1
|
Peng Y, Zhang C, Li X, Feng T, Gong X. Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization. Polymers (Basel) 2024; 16:3454. [PMID: 39771306 PMCID: PMC11678989 DOI: 10.3390/polym16243454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations. The comparative study demonstrates that 1% (MCAB-1) is the optimal concentration of bicarbonate. Based on this condition, the maximum adsorption capacity (48 ± 4 mg/g) of MCAB-1 was observed at pH = 5 in a batch test, which was 2.67 times more than that of the unmodified one, CAB, at 18 ± 1 mg/g. Long-duration (10 h) adsorption tests showed that MCAB-1 exhibited remarkable performance stability and anti-wear ability (43.2% removal efficiency and 74.3% mass retention, compared to 2.7% and 38.6% for CAB at pH = 3, respectively). The morphology determination showed that a shell-type porous amorphous carbonate layer was formed at the surface of the organic polymer template by rate-controlled self-assembly mineralization. This transition not only promotes the pore structure and activated cation binding functional sites, but also improves the anti-wear ability of materials effectively.
Collapse
Affiliation(s)
- Yang Peng
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou 221116, China
| | - Chuxuan Zhang
- Department of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| | - Tianyi Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| | - Xun Gong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| |
Collapse
|
2
|
Tamjidi S, Ameri A, Esmaeili H. A review of the application of fungi as an effective and attractive bio-adsorbent for biosorption of heavy metals from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:91. [PMID: 36352328 DOI: 10.1007/s10661-022-10687-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
One of the most hazardous environmental pollutants is the pollution risen by heavy metal ions in effluents, which is increasing due to the increasing human activity and the development of urbanization. Notwithstanding the economic challenges to control the pollution of effluent treatment processes, it seems necessary to provide effective approaches. The sorption method is widely used due to low-cost, flexibility in design and operation, repeatability, and significant performance. Hence, the need for more environmentally friendly sorbents to eliminate metal ions is greater than ever. Due to the unique features such as the presence of chitin and chitosan in the cell wall, high absorption capacity, environmental friendliness, availability, and cheapness, the use of fungi as adsorbent has received much attention. Therefore, this work tries to address the use of fungi as biosorbents to remove these metals, the dangers of heavy metals, and their sources. Moreover, equilibrium, kinetic, and thermodynamic behaviors of the heavy metal ion adsorption process in the literature are briefly studied.
Collapse
Affiliation(s)
- Sajad Tamjidi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Abolhasan Ameri
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Hosein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
3
|
Singh S, Kumar V, Gupta P, Ray M. The trafficking of Hg II by alleviating its toxicity via Citrobacter sp. IITISM25 in batch and pilot-scale investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128711. [PMID: 35395524 DOI: 10.1016/j.jhazmat.2022.128711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The study aims to see how effective the Citrobacter species strain is in removing HgII under stressful conditions. For this, a response surface methodology was chosen to optimized pH, temperature, and biomass for effective biotransformation of HgII. The optimized value for pH, temperature, and biomass were 6.5, 30 °C, and 2 mg/l with 89% HgII removal potential. TEM-EDX showed accumulated mercury onto the bacterial surface. Pot study was conducted to check the potentiality of this strain in alleviating the toxicity in Solanum lycopersicum L. under different concentrations of mercury. The enhancement in antioxidative enzymes, as well as mercury accumulation, was observed in test plants inoculated with IITISM25. Obtained result showed a greater accumulation of mercury in the root system than that of the shoot system due to poor translocation. Moreover, mercury reductase enzyme synthesis was also boosted by the addition of β-mercaptoethanol and L-cysteine. The optimized condition for maximum enzyme synthesis was at pH 7.5 and temperature 30 °C with Km = 48.07 μmol and Vmax = 9.75 μmol/min. Thus, we can say that Citrobacter species strain IITISM25 can be effectively applied in remediation of HgII stress condition as well as promotion of Solanum lycopersicum L growth under stress conditions as a promising host.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| |
