and it can minimize the concentration of MDA.
Collapse
Affiliation(s)
- Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland
- Correspondence:
| | - Marta Batoryna
- Department of Animal Physiology and Toxicology, Pedagogical University in Cracow, 30-059 Cracow, Poland;
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, University of Rzeszow, Rejtana 16c, 35-959 Rzeszów, Poland;
| | - Joanna Błajda
- College of Medical Sciences, University of Rzeszow, Rejtana 16c, 35-959 Rzeszów, Poland;
| | - Marcin W. Lis
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Cracow, 30-059 Cracow, Poland;
| |
Collapse
|
10
|
Vallibhakara SAO, Nakpalat K, Sophonsritsuk A, Tantitham C, Vallibhakara O. Effect of Vitamin E Supplement on Bone Turnover Markers in Postmenopausal Osteopenic Women: A Double-Blind, Randomized, Placebo-Controlled Trial. Nutrients 2021; 13:nu13124226. [PMID: 34959779 PMCID: PMC8709036 DOI: 10.3390/nu13124226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Vitamin E is a strong anti-oxidative stress agent that affects the bone remodeling process. This study evaluates the effect of mixed-tocopherol supplements on bone remodeling in postmenopausal osteopenic women. A double-blinded, randomized, placebo-controlled trial study was designed to measure the effect of mixed-tocopherol on the bone turnover marker after 12 weeks of supplementation. All 52 osteopenic postmenopausal women were enrolled and allocated into two groups. The intervention group received mixed-tocopherol 400 IU/day, while the control group received placebo tablets. Fifty-two participants completed 12 weeks of follow-up. Under an intention-to-treat analysis, vitamin E produced a significant difference in the mean bone resorption marker (serum C-terminal telopeptide of type I collagen (CTX)) compared with the placebo group (-0.003 ± 0.09 and 0.121 ± 0.15, respectively (p < 0.001)). In the placebo group, the CTX had increased by 35.3% at 12 weeks of supplementation versus baseline (p < 0.001), while, in the vitamin E group, there was no significant change of bone resorption marker (p < 0.898). In conclusion, vitamin E (mixed-tocopherol) supplementation in postmenopausal osteopenic women may have a preventive effect on bone loss through anti-resorptive activity.
Collapse
Affiliation(s)
- Sakda Arj-Ong Vallibhakara
- Faculty of Medicine, Bangkokthonburi University, Bangkok 10170, Thailand;
- Child Safety Promotion and Injury Prevention Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Katanyuta Nakpalat
- Woman Health Centre, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
| | - Areepan Sophonsritsuk
- Reproductive, Endocrinology & Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.S.); (C.T.)
| | - Chananya Tantitham
- Reproductive, Endocrinology & Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.S.); (C.T.)
| | - Orawin Vallibhakara
- Reproductive, Endocrinology & Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (A.S.); (C.T.)
- Correspondence:
| |
Collapse
|
11
|
Gamna F, Spriano S. Vitamin E: A Review of Its Application and Methods of Detection When Combined with Implant Biomaterials. MATERIALS 2021; 14:ma14133691. [PMID: 34279260 PMCID: PMC8269872 DOI: 10.3390/ma14133691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023]
Abstract
Vitamin E is a common compound used for tocopherols and tocotrienols (α, β, γ, δ); it is the component of many natural products of both plant and animal origin. Thanks to its powerful antioxidant capacity, vitamin E has been very successful in hip and knee arthroplasty, used to confer resistance to oxidation to irradiated UHMWPE. The positive results of these studies have made vitamin E an important object of research in the biomedical field, highlighting other important properties, such as anti-bacterial, -inflammatory, and -cancer activities. In fact, there is an extensive literature dealing with vitamin E in different kinds of material processing, drug delivery, and development of surface coatings. Vitamin E is widely discussed in the literature, and it is possible to find many reviews that discuss the biological role of vitamin E and its applications in food packaging and cosmetics. However, to date, there is not a review that discusses the biomedical applications of vitamin E and that points to the methods used to detect it within a solid. This review specifically aims to compile research about new biomedical applications of vitamin E carried out in the last 20 years, with the intention of providing an overview of the methodologies used to combine it with implantable biomaterials, as well as to detect and characterize it within these materials.
Collapse
|
12
|
A fraction of Pueraria tuberosa extract, rich in antioxidant compounds, alleviates ovariectomized-induced osteoporosis in rats and inhibits growth of breast and ovarian cancer cells. PLoS One 2021; 16:e0240068. [PMID: 33444328 PMCID: PMC7808586 DOI: 10.1371/journal.pone.0240068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pueraria tuberosa (Roxb. ex Willd.) DC., known as Indian Kudzu belongs to family Fabaceae and it is solicited as “Rasayana” drugs in Ayurveda. In the present study, we analyzed the efficacy of an ethyl acetate fraction from the tuber extract of Pueraria tuberosa (fraction rich in antioxidant compounds, FRAC) against menopausal osteoporosis, and breast and ovarian cancer cells. The FRAC from Pueraria tuberosa was characterized for its phenolic composition (total phenolic and flavonoid amount). Antioxidant property (in vitro assays) of the FRAC was also carried out followed by the analysis of the FRAC for its antiosteoporotic and anticancer potentials. The antiosteoporotic activity of FRAC was investigated in ovariectomy-induced osteoporosis in rats. The cytotoxicity effect was determined in breast and ovarian cancer cells. Gas chromatography/mass spectrometry (GC/MS) analysis of the FRAC was performed to determine its various phytoconstituents. Docking analysis was performed to verify the interaction of bioactive molecules with estrogen receptors (ERs). The FRAC significantly improved various biomechanical and biochemical parameters in a dose-dependent manner in the ovariectomized rats. FRAC also controlled the increased body weight and decreased uterus weight following ovariectomy in rats. Histopathology of the femur demonstrated the restoration of typical bone structure and trabecular width in ovariectomized animals after treatment with FRAC and raloxifene. The FRAC also exhibited in vitro cytotoxicity in the breast (MCF-7 and MDA-MB-231) and ovarian (SKOV-3) cancer cells. Furthermore, genistein and daidzein exhibited a high affinity towards both estrogen receptors (α and β) in the docking study revealing the probable mechanism of the antiosteoporotic activity. GC/MS analysis confirmed the presence of other bioactive molecules such as stigmasterol, β-sitosterol, and stigmasta-3,5-dien-7-one. The FRAC from Pueraria tuberosa has potential for treatment of menopausal osteoporosis. Also, the FRAC possesses anticancer activity.
