1
|
Robert PA, Arulraj T, Meyer-Hermann M. Germinal centers are permissive to subdominant antibody responses. Front Immunol 2024; 14:1238046. [PMID: 38274834 PMCID: PMC10808553 DOI: 10.3389/fimmu.2023.1238046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction A protective humoral response to pathogens requires the development of high affinity antibodies in germinal centers (GC). The combination of antigens available during immunization has a strong impact on the strength and breadth of the antibody response. Antigens can display various levels of immunogenicity, and a hierarchy of immunodominance arises when the GC response to an antigen dampens the response to other antigens. Immunodominance is a challenge for the development of vaccines to mutating viruses, and for the development of broadly neutralizing antibodies. The extent by which antigens with different levels of immunogenicity compete for the induction of high affinity antibodies and therefore contribute to immunodominance is not known. Methods Here, we perform in silico simulations of the GC response, using a structural representation of antigens with complex surface amino acid composition and topology. We generate antigens with complex domains of different levels of immunogenicity and perform simulations with combinations of these domains. Results We found that GC dynamics were driven by the most immunogenic domain and immunodominance arose as affinity maturation to less immunogenic domain was inhibited. However, this inhibition was moderate since the less immunogenic domain exhibited a weak GC response in the absence of the most immunogenic domain. Less immunogenic domains reduced the dominance of GC responses to more immunogenic domains, albeit at a later time point. Discussion The simulations suggest that increased vaccine valency may decrease immunodominance of the GC response to strongly immunogenic domains and therefore, act as a potential strategy for the natural induction of broadly neutralizing antibodies in GC reactions.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Khan A, Cowen-Rivers AI, Grosnit A, Deik DGX, Robert PA, Greiff V, Smorodina E, Rawat P, Akbar R, Dreczkowski K, Tutunov R, Bou-Ammar D, Wang J, Storkey A, Bou-Ammar H. Toward real-world automated antibody design with combinatorial Bayesian optimization. CELL REPORTS METHODS 2023; 3:100374. [PMID: 36814835 PMCID: PMC9939385 DOI: 10.1016/j.crmeth.2022.100374] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 06/14/2023]
Abstract
Antibodies are multimeric proteins capable of highly specific molecular recognition. The complementarity determining region 3 of the antibody variable heavy chain (CDRH3) often dominates antigen-binding specificity. Hence, it is a priority to design optimal antigen-specific CDRH3 to develop therapeutic antibodies. The combinatorial structure of CDRH3 sequences makes it impossible to query binding-affinity oracles exhaustively. Moreover, antibodies are expected to have high target specificity and developability. Here, we present AntBO, a combinatorial Bayesian optimization framework utilizing a CDRH3 trust region for an in silico design of antibodies with favorable developability scores. The in silico experiments on 159 antigens demonstrate that AntBO is a step toward practically viable in vitro antibody design. In under 200 calls to the oracle, AntBO suggests antibodies outperforming the best binding sequence from 6.9 million experimentally obtained CDRH3s. Additionally, AntBO finds very-high-affinity CDRH3 in only 38 protein designs while requiring no domain knowledge.
Collapse
Affiliation(s)
- Asif Khan
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
| | | | | | | | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | | | | | - Dany Bou-Ammar
- American University of Beirut Medical Centre, Beirut 11-0236, Lebanon
| | - Jun Wang
- Huawei Noah’s Ark Lab, London N1C 4AG, UK
- University College London, London WC1E 6BT, UK
| | - Amos Storkey
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Haitham Bou-Ammar
- Huawei Noah’s Ark Lab, London N1C 4AG, UK
- University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Robert PA, Akbar R, Frank R, Pavlović M, Widrich M, Snapkov I, Slabodkin A, Chernigovskaya M, Scheffer L, Smorodina E, Rawat P, Mehta BB, Vu MH, Mathisen IF, Prósz A, Abram K, Olar A, Miho E, Haug DTT, Lund-Johansen F, Hochreiter S, Haff IH, Klambauer G, Sandve GK, Greiff V. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction. NATURE COMPUTATIONAL SCIENCE 2022; 2:845-865. [PMID: 38177393 DOI: 10.1038/s43588-022-00372-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2022] [Indexed: 01/06/2024]
Abstract
Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.