Collapse
|
4
|
Fathollahi A, Coupe SJ. Effect of environmental and nutritional conditions on the formation of single and mixed-species biofilms and their efficiency in cadmium removal. CHEMOSPHERE 2021; 283:131152. [PMID: 34147985 DOI: 10.1016/j.chemosphere.2021.131152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Remediation of contaminated water and wastewater using biosorption methods has attracted significant attention in recent decades due to its efficiency, convenience and minimised environmental effects. Bacterial biosorbents are normally deployed as a non-living powder or suspension. Little is known about the mechanisms or rates of bacterial attachment to surfaces and effect of various conditions on the biofilm development, as well as efficiency of living biofilms in the removal of heavy metals. In the present study, the effect of environmental and nutritional conditions such as pH, temperature, concentrations of phosphate, glucose, amino acid, nitrate, calcium and magnesium, on planktonic and biofilm growth of single and mixed bacterial cultures, were measured. Actinomyces meyeri, Bacillus cereus, Escherichia coli, Pseudomonas fluorescens strains were evaluated to determine the optimum biofilm growth conditions. The Cd(II) biosorption efficiencies of the mixed-species biofilm developed in the optimum growth condition, were investigated and modelled using Langmuir, Freundlich and Dubnin Radushkevich models. The biofilm quantification techniques revealed that the optimum concentration of phosphate, glucose, amino acid, nitrate, calcium and magnesium for the biofilm development were 25, 10, 1, 1.5, 5 and 0.5 g L-1, respectively. Further increases in the nutrient concentrations resulted in less biofilm growth. The optimum pH for the biofilm growth was 7 and alkaline or acidic conditions caused significant negative effects on the bacterial attachment and development. The optimum temperatures for the bacterial attachment to the surface were between 25 and 35 °C. The maximum Cd(II) biosorption efficiency (99%) and capacity (18.19 mg g-1) of the mixed-species biofilm, occurred on day 35 (Ci = 0.1 mg L-1) and 1 (Ci = 20 mg L-1) of biofilm growth, respectively. Modelling of the biosorption data revealed that Cd(II) removal by the living biofilm was a physical process by a monolayer of biofilm. The results of present study suggested that environmental and nutritional conditions had a significant effect on bacterial biofilm formation and its efficiency in Cd(II) removal.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| |
Collapse
|
5
|
Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 2021; 203:5345-5361. [PMID: 34387704 DOI: 10.1007/s00203-021-02481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.
Collapse
|
6
|
Rana A, Sindhu M, Kumar A, Dhaka RK, Chahar M, Singh S, Nain L. Restoration of heavy metal-contaminated soil and water through biosorbents: A review of current understanding and future challenges. PHYSIOLOGIA PLANTARUM 2021; 173:394-417. [PMID: 33724481 DOI: 10.1111/ppl.13397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal pollution in soil and water is a potential threat to human health as it renders food quality substandard. Different biosorbents such as microbial and agricultural biomass have been exploited for heavy metal immobilization in soil and sorptive removal in waters. Biosorption is an effective and sustainable method for heavy metal removal in soil and water, but the inherent challenges are to find cheap, selective, robust, and cost-effective bioadsorbents. Microbial and agricultural biomass and their modified forms such as nanocomposites and carbonaceous materials (viz., biochar, nanobiochar, biocarbon), might be useful for sequestration of heavy metals in soil via adsorption, ion exchange, complexation, precipitation, and enzymatic transformation mechanisms. In this review, potential biosorbents and their metal removal capacity in soil and water are discussed. The microbial adsorbents and modified composites of agricultural biomasses show improved performance, stability, reusability, and effectively immobilize heavy metals from soil and water. In the future, researchers may consider the modified composites, encapsulated biosorbents for soil and water remediation.