Collapse
|
13
|
Satpathy S, Patra A, Hussain MD, Kazi M, Aldughaim MS, Ahirwar B. A fraction of Pueraria tuberosa extract, rich in antioxidant compounds, alleviates ovariectomized-induced osteoporosis in rats and inhibits growth of breast and ovarian cancer cells. PLoS One 2021; 16:e0240068. [PMID: 33444328 DOI: 10.1101/2020.09.21.305953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/25/2020] [Indexed: 05/24/2023] Open
Abstract
Pueraria tuberosa (Roxb. ex Willd.) DC., known as Indian Kudzu belongs to family Fabaceae and it is solicited as "Rasayana" drugs in Ayurveda. In the present study, we analyzed the efficacy of an ethyl acetate fraction from the tuber extract of Pueraria tuberosa (fraction rich in antioxidant compounds, FRAC) against menopausal osteoporosis, and breast and ovarian cancer cells. The FRAC from Pueraria tuberosa was characterized for its phenolic composition (total phenolic and flavonoid amount). Antioxidant property (in vitro assays) of the FRAC was also carried out followed by the analysis of the FRAC for its antiosteoporotic and anticancer potentials. The antiosteoporotic activity of FRAC was investigated in ovariectomy-induced osteoporosis in rats. The cytotoxicity effect was determined in breast and ovarian cancer cells. Gas chromatography/mass spectrometry (GC/MS) analysis of the FRAC was performed to determine its various phytoconstituents. Docking analysis was performed to verify the interaction of bioactive molecules with estrogen receptors (ERs). The FRAC significantly improved various biomechanical and biochemical parameters in a dose-dependent manner in the ovariectomized rats. FRAC also controlled the increased body weight and decreased uterus weight following ovariectomy in rats. Histopathology of the femur demonstrated the restoration of typical bone structure and trabecular width in ovariectomized animals after treatment with FRAC and raloxifene. The FRAC also exhibited in vitro cytotoxicity in the breast (MCF-7 and MDA-MB-231) and ovarian (SKOV-3) cancer cells. Furthermore, genistein and daidzein exhibited a high affinity towards both estrogen receptors (α and β) in the docking study revealing the probable mechanism of the antiosteoporotic activity. GC/MS analysis confirmed the presence of other bioactive molecules such as stigmasterol, β-sitosterol, and stigmasta-3,5-dien-7-one. The FRAC from Pueraria tuberosa has potential for treatment of menopausal osteoporosis. Also, the FRAC possesses anticancer activity.
Collapse
Affiliation(s)
- Swaha Satpathy
- Institute of Pharmacy, Guru Ghasidas University, Bilaspur, CG, India
| | - Arjun Patra
- Institute of Pharmacy, Guru Ghasidas University, Bilaspur, CG, India
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, California, United States of America
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Bharti Ahirwar
- Institute of Pharmacy, Guru Ghasidas University, Bilaspur, CG, India
| |
Collapse
|
14
|
Abo-Elmaaty AMA, Behairy A, El-Naseery NI, Abdel-Daim MM. The protective efficacy of vitamin E and cod liver oil against cisplatin-induced acute kidney injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44412-44426. [PMID: 32767013 DOI: 10.1007/s11356-020-10351-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Cisplatin (CP) is a highly effective chemotherapeutic agent against neoplasms, but its clinical utility is limited due to the side effects of its dose-dependent nephrotoxicity. Vitamin E (Vit E) and cod liver oil (CLO) are natural substances with chemoprotective effects. The present study was conducted to evaluate the protective effects of Vit E and/or CLO for CP-induced acute kidney injury (AKI) in rats. This study involved 40 mature male Wistar albino rats that were equally allocated into eight groups: Veh, Vit E, CLO, Vit E + CLO, CP, Vit E + CP, CLO + CP, and Vit E + CLO + CP. The co-administration of Vit E and CLO significantly ameliorated CP-induced elevations in serum creatinine (Cr), blood urea nitrogen (BUN), interleukin 1 beta (IL-1β), and interleukin- 6 (IL-6). Further, rats that received Vit E and/or CLO showed significant decrease in malondialdehyde (MDA) and increases in superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels in renal tissues, compared to CP-intoxicated rats. Additionally, the treatment restored the normal histological architecture (except for few cast formations) and upregulated the immunostaining area% of aquaporin 3 (AQP3) and downregulated the immunostaining area% of Bcl2 associated X protein (BAX) and inducible nitric oxide synthase (iNOS). The observed effects were stronger in the combination treatment group. The obtained data revealed that Vit E and CLO co-administration protects against the CP-induced AKI more than monotherapy with Vit E or CLO.