Collapse
Affiliation(s)
- Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Michael Widrich
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | - Igor Snapkov
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway
| | | | - Aurél Prósz
- Danish Cancer Society Research Center, Translational Cancer Genomics, Copenhagen, Denmark
| | - Krzysztof Abram
- The Novo Nordisk Foundation Center for Biosustainability, Autoflow, DTU Biosustain and IT University of Copenhagen, Copenhagen, Denmark
| | - Alex Olar
- Department of Complex Systems in Physics, Eötvös Loránd University, Budapest, Hungary
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- aiNET GmbH, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Sepp Hochreiter
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
- Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
| | | | - Günter Klambauer
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Akbar R, Robert PA, Weber CR, Widrich M, Frank R, Pavlović M, Scheffer L, Chernigovskaya M, Snapkov I, Slabodkin A, Mehta BB, Miho E, Lund-Johansen F, Andersen JT, Hochreiter S, Hobæk Haff I, Klambauer G, Sandve GK, Greiff V. In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs 2022; 14:2031482. [PMID: 35377271 PMCID: PMC8986205 DOI: 10.1080/19420862.2022.2031482] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Philippe A. Robert
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Cédric R. Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael Widrich
- Ellis Unit Linz and Lit Ai Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | - Robert Frank
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | | | | | - Maria Chernigovskaya
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Igor Snapkov
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Andrei Slabodkin
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
| | - Sepp Hochreiter
- Ellis Unit Linz and Lit Ai Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
- Institute of Advanced Research in Artificial Intelligence (IARAI), Austria
| | | | - Günter Klambauer
- Ellis Unit Linz and Lit Ai Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | | | - Victor Greiff
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway
| |
Collapse
|
5
|
Robert PA, Arulraj T, Meyer-Hermann M. Ymir: A 3D structural affinity model for multi-epitope vaccine simulations. iScience 2021; 24:102979. [PMID: 34485861 PMCID: PMC8405928 DOI: 10.1016/j.isci.2021.102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Vaccine development is challenged by the hierarchy of immunodominance between target antigen epitopes and the emergence of antigenic variants by pathogen mutation. The strength and breadth of antibody responses relies on selection and mutation in the germinal center and on the structural similarity between antigens. Computational methods for assessing the breadth of germinal center responses to multivalent antigens are critical to speed up vaccine development. Yet, such methods have poorly reflected the 3D antigen structure and antibody breadth. Here, we present Ymir, a new 3D-lattice-based framework that calculates in silico antibody-antigen affinities. Key physiological properties naturally emerge from Ymir such as affinity jumps, cross-reactivity, and differential epitope accessibility. We validated Ymir by replicating known features of germinal center dynamics. We show that combining antigens with mutated but structurally related epitopes enhances vaccine breadth. Ymir opens a new avenue for understanding vaccine potency based on the structural relationship between vaccine antigens.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
6
|
Wilson MS, Landau DP. Thermodynamics of hydrophobic-polar model proteins on the face-centered cubic lattice. Phys Rev E 2021; 104:025303. [PMID: 34525583 DOI: 10.1103/physreve.104.025303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
The HP model, a coarse-grained protein representation with only hydrophobic (H) and polar (P) amino acids, has already been extensively studied on the simple cubic (SC) lattice. However, this geometry severely restricts possible bond angles, and a simple improvement is to instead use the face-centered cubic (fcc) lattice. In this paper, the density of states and ground state energies are calculated for several benchmark HP sequences on the fcc lattice using the replica-exchange Wang-Landau algorithm and a powerful set of Monte Carlo trial moves. Results from the fcc lattice proteins are directly compared with those obtained from a previous lattice protein folding study with a similar methodology on the SC lattice. A thermodynamic analysis shows comparable folding behavior between the two lattice geometries, but with a greater rate of hydrophobic-core formation persisting into lower temperatures on the fcc lattice.
Collapse
Affiliation(s)
- Matthew S Wilson
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| | - David P Landau
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
7
|
Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, Kundu K, Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS, Will S, Wolff J, Wright PR, Backofen R. Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 2018; 46:W25-W29. [PMID: 29788132 PMCID: PMC6030932 DOI: 10.1093/nar/gky329] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.