Collapse
Affiliation(s)
- Anuj Rana
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar, India
| | - Meena Sindhu
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar, India
| | - Ajay Kumar
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar, India
| | - Rahul Kumar Dhaka
- Department of Chemistry, Environmental Sciences, and Centre for Bio-Nanotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Madhvi Chahar
- Department of food quality and safety, Institute of Post Harvest, Agricultural Research Organization, The Volcani Research Center, Bet-Dagan, Israel
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendragarh, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Heavy Metal-Resistant Filamentous Fungi as Potential Mercury Bioremediators. J Fungi (Basel) 2021; 7:jof7050386. [PMID: 34069296 PMCID: PMC8156478 DOI: 10.3390/jof7050386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Filamentous fungi native to heavy metals (HMs) contaminated sites have great potential for bioremediation, yet are still often underexploited. This research aimed to assess the HMs resistance and Hg remediation capacity of fungi isolated from the rhizosphere of plants resident on highly Hg-contaminated substrate. Analysis of Hg, Pb, Cu, Zn, and Cd concentrations by X-ray spectrometry generated the ecological risk of the rhizosphere soil. A total of 32 HM-resistant fungal isolates were molecularly identified. Their resistance spectrum for the investigated elements was characterized by tolerance indices (TIs) and minimum inhibitory concentrations (MICs). Clustering analysis of TIs was coupled with isolates’ phylogeny to evaluate HMs resistance patterns. The bioremediation potential of five isolates’ live biomasses, in 100 mg/L Hg2+ aqueous solution over 48 h at 120 r/min, was quantified by atomic absorption spectrometry. New species or genera that were previously unrelated to Hg-contaminated substrates were identified. Ascomycota representatives were common, diverse, and exhibited varied HMs resistance spectra, especially towards the elements with ecological risk, in contrast to Mucoromycota-recovered isolates. HMs resistance patterns were similar within phylogenetically related clades, although isolate specific resistance occurred. Cladosporium sp., Didymella glomerata, Fusarium oxysporum, Phoma costaricensis, and Sarocladium kiliense isolates displayed very high MIC (mg/L) for Hg (140–200), in addition to Pb (1568), Cu (381), Zn (2092–2353), or Cd (337). The Hg biosorption capacity of these highly Hg-resistant species ranged from 33.8 to 54.9 mg/g dry weight, with a removal capacity from 47% to 97%. Thus, the fungi identified herein showed great potential as bioremediators for highly Hg-contaminated aqueous substrates.
Collapse
|
8
|
Meena M, Sonigra P, Yadav G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2485-2508. [PMID: 33095900 DOI: 10.1007/s11356-020-11112-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the quality of water. These results decrease in freshwater bodies near all of the areas. Besides, organic and inorganic compounds discharged from different sources into the available natural water bodies are the cause of pollution. The occurrence of heavy metals in water and volatile organic compounds (VOCs) in the air is responsible for a vast range of negative impacts on the atmosphere and human health. Nonetheless, high uses of heavy metals for human purposes may alter the biochemical and geochemical equilibrium. The major air contaminants which are released into the surroundings known as VOCs are produced through different kinds of sources, such as petrochemical and pharmaceutical industries. VOCs are known to cause various health hazards. VOCs are a pivotal group of chemicals that evaporate readily at room temperature. To get over this problem, biofiltration technology has been evolved for the treatment of heavy metals using biological entities such as plants, algae, fungi, and bacteria. Biofiltration technology is a beneficial and sustainable method for the elimination of toxic pollutants from the aquatic environment. Various types of biological technologies ranging from biotrickling filters to biofilters have been developed and they are cost-effective, simple to fabricate, and easy to perform. A significant advantage of this process is the pollutant that is transformed into biodegradable trashes which can decompose within an average time period, thus yielding no secondary pollutants. The aim of this article is to scrutinize the role of biofiltration in the removal of heavy metals in wastewater and VOCs and also to analyze the recent bioremediation technologies and methods.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