Collapse
Affiliation(s)
- Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
15
|
Dar KB, Khan IS, Amin S, Ganie AH, Bhat AH, Dar SA, Reshi BA, Ganie SA. Active Cousinia thomsonii Extracts Modulate Expression of Crucial Proinflammatory Mediators/Cytokines and NFκB Cascade in Lipopolysaccharide-Induced Albino Wistar Rat Model. J Inflamm Res 2020; 13:829-845. [PMID: 33173324 PMCID: PMC7646511 DOI: 10.2147/jir.s272539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Chronic inflammation is implicated in a multitude of diseases, including arthritis, neurodegeneration, autoimmune myositis, type 2 diabetes, rheumatic disorders, spondylitis, and cancer. Therefore, strategies to explore potent anti-inflammatory regimens are pivotal from a human-health perspective. Medicinal plants represent a vast unexplored treasure trove of therapeutically active constituents with diverse pharmacological activities, including anti-inflammatory properties. Herein, we evaluated Cousinia thomsonii, an edible medicinal herb, for its anti-inflammatory/immunomodulatory properties. METHODS Soxhlet extraction was used to obtain different solvent extracts (hexane, ethyl acetate, ethanol, methanol, and aqueous extract) in increasing order of polarity. In vitro anti-inflammatory assays were performed to investigate the effects of extracts on protein denaturation, proteinase activity, nitric oxide surge, and erythrocyte-membrane stabilization. The most effective extracts, ie, ethyl acetate (CTEA) and ethanol (CTE) extracts (150-200 g) were selected for further in vivo analysis using albino Wistar rats. Wistar rats received varying concentrations of CTEA and CTE (25, 50, and 100 mg/kg) for 3 weeks, followed by a single subplantar injection of lipopolysaccharide. Dexamethasone served as positive control. Blood was obtained from the retro-orbital plexus and serum separated for estimation of proinflammatory cytokines (IL6, IL1β, IFNγ and TNFα). Western blotting was performed to study expression patterns of crucial proteins implicated in the NFκB pathway, ie, NFκB p65, NFκB1 p50, and NFκB2 p52. Histopathological examination was done and gas chromatography-mass spectrometry (GC-MS) carried out to reveal the identity of compounds responsible for ameliorating effects of C. thomsonii. RESULTS Among five tested extracts, CTEA and CTE showed marked inhibition of protein denaturation, proteinase activity, nitric oxide surge and erythrocyte-membrane hemolysis at 600 μg/mL (P<0.001). Both these extracts showed no toxic effects up to a dose of 2,500 mg/kg. Extracts exhibited concentration-dependent reductions in expression of IL6, IL1β, IFNγ, TNFα, NFκB-p65, NFκB1, and NFκB2 (P<0.05). Healing effects of extracts were evident from histopathological investigation. GC-MS analysis revealed the presence of important anti-inflammatory compounds, notably stigmast-5-en-3-ol, oleate, dotriacontane, ascorbic acid, n-hexadecanoic acid, and α-tocopherol, in C. thomsonii. CONCLUSION C. thomsonii possesses significant anti-inflammatory/immunomodulatory potential by virtue of modifying levels of proinflammatory cytokines/markers and NFκB proteins.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ishfaq Shafi Khan
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shajrul Amin
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aijaz Hassan Ganie
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aashiq Hussain Bhat
- Cancer Research and Diagnostic Centre, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Showkat Ahmad Dar
- Regional Research Institute of Unani Medicine, Srinagar, Jammu and Kashmir, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
16
|
Chen YP, Chu YL, Tsuang YH, Wu Y, Kuo CY, Kuo YJ. Anti-Inflammatory Effects of Adenine Enhance Osteogenesis in the Osteoblast-Like MG-63 Cells. Life (Basel) 2020; 10:life10070116. [PMID: 32707735 PMCID: PMC7399991 DOI: 10.3390/life10070116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Adenine is a purine with a role in cellular respiration and protein synthesis. It is considered for its pharmacological potential. We investigated whether anti-inflammatory effect of adenine benefits on the proliferation and maturation of osteoblastic cells. Methods: Human osteoblast-like cells (MG-63) were cultured with adenine under control conditions or pre-treated with 10ng/mL of tumor necrosis factor-α (TNF-α) followed by adenine treatment. Cell viability was examined using dimethylthiazol diphenyltetrazolium bromide (MTT) assay. Expression of cytokines and osteogenic markers were analyzed using quantitative PCR (qPCR) and ELISA. Enzyme activity of alkaline phosphatase (ALP) and collagen content were measured. Results: TNF-α exposure led to a decreased viability of osteoblastic cells. Treatment with adenine suppressed TNF-α-induced elevation in IL-6 expression and nitrite oxide production in MG-63 cells. Adenine induced the osteoblast differentiation with increased transcript levels of collage and increased ALP enzyme activity. Conclusions: Adenine exerts anti-inflammatory activity in an inflammatory cell model. Adenine benefits osteoblast differentiation in normal and inflammatory experimental settings. Adenine has a potential for the use to treat inflammatory bone condition such as osteoporosis.
Collapse
Affiliation(s)
- Yu-Pin Chen
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Yo-Lun Chu
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Yang-Hwei Tsuang
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan;
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yueh Wu
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Cheng-Yi Kuo
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (C.-Y.K.); (Y.-J.K.)
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.K.); (Y.-J.K.)
| |
Collapse
|
17
|
Nakhaei A, Sepehri MM, Shadpour P, Khatibi T. Studying the Effects of Systemic Inflammatory Markers and Drugs on AVF Longevity through a Novel Clinical Intelligent Framework. IEEE J Biomed Health Inform 2020; 24:3295-3307. [PMID: 32287026 DOI: 10.1109/jbhi.2020.2986183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although arteriovenous fistula is the preferred vascular access method, it has challenges in three phases of planning, maturation, and maintenance. We looked at the root of fistula challenges in the maintenance phase and found traces of inflammation. Accordingly, we investigated the role of systemic inflammation in this phase to understand its effects on post-maturation function and extract knowledge to help extend fistula longevity. Previous studies on longevity of fistula have focused entirely on statistical tests, and since they put limitations on data, we also used a data mining framework for data analysis. For prediction, we used Decision Tree, Random Forest, and Support Vector Machines, and for inferential analysis, we used Wilcoxon and Chi-squared tests. We analyzed the archived data of 119 hemodialysis patients. In these data, independent variables were serum inflammatory markers, serum metabolic values, anti-inflammatory drugs, and demographic characteristics, and the dependent variable was fistula longevity separated in classes of equal to or greater than four and less than four years. Both predictive and inferential approaches have shown that serum inflammatory markers had no significant involvement in fistula longevity, but some anti-inflammatory drugs were effective. The results have shown that blood tests and drug variables, alone or together, could predict longevity class by 100% accuracy. This prediction can help surgeons make better decisions in selecting patients for fistula creation. Also, the extracted knowledge can provide guidelines for post-maturation disorders.