Collapse
Affiliation(s)
- Martin Raden
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Syed M Ali
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
| | - Jason A Davis
- Coreva Scientific, Kaiser-Joseph-Str 198-200, 79098 Freiburg, Germany
| | - Florian Eggenhofer
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Kousik Kundu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1HH, UK
| | - Robert Kleinkauf
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Steffen C Lott
- Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Mostafa M Mohamed
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Alexander Mattheis
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Milad Miladi
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | | | - Sebastian Will
- Theoretical Biochemistry Group, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
| | - Joachim Wolff
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Patrick R Wright
- Department of Clinical Research, Clinical Trial Unit, University of Basel Hospital, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - Rolf Backofen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
8
|
A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences. Int J Mol Sci 2015; 16:15136-49. [PMID: 26151847 PMCID: PMC4519891 DOI: 10.3390/ijms160715136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.
Collapse
|
9
|
How good are simplified models for protein structure prediction? Adv Bioinformatics 2014; 2014:867179. [PMID: 24876837 PMCID: PMC4022063 DOI: 10.1155/2014/867179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Protein structure prediction (PSP) has been one of the most challenging problems in computational biology for several decades. The challenge is largely due to the complexity of the all-atomic details and the unknown nature of the energy function. Researchers have therefore used simplified energy models that consider interaction potentials only between the amino acid monomers in contact on discrete lattices. The restricted nature of the lattices and the energy models poses a twofold concern regarding the assessment of the models. Can a native or a very close structure be obtained when structures are mapped to lattices? Can the contact based energy models on discrete lattices guide the search towards the native structures? In this paper, we use the protein chain lattice fitting (PCLF) problem to address the first concern; we developed a constraint-based local search algorithm for the PCLF problem for cubic and face-centered cubic lattices and found very close lattice fits for the native structures. For the second concern, we use a number of techniques to sample the conformation space and find correlations between energy functions and root mean square deviation (RMSD) distance of the lattice-based structures with the native structures. Our analysis reveals weakness of several contact based energy models used that are popular in PSP.
Collapse
|
10
|
Maher B, Albrecht AA, Loomes M, Yang XS, Steinhöfel K. A firefly-inspired method for protein structure prediction in lattice models. Biomolecules 2014; 4:56-75. [PMID: 24970205 PMCID: PMC4030990 DOI: 10.3390/biom4010056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 02/05/2023] Open
Abstract
We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.
Collapse
Affiliation(s)
- Brian Maher
- Department of Informatics, King's College London, Strand, London WC2R 2LS, UK.
| | - Andreas A Albrecht
- School of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
| | - Martin Loomes
- School of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
| | - Xin-She Yang
- School of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
| | - Kathleen Steinhöfel
- Department of Informatics, King's College London, Strand, London WC2R 2LS, UK.
| |
Collapse
|
11
|
Bechini A. On the characterization and software implementation of general protein lattice models. PLoS One 2013; 8:e59504. [PMID: 23555684 PMCID: PMC3612044 DOI: 10.1371/journal.pone.0059504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
models of proteins have been widely used as a practical means to computationally investigate general properties of the system. In lattice models any sterically feasible conformation is represented as a self-avoiding walk on a lattice, and residue types are limited in number. So far, only two- or three-dimensional lattices have been used. The inspection of the neighborhood of alpha carbons in the core of real proteins reveals that also lattices with higher coordination numbers, possibly in higher dimensional spaces, can be adopted. In this paper, a new general parametric lattice model for simplified protein conformations is proposed and investigated. It is shown how the supporting software can be consistently designed to let algorithms that operate on protein structures be implemented in a lattice-agnostic way. The necessary theoretical foundations are developed and organically presented, pinpointing the role of the concept of main directions in lattice-agnostic model handling. Subsequently, the model features across dimensions and lattice types are explored in tests performed on benchmark protein sequences, using a Python implementation. Simulations give insights on the use of square and triangular lattices in a range of dimensions. The trend of potential minimum for sequences of different lengths, varying the lattice dimension, is uncovered. Moreover, an extensive quantitative characterization of the usage of the so-called "move types" is reported for the first time. The proposed general framework for the development of lattice models is simple yet complete, and an object-oriented architecture can be proficiently employed for the supporting software, by designing ad-hoc classes. The proposed framework represents a new general viewpoint that potentially subsumes a number of solutions previously studied. The adoption of the described model pushes to look at protein structure issues from a more general and essential perspective, making computational investigations over simplified models more straightforward as well.
Collapse
Affiliation(s)
- Alessio Bechini
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|