9
|
Biosorption of Mercury Ion (Hg2+) using Live and Dead Cells of Rhizopus oryzae and Aspergillus niger : Characterization, Kinetic and Isotherm Studies. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mercury ions (Hg2+) are usually being discharged into water bodies without proper treatment. It is toxic, non-biodegradable and persistent naturally which leads to serious environmental problems. Through microbial approach, this study compares the efficiency of two types of fungi: R. oryzae and A. niger of common biosorption fungi in absorbing Hg2+ based on FTIR analysis, kinetic and isotherm studies. Both fungi were prepared into two forms which are live and dead biomass; and the Hg2+ was prepared at 10 and 100 ppm. FTIR analysis has identified existing functional group of hydroxyl, carboxylic and amino functional groups from both fungi, which are important in attracting Hg2+ ion. On average, 60-90% of Hg2+ was removed by both live and dead biomass of R. oryzae and A. niger at 10 and 100 ppm. Meanwhile, the highest sorption was achieved by dead cells of R. oryzae which is up to 90.38% at 100 ppm. In terms of kinetic studies, experimental data fitted to the Pseudo-second-order kinetic model, with correlation coefficient, R2 (0.9997), and Langmuir isotherm, which means the absorption process occurs on the homogenous surface that corresponds to the monolayer formation. Through these findings, the dead cells of A. niger and R. oryzae are better in sorption of Hg2+ compared to the live cells. Meanwhile, the rate of biosorption by R. oryzae is higher compared to A. niger. However, both fungi are excellent in biosorption of Hg2+ ions and could be an alternative to current physico-chemical methods used.
Collapse
|
10
|
Pietro-Souza W, de Campos Pereira F, Mello IS, Stachack FFF, Terezo AJ, Cunha CND, White JF, Li H, Soares MA. Mercury resistance and bioremediation mediated by endophytic fungi. CHEMOSPHERE 2020; 240:124874. [PMID: 31546184 DOI: 10.1016/j.chemosphere.2019.124874] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/18/2019] [Accepted: 09/14/2019] [Indexed: 05/13/2023]
Abstract
The present study proposes the use of endophytic fungi for mercury bioremediation in in vitro and host-associated systems. We examined mercury resistance in 32 strains of endophytic fungi grown in culture medium supplemented with toxic metal concentrations. The residual mercury concentrations were quantified after mycelial growth. Aspergillus sp. A31, Curvularia geniculata P1, Lindgomycetaceae P87, and Westerdykella sp. P71 were selected and further tested for mercury bioremediation and bioaccumulation in vitro, as well as for growth promotion of Aeschynomene fluminensis and Zea mays in the presence or absence of the metal. Aspergillus sp. A31, C. geniculata P1, Lindgomycetaceae P87 and Westerdykella sp. P71 removed up to 100% of mercury from the culture medium in a species-dependent manner and they promoted A. fluminensis and Z. mays growth in substrates containing mercury or not (Dunnett's test, p < 0.05). Lindgomycetaceae P87 and C. geniculata P1 are dark septate endophytic fungi that endophytically colonize root cells of their host plants. The increase of host biomass correlated with the reduction of soil mercury concentration due to the metal bioaccumulation in host tissues and its possible volatilization. The soil mercury concentration was decreased by 7.69% and 57.14% in A. fluminensis plants inoculated with Lindgomycetaceae P87 + Aspergillus sp. A31 and Lindgomycetaceae P87, respectively (Dunnet's test, p < 0.05). The resistance mechanisms of mercury volatilization and bioaccumulation in plant tissues mediated by these endophytic fungi can contribute to bioremediation programs. The biochemical and genetic mechanisms involved in bioaccumulation and volatilization need to be elucidated in the future.