Collapse
|
18
|
Li Y, Zhang Y, Meng W, Li Y, Huang T, Wang D, Hu M. The Antiosteoporosis Effects of Yishen Bugu Ye Based on Its Regulation on the Differentiation of Osteoblast and Osteoclast. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9467683. [PMID: 32149147 PMCID: PMC7054773 DOI: 10.1155/2020/9467683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Yishen Bugu Ye (YSBGY), a traditional Chinese medicine comprising 12 types of medicinal herbs, is often prescribed in China to increase bone strength. In this study, the antiosteoporotic effects of YSBGY were investigated in C57BL/6 mice afflicted with dexamethasone- (Dex-) induced osteoporosis (OP). The results showed that YSBGY reduced the interstitial edema in the liver and kidney of mice with Dex-induced OP. It also increased the number of trabecular bone elements and chondrocytes in the femur, promoted cortical bone thickness and trabecular bone density, and modulated the OP-related indexes in the femur and tibia of OP mice. It also increased the serum concentrations of type I collagen, osteocalcin, osteopontin, bone morphogenetic protein-2, bone morphogenetic protein receptor type 2, C-terminal telopeptide of type I collagen, and runt-related transcription factor-2 and reduced those of tartrate-resistant acid phosphatase 5 and nuclear factor of activated T cells in these mice, suggesting that it improved osteoblast differentiation and suppressed osteoclast differentiation. The anti-inflammatory effect of YSBGY was confirmed by the increase in the serum concentrations of interleukin- (IL-) 33 and the decrease in concentrations of IL-1, IL-7, and tumor necrosis factor-α in OP mice. Furthermore, YSBGY enhanced the serum concentrations of superoxide dismutase and catalase in these mice, indicating that it also exerted antioxidative effects. This is the first study to confirm the antiosteoporotic effects of YSBGY in mice with Dex-induced OP, and it showed that these effects may be related to the YSBGY-induced modulation of the osteoblast/osteoclast balance and serum concentrations of inflammatory factors. These results provide experimental evidence supporting the use of YSBGY for supporting bone formation in the clinical setting.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tao Huang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
19
|
Allison DJ, Beaudry KM, Thomas AM, Josse AR, Ditor DS. Changes in nutrient intake and inflammation following an anti-inflammatory diet in spinal cord injury. J Spinal Cord Med 2019; 42:768-777. [PMID: 30277850 PMCID: PMC6830248 DOI: 10.1080/10790268.2018.1519996] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: The objective of the current study was to describe the observed changes in nutrient intakes following a 3-month anti-inflammatory diet, and to explore potential relationships between the change in nutrients and the change in various inflammatory mediators.Design: A secondary analysis of a prior randomized controlled clinical trial.Setting: Individuals with SCI within the Niagara region.Participants: Twenty individuals with various levels and severities of SCI.Intervention: Three-month anti-inflammatory diet.Outcome Measures: The change in nutrient intake and corresponding changes to various inflammatory mediators.Results: The treatment group demonstrated a significant reduction in fat intake (P = 0.02), a significant increase in protein intake (P = 0.02), and no change in carbohydrates (P = 0.23) or energy intake (P = 0.10). The treatment group showed a significant increase in some nutrients with established anti-inflammatory properties including vitamins A, C, and E, and omega-3 fatty acids (P < 0.01). Significant reductions in proinflammatory nutrients were observed including trans fatty acids (P = 0.05), caffeine (P < 0.01), and sodium (P = 0.02). The treatment group also showed significant reductions in the proinflammatory mediators interferon-y (P = 0.01), interleukin-1β (P < 0.01), and interleukin-6 (P < 0.05). Further, several proinflammatory mediators were negatively correlated with anti-inflammatory nutrients, including vitamin A, carotenoids, omega-3 fatty acids, and zinc.Conclusion: This study provides evidence that dietary alterations are effective at reducing chronic inflammation in individuals with SCI and provides a preliminary assessment of the related nutrient changes.
Collapse
Affiliation(s)
- David J. Allison
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada,Brock-Niagara Centre for Health and Well-being, Brock University, St Catharines, Ontario, Canada,Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Canada,Correspondence to: David J. Allison, Department of Kinesiology, Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | | | - Aysha M. Thomas
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | - Andrea R. Josse
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | - David S. Ditor
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada,Brock-Niagara Centre for Health and Well-being, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
20
|
Radzi NFM, Ismail NAS, Alias E. Tocotrienols Regulate Bone Loss through Suppression on Osteoclast Differentiation and Activity: A Systematic Review. Curr Drug Targets 2019; 19:1095-1107. [PMID: 29412105 PMCID: PMC6094554 DOI: 10.2174/1389450119666180207092539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Background There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression. Objective This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone. Results Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers. Conclusion Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.
Collapse
Affiliation(s)
- Nur Fathiah Mohd Radzi
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Sun X, Zhang B, Pan X, Huang H, Xie Z, Ma Y, Hu B, Wang J, Chen Z, Shi P. Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling. FASEB J 2019; 33:12929-12940. [PMID: 31490085 DOI: 10.1096/fj.201900887rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endogenous metabolite itaconate has emerged as a regulator of macrophage function that limits inflammation. However, its effect on cell differentiation and osteoclast-related diseases is unclear. Here, for the first time, we explored the effect of itaconate and its cell-permeable itaconate derivative, 4-octyl itaconate (OI) on osteoclast differentiation in vitro and in vivo. Firstly, we demonstrated that itaconate concentration was lower in estrogen-deficient mice. OI released itaconate and induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) in bone marrow-derived macrophages during osteoclastogenesis. Furthermore, OI significantly suppressed the early, middle, and late stages of osteoclastogenesis induced by receptor activator of NF-κB ligand in vitro, as confirmed by tartrate-resistant acid phosphatase staining. Moreover, it significantly inhibited fibrous actin ring formation and bone resorption in vitro. Mechanistically, we observed that OI enhanced Nrf2 expression by suppressing its association with ubiquitin via inhibition of the E3 ubiquitin ligase (Hrd1). OI also inhibited LPS-induced the reactive oxygen species and inflammatory responses via Hrd1. An estrogen deficiency (via ovariectomy)-induced osteoporosis model was also established. Here, on micro-computed tomography and histologic analysis showed that OI effectively suppressed ovariectomy-induced bone loss. In summary, OI, an itaconate derivative, can inhibit osteoclastogenesis in vitro and in vivo, indicating that OI could be a potential drug to treat osteoclast-related diseases; our results also link itaconate to the development of osteoporosis.-Sun, X., Zhang, B., Pan, X., Huang, H., Xie, Z., Ma, Y., Hu, B., Wang, J., Chen, Z., Shi, P. Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Nazrun Shuid A, Das S, Mohamed IN. Therapeutic effect of Vitamin E in preventing bone loss: An evidence-based review. INT J VITAM NUTR RES 2019; 89:357-370. [PMID: 30856080 DOI: 10.1024/0300-9831/a000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present review explored the anti-inflammatory and immunomodulatory properties of vitamin E, which has protective action against osteoporosis. A systematic review of the literature was conducted to identify the published bone studies on vitamin E. The studies included inflammatory or immunology-related parameters. Medline and Scopus databases were searched for relevant studies published from 2005 till 2015. Research articles published in English and confined to the effect of vitamin E on bone were included. It is pertinent to mention that these studies took into consideration inflammatory or immunology parameters including interleukin (IL)-1, IL-6, receptor activator of nuclear factor kappa-B ligand (RANKL), inducible nitric oxide synthases (iNOS), serum amyloid A (SAA), e-selection and high-sensitivity C-reactive protein (hs-CRP). An extended literature search yielded 127 potentially relevant articles with seven articles meeting the inclusion and exclusion criteria. Another recent article was added with the total number accounting to eight. All these included literature comprised five animal studies, one in-vitro study and two human studies. These studies demonstrated that vitamin E, especially tocotrienol, was able to alleviate IL-1, IL-6, RANKL, iNOS and hs-CRP levels in relation to bone metabolism. In conclusion, vitamin E exerts its anti-osteoporotic actions via its anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| |
Collapse
|
23
|
Hong JY, Lee JS, Choi SH, Shin HS, Park JC, Shin SI, Chung JH. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. BMC Oral Health 2019; 19:40. [PMID: 30845920 PMCID: PMC6407240 DOI: 10.1186/s12903-019-0728-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 12/04/2022] Open
Abstract
Background To evaluate gingival inflammation from fixed-dose combinations of vitamin C, vitamin E, lysozyme and carbazochrome (CELC) in the treatment of chronic periodontitis following scaling and root planing. Methods One hundred patients were randomly assigned to receive CELC (test) or placebo (control) for the first 4 weeks at a 1:1 ratio, and both groups received CELC for the remaining 4 weeks. Primary outcome was the mean change in the gingival index (GI) after 4 weeks. Secondary outcomes included mean change in GI after 8 weeks and plaque index, probing depth, clinical attachment level, and VAS at 4 weeks and 8 weeks. Results Ninety-three patients completed the study. The GI in the test group significantly decreased after 4 weeks (p < 0.001) and 8 weeks (p < 0.001). The mean change from baseline in GI significantly decreased in the test group compared to the control group after 4 weeks (p = 0.015). In the GEE model adjusting for age, gender and visits, the test group showed 2.5 times GI improvement compared to the control group (p = 0.022). Conclusions Within the study, CELC showed a significant reduction in gingival inflammation compared with a placebo. Other parameters, however, were similar between groups. Trial registration KCT0001366 (Clinical Research Information Service, Republic of Korea) and 29 Jan 2015, retrospectively registered.
Collapse
Affiliation(s)
- Ji-Youn Hong
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Jung-Seok Lee
- Department of Periodontology, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seong-Ho Choi
- Department of Periodontology, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hyun-Seung Shin
- Department of Periodontology, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Jung-Chul Park
- Department of Periodontology, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Seung-Il Shin
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jong-Hyuk Chung
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
24
|
Abstract
BACKGROUND Implant-related infections are associated with impaired bone healing and osseointegration. In vitro antiadhesive and antibacterial properties and in vivo antiinflammatory effects protecting against bone loss of various formulations of vitamin E have been demonstrated in animal models. However, to the best of our knowledge, no in vivo studies have demonstrated the synergistic activity of vitamin E in preventing bacterial adhesion to orthopaedic implants, thus supporting the bone-implant integration. QUESTIONS/PURPOSES The purpose of this study was to test whether a vitamin E phosphate coating on titanium implants may be able to reduce (1) the bacterial colonization of prosthetic implants and (2) bone resorption and osteomyelitis in a rat model of Staphylococcus aureus-induced implant-related infection. METHODS Twelve rats were bilaterally injected in the femurs with S aureus UAMS-1-Xen40 and implanted with uncoated or vitamin E phosphate-coated titanium Kirschner wires without local or systemic antibiotic prophylaxis. Eight rats represented the uninfected control group. A few hours after surgery, two control and three infected animals died as a result of unexpected complications. With the remaining rats, we assessed the presence of bacterial contamination with qualitative bioluminescence imaging and Gram-positive staining and with quantitative bacterial count. Bone changes in terms of resorption and osteomyelitis were quantitatively analyzed through micro-CT (bone mineral density) and semiquantitatively through histologic scoring systems. RESULTS Six weeks after implantation, we found only a mild decrease in bacterial count in coated versus uncoated implants (Ti versus controls: mean difference [MD], -3.705; 95% confidence interval [CI], -4.416 to -2.994; p < 0.001; TiVE versus controls: MD, -3.063; 95% CI, -3.672 to -2.454; p < 0.001), whereas micro-CT analysis showed a higher bone mineral density at the knee and femoral metaphysis in the vitamin E-treated group compared with uncoated implants (knee joint: MD, -11.88; 95% CI, -16.100 to -7.664; p < 0.001 and femoral metaphysis: MD, -19.87; 95% CI, -28.82 to -10.93; p < 0.001). We found decreased osteonecrosis (difference between medians, 1.5; 95% CI, 1-2; p < 0.002) in the infected group receiving the vitamin E-coated nails compared with the uncoated nails. CONCLUSIONS These preliminary findings indicate that vitamin E phosphate implant coatings can exert a protective effect on bone deposition in a highly contaminated animal model of implant-related infection. CLINICAL RELEVANCE The use of vitamin E coatings may open new perspectives for developing coatings that can limit septic loosening of infected implants with bacterial contamination. However, a deeper insight into the mechanism of action and the local release of vitamin E as a coating for orthopaedic implants is required to be used in clinics in the near future. Although this study cannot support the antimicrobial properties of vitamin E, promising results were obtained for bone-implant osseointegration. These preliminary results will require further in vivo investigations to optimize the host response in the presence of antibiotic prophylaxis.