Collapse
Affiliation(s)
- William Pietro-Souza
- Federal Institute of Education, Science and Technology of Mato Grosso, Lucas Do Rio Verde, Mato Grosso, Brazil
| | - Felipe de Campos Pereira
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Ivani Souza Mello
- Department of Forest Engineering, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Fuel Analysis Centre (CEANC), Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Cátia Nunes da Cunha
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
11
|
Aryal M. A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Discharges of waste containing heavy metals (HMs) have been a challenging problem for years because of their adverse effects in the environment. This article provides a comprehensive review of recent findings on bacterial biosorption and their performances for sequestration of HMs. It highlights the significance of HM removal and presents a brief overview on bacterial functionality and biosorption technology. It also discusses the achievements towards utilisation of bacterial biomass with biosorption of HMs from aqueous solutions. This article includes different types of kinetic, equilibrium, and thermodynamic models used for HM treatments using different bacterial species, as well as biosorption mechanisms along with desorption of metal ions and regeneration of bacterial biosorbents. Its fast kinetics of metal biosorption and desorption, low operational cost, and no production of toxic by-products provide attraction to many researchers. Bacteria can easily be produced using inexpensive growth media or obtained as a by-product from industries. A systematic comparison of the literature for a metal-binding capacity of bacterial biomass under different conditions is provided here. The properties of the cell wall constituents such as peptidoglycan and the role of functional groups for metal sorption are presented on the basis of their biosorption potential. Many bacterial biosorbents as reported in scientific literature have a high biosorption capacity, where some are better than commercial adsorbents. Based on the reported results, it seems that most bacteria have the potential for industrial applications for detoxification of HMs.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tri-Chandra Multiple Campus , Tribhuvan University , Kathmandu 00977 , Nepal
| |
Collapse
|
12
|
Kapahi M, Sachdeva S. Bioremediation Options for Heavy Metal Pollution. J Health Pollut 2019; 9:191203. [PMID: 31893164 PMCID: PMC6905138 DOI: 10.5696/2156-9614-9.24.191203] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. OBJECTIVES The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. METHODS Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. DISCUSSION Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. CONCLUSIONS Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Meena Kapahi
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Department of Chemistry, Manav Rachna University, Faridabad, India
| | - Sarita Sachdeva
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
13
|
Chang J, Duan Y, Dong J, Shen S, Si G, He F, Yang Q, Chen J. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:676-684. [PMID: 30939320 DOI: 10.1016/j.scitotenv.2019.03.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Reducing Hg contamination in soil using eco-friendly approaches has attracted increasing attention in recent years. In this study, a novel multi-metal-resistant Hg-volatilizing fungus belonging to Lecythophora sp., DC-F1, was isolated from multi-metal-polluted mining-area soil, and its performance in reducing Hg bioavailability in soil when used in combination with biochar was investigated. The isolate displayed a minimum inhibitory concentration of 84.5mg·L-1 for Hg(II) and volatilized >86% of Hg(II) from LB liquid medium with an initial concentration of 7.0mg·L-1 within 16h. Hg(II) contents in soils and grown lettuce shoots decreased by 13.3-26.1% and 49.5-67.7%, respectively, with DC-F1 and/or biochar addition compared with a control over 56days of incubation. Moreover, treatment with both bioagents achieved the lowest Hg content in lettuce shoots. Hg presence and DC-F1 addition significantly decreased the number of fungal ITS gene copies in soils. High-throughput sequencing showed that the soil fungal community compositions were more largely influenced by DC-F1 addition than by biochar addition, with the proportion of Mortierella increasing and those of Penicillium and Thielavia decreasing with DC-F1 addition. Developing the coupling of Lecythophora sp. DC-F1 with biochar into a feasible approach for the recovery of Hg-contaminated soils is promising.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Yijun Duan
- Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lakes), Kunming 650034, PR China
| | - Jia Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Shili Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Guangzheng Si
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Fang He
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Qingchen Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Jinquan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
14
|
Bioremoval of Cobalt(II) from Aqueous Solution by Three Different and Resistant Fungal Biomasses. Bioinorg Chem Appl 2019; 2019:8757149. [PMID: 31143203 PMCID: PMC6501274 DOI: 10.1155/2019/8757149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/03/2018] [Accepted: 12/23/2018] [Indexed: 11/18/2022] Open
Abstract
The biosorption of Co(II) on three fungal biomasses: Paecilomyces sp