Collapse
|
25
|
Xuan NT, Trang PTT, Van Phong N, Toan NL, Trung DM, Bac ND, Nguyen VL, Hoang NH, Van Hai N. Klotho sensitive regulation of dendritic cell functions by vitamin E. Biol Res 2016; 49:45. [PMID: 27881156 PMCID: PMC5121936 DOI: 10.1186/s40659-016-0105-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 11/12/2022] Open
Abstract
Background Dendritic cells (DCs) are the most potent professional antigen-presenting cells for naive T cells to link innate and acquired immunity. Klotho, an anti-aging protein, participates in the regulation of Ca2+ dependent migration in DCs. Vitamin E (VitE) is an essential antioxidant to protect cells from damage and elicits its inhibitory effects on NF-κB-mediated inflammatory response. However, the roles of VitE on mouse DC functions and the contribution of klotho to those effects both are unknown. The present study explored the effects of VitE on klotho expression, maturation, ROS production and migration in DCs. Methods The mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were stimulated with LPS (100 ng/ml) in the presence or absence of VitE (500 µM). RT-PCR and immunoprecipitation methods were employed to determine klotho expression, ELISA to determine cytokine release, flow cytometry to analyze number of CD86+CD11c+ cells, the intracellular expression of cytokines and reactive oxygen species (ROS) production and a transwell migration assay to trace migration. Results Klotho transcript level and this hormone secretion in DC supernatant were enhanced by VitE treatment and further increased in the presence of NF-κB inhibitor Bay 11-7082 (10 µM). Moreover, VitE treatment inhibited IL-12p70 protein expression of, ROS accumulation in and CCL21-dependent migration of LPS-triggered mature DCs, these effects were reversed following klotho silencing. Conclusion The up-regulation of klotho by VitE could contribute to the inhibitory effects of VitE on NF-κB-mediated DC functional maturation. The events might contribute to immunotherapeutic effect of VitE on the pathophysiology of klotho-related disease.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Phi Thi Thu Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Phong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Ha Dong, Hanoi, Vietnam
| | - Do Minh Trung
- Department of Protein-Toxic-Cells, Biomedical & Pharmaceutical Applied Research Center, Vietnam Military Medical University, Ha Dong, Hanoi, Vietnam
| | - Nguyen Duy Bac
- Vietnam Military Medical University, Ha Dong, Hanoi, Vietnam
| | - Viet Linh Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
26
|
Cieśla J, Koczańska M, Narkiewicz-Michałek J, Szymula M, Bieganowski A. The physicochemical properties of CTAB solutions in the presence of α-tocopherol. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abstract
There is still debate on whether high uric acid increases bone mineral density (BMD) against osteoporotic fracture or bone resorption caused by gout inflammation. This study aimed to evaluate whether gout offers a protective effect on bone health or not. We conducted a nationwide population-based retrospective cohort study to evaluate the association between gout history and risk factors of fracture.A retrospective cohort study was designed using the claim data from Longitudinal Health Insurance Database (LHID). A total of 43,647 subjects with gout and a cohort of 87,294 comparison subjects without gout were matched in terms of age and sex between 2001 and 2009, and the data were followed until December 31, 2011. The primary outcome of the study was the fracture incidence, and the impacts of gout on fracture risks were analyzed using the Cox proportional hazards model.After an 11-year follow-up period, 6992 and 11,412 incidents of fracture were reported in gout and comparison cohorts, respectively. The overall incidence rate of fracture in individuals with gout was nearly 23%, which was higher than that in individuals without gout (252 vs 205 per 10,000 person-years) at an adjusted hazard ratio of 1.17 (95% confidence interval = 1.14-1.21). Age, sex, and fracture-associated comorbidities were adjusted accordingly. As for fracture locations, patients with gout were found at significant higher fracture risks for upper/lower limbs and spine fractures. In gout patient, the user of allopurinol or benzbromarone has significantly lower risk of facture than nonusers.Gout history is considered as a risk factor for fractures, particularly in female individuals and fracture sites located at the spine or upper/lower limbs.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Graduate Institute of Clinical Medicine
- School of Medicine, China Medical University
- Division of Hematology/Oncology
| | - Che-Chen Lin
- Healthcare Service Research Center (HSRC), Taichung Veterans General Hospital
| | - I-Kuan Wang
- Graduate Institute of Clinical Medicine
- School of Medicine, China Medical University
- Division of Nephrology
| | - Po-Hao Huang
- School of Medicine, China Medical University
- Division of Rheumatology
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medicine
- School of Medicine, China Medical University
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Correspondence: Chun-Hao Tsai, Department of Orthopedic Surgery, China Medical University Hospital, China Medical University, #91 Hsueh-Shih Road, Taichung 404, Taiwan (e-mail: )
| |
Collapse
|
28
|
Xue H, Ren H, Zhang L, Sun X, Wang W, Zhang S, Zhao J, Ming L. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:561-6. [PMID: 27403263 PMCID: PMC4923477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body's biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. MATERIALS AND METHODS Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG), and one group was treated with AT, at a dose of 100 mg/kg on the 3(th) day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. RESULTS AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. CONCLUSION According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.
Collapse
Affiliation(s)
- Haikuo Xue
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China,Key Laboratory of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450002, China
| | - Huijun Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China
| | - Lei Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Xiaoxu Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Wanhai Wang
- Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China
| | - Shijie Zhang
- Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Key Laboratory of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450002, China
| | - Junwei Zhao
- Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Liang Ming
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Corresponding author: Liang Ming. Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China. Key Clinical Laboratory Medicine of Henan province, Zhengzhou 450002, China. Tel: +86-0371-66913118;
| |
Collapse
|
29
|
Zhao L, Fang X, Marshall MR, Chung S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016; 21:344. [PMID: 26978344 PMCID: PMC6274282 DOI: 10.3390/molecules21030344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Maurice R Marshall
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
30
|
GC-MS and LC-MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. J Pharm Biomed Anal 2016; 127:156-69. [PMID: 26964480 DOI: 10.1016/j.jpba.2016.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 11/20/2022]
Abstract
Tocopherols and tocotrienols, widely described as vitamin E derivatives, have been proven to take part in a number of important biological functions. Among them, antioxidant properties had been investigated and documented in the literature. Since tocochromanols have revealed their plausible beneficial impact on several pathological processes, such as cancerogenesis or cognitive impairment diseases, there is a growing interest in quantitative determination of these compounds in biological fluids, tissues and plant organs. However, due to vitamin E chemical features, such as lipophilic and non-polar characteristics, quantitative determination of the compounds seems to be problematic. In this paper we present current analytical approaches in tocopherols and tocotrienols determination in biological and food matrices with the use of chromatographic techniques, especially gas chromatography (GC) and high performance liquid chromatography (HPLC) coupled with mass spectrometry. Derivatization techniques applied for GC-MS analysis in the case of tocol derivatives, especially silylation and acylation, are described. Significant attention is paid to ionization process of tocopherols and tocotrienols.
Collapse
|
31
|
Albahrani AA, Greaves RF. Fat-Soluble Vitamins: Clinical Indications and Current Challenges for Chromatographic Measurement. Clin Biochem Rev 2016; 37:27-47. [PMID: 27057076 PMCID: PMC4810759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fat-soluble vitamins, including vitamins A, D and E, are required for a wide variety of physiological functions. Over the past two decades, deficiencies of these vitamins have been associated with increased risk of cancer, type II diabetes mellitus and a number of immune system disorders. In addition, there is increasing evidence of interactions between these vitamins, especially between vitamins A and D. As a result of this enhanced clinical association with disease, translational clinical research and laboratory requests for vitamin measurements have significantly increased. These laboratory requests include measurement of 25-OHD (vitamin D), retinol (vitamin A) and α-tocopherol (vitamin E); the most accepted blood indicators for the assessment of body fat-soluble vitamin (FSV) status. There are significant obstacles to precise FSV measurement in blood. These obstacles include their physical and chemical properties, incomplete standardisation of measurement and limitations in the techniques that are currently used for quantification. The aim of this review is to briefly outline the metabolism and interactions of FSV as a prelude to identifying the current challenges for the quantification of blood vitamins A, D and E.
Collapse
Affiliation(s)
- Ali A. Albahrani
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Security Forces Hospital, Dammam, Saudi Arabia
| | - Ronda F. Greaves
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Murdoch Childrens Research Institute, Victoria, Australia
| |
Collapse
|
32
|
Su Y, Chen Y, Liu Y, Yang Y, Deng Y, Gong Z, Chen J, Wu T, Lin S, Cui L. Antiosteoporotic effects of Alpinia officinarum Hance through stimulation of osteoblasts associated with antioxidant effects. J Orthop Translat 2016; 4:75-91. [PMID: 30035068 PMCID: PMC5987006 DOI: 10.1016/j.jot.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/OBJECTIVE Alpinia officinarum Hance (AOH) is a traditional herbal medicine specific to south China and serves as a civil medication application of an antioxidant. Growing evidence demonstrates that antioxidants are beneficial for the treatment of osteoporosis. This study was designed to investigate the antiosteoporotic effects of total extracts from AOH in ovariectomised (OVX) rats and the different fractions in AOH on primary osteoblasts activities. METHODS The total extract of AOH was extracted by refluxing using 95% ethanol, then the five fractions (F1-F5) were separated from AOH using thin-layer chromatography according to polarity from high to low, and the galangin content was determined using high performance liquid chromatography. In an in vivo study, 36 4-month-old female Sprague-Dawley rats were used as a Sham-operated group, OVX with vehicle (OVX), OVX with epimedium flavonoids (EF, 150 mg/kg/d), and OVX with AOH (AOH, 300 mg/kg/d), respectively. Daily oral administration started on Day 3 after OVX and lasted for 12 weeks. In the in vitro study, primary osteoblasts were incubated with AOH, galangin, and five different fractions (F1-F5) with or without hydrogen peroxide (H2O2), respectively. RESULTS Treatment with AOH significantly attenuated osteopenia accompanied by a decreased percentage of osteoclast perimeter and bone formation rate per unit of bone surface, enhanced the bone strength, and prevented the deterioration of trabecular microarchitecture associated with a decrease in biochemical parameters of oxidative stress. Furthermore, treatment with AOH, F3, F4, and galangin increased cell viability, differentiation, and mineralisation in osteoblasts with or without H2O2 and rescued the deleterious effects of H2O2 on cell apoptosis and intracellular reactive oxygen species level. The effects on osteoblast formation were highly aligned with the amounts of flavonoids within AOH. CONCLUSION These data demonstrate that ethanol extracts from AOH significantly reverse bone loss, partially by increasing bone formation, and by suppressing bone resorption associated with antioxidant effects, suggesting that AOH can be developed as a promising agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Yanjie Su
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Shenzhen Key Laboratory of R&D Laboratory of Space Medicine and Engineering Technology, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yahui Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yifeng Deng
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Zhongqin Gong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Jingfeng Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Tie Wu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Shenzhen Key Laboratory of R&D Laboratory of Space Medicine and Engineering Technology, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
33
|
Chin KY, Ima-Nirwana S. The effects of α-tocopherol on bone: a double-edged sword? Nutrients 2014; 6:1424-41. [PMID: 24727433 PMCID: PMC4011043 DOI: 10.3390/nu6041424] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| |
Collapse
|
34
|
Wu CM, Chen PC, Li TM, Fong YC, Tang CH. Si-Wu-tang extract stimulates bone formation through PI3K/Akt/NF-κB signaling pathways in osteoblasts. Altern Ther Health Med 2013; 13:277. [PMID: 24156308 PMCID: PMC4015792 DOI: 10.1186/1472-6882-13-277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Si-Wu-Tang (SWT), a Traditional Chinese Medicine (TCM) formula, is widely used for the treatment of gynopathies diseases such as menstrual discomfort, climacteric syndrome, dysmenorrhea, and other estrogen-related diseases. Recent studies have shown that SWT can treat primary dysmenorrhea, have anti-pruritic anti-inflammatory effects, and protect against radiation-induced bone marrow damage in an animal model. It has been reported that anti-inflammatory and anti-oxidant agents have the potential to treat osteoporosis by increasing bone formation and/or suppressing bone resorption. However, the effect of SWT on bone cell function has not yet been reported. METHODS Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)-2, and osteopontin (OPN) mRNA expression was analyzed by qPCR. The mechanism of action of SWT extract was investigated using western blotting. The in vivo anti-osteoporotic effect of SWT extract was assessed in ovariectomized mice. RESULTS Here, we report that SWT increases ALP, BMP-2, and OPN expression as well as bone mineralization. In addition, we show that the PI3K, Akt, and NF-κB signaling pathways may be involved in the SWT-mediated increase in gene expression and bone mineralization. Notably, treatment of mice with SWT extract prevented bone loss induced by ovariectomy in vivo. CONCLUSION SWT may be used to stimulate bone formation for the treatment of osteoporosis.
Collapse
|
35
|
Abstract
The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.
Collapse
Affiliation(s)
- Y Abu-Amer
- Department of Orthopedic Surgery, Department of Cell Biology & Physiology, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
36
|
Cinteza D, Berteanu M, Vladoiu S, Manolescu BN, Dinu H. The consumption of alanerv® nutritional supplement and the dynamic of some inflammatory markers in post-acute stroke patients undergoing rehabilitation. MAEDICA 2013; 8:137-142. [PMID: 24371477 PMCID: PMC3865122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/01/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Stroke is followed by an inflammatory response lasting up to several months. Moreover, many of the stroke-related comorbidities (i.e., diabetes mellitus, dyslipidemia, cardiovascular disease, and atherosclerosis) are characterized by an pro-inflammatory status. MATERIAL AND METHODS We designed this pilot study to evaluate the relation between the consumption of a nutritional supplement (ALAnerv®) and the dynamic of the inflammatory status in post-acute stroke patients undergoing rehabilitation. The study population comprised 28 patients which were assigned into two study groups, named (-) ALA and (+) ALA. All subjects followed the same rehabilitation program. There were no significant differences in respect to the standard medication between the groups. Moreover, patients from the (+) ALA group received ALAnerv® for two weeks (2 pills/day). We assessed IL-1α, IL-6, TNF-α, sICAM-1, and myeloperoxidase in blood samples taken at the beginning and at the end of the study period. OUTCOMES In the (+) ALA group only IL-1α (- 9.9% ± 3.7, P = 0.013) and IL-6 (- 26.5% ± 8.2, P = 0.003) significantly decreased during the study period. The multiple regression analysis indicated that the ALAnerv® treatment was responsible for the significant decrease of IL-6 level (P = 0.008). Moreover, the percentage of IL-6 variation between the study groups reached statistical significance (8.4% ± 11.5 vs. - 26.5% ± 8.2, P = 0.034). CONCLUSIONS These results indicate that ALAnerv® could be beneficial for the correction of the inflammatory status in post-acute stroke patients and underline the need of a longer treatment period with a higher dose.
Collapse
Affiliation(s)
- Delia Cinteza
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, Department of Rehabilitation and Physical Medicine, Bucharest, Romania
| | - Mihai Berteanu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, Department of Rehabilitation and Physical Medicine, Bucharest, Romania
| | - Suzana Vladoiu
- "C.I. Parhon" National Institute of Endocrinology, Scientific Research Department, Bucharest, Romania
| | - Bogdan Nicolae Manolescu
- Polytechnic University of Bucharest, Faculty of Applied Chemistry and Science of Materials, Department of Organic Chemistry "C.D. Nenitescu", Bucharest, Romania
| | - Horatiu Dinu
- ELIAS Emergency University Hospital, Department of Rehabilitation and Physical Medicine, Bucharest, Romania
| |
Collapse
|
37
|
The effects of tualang honey on bone metabolism of postmenopausal women. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:938574. [PMID: 22973408 PMCID: PMC3437962 DOI: 10.1155/2012/938574] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
Osteoporosis which is characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility can be associated with various stimuli such as oxidative stress and inflammation. Postmenopausal women are more prone to osteoporosis due to reduction in estrogen which may further lead to elevation of oxidative stress and lipid accumulation which will promote osteoblasts apoptosis. Proinflammatory cytokines are elevated following estrogen deficiency. These cytokines are important determinants of osteoclasts differentiation and its bone resorption activity. The main treatment for postmenopausal osteoporosis is estrogen replacement therapy (ERT). Despite its effectiveness, ERT, however, can cause many adverse effects. Therefore, alternative treatment that is rich in antioxidant and can exert an anti-inflammatory effect can be given to replace the conventional ERT. Tualang honey is one of the best options available as it contains antioxidant as well as exerting anti-inflammatory effect which can act as a free radical scavenger, reducing the oxidative stress level as well as inhibiting proinflammatory cytokine. This will result in survival of osteoblasts, reduced osteoclastogenic activity, and consequently, reduce bone loss. Hence, Tualang honey can be used as an alternative treatment of postmenopausal osteoporosis with minimal side effects.
Collapse
|
38
|
Vitamin E as an Antiosteoporotic Agent via Receptor Activator of Nuclear Factor Kappa-B Ligand Signaling Disruption: Current Evidence and Other Potential Research Areas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:747020. [PMID: 22919420 PMCID: PMC3419565 DOI: 10.1155/2012/747020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a growing healthcare burden that affects the quality of life in the aging population. Vitamin E is a potential prophylactic agent that can impede the progression of osteoporosis. Various in vivo studies demonstrated the antiosteoporotic potential of vitamin E, but evidence on its molecular mechanism of action is limited. A few in vitro studies showed that various forms of vitamin E can affect the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling and their molecular targets, thus preventing the formation of osteoclasts in the early stage of osteoclastogenesis. Various studies have also shown that the effects of the different isoforms of vitamin E differ. The effects of single isoforms and combinations of isoforms on bone metabolism are also different. Vitamin E may affect bone metabolism by disruption of free radical-mediated RANKL signaling, by its oestrogen-like effects, by its effects on the molecular mechanism of bone formation, by the anti-inflammatory effects of its long-chain metabolites on bone cells, and by the inhibition of 3-hydroxyl-3-methyglutaryl coenzyme A (HMG-CoA). In conclusion, the vitamin E isoforms have enormous potential to be used as prophylactic and therapeutic agents in preventing osteoporosis, but further studies should be conducted to elucidate their mechanisms of action.
Collapse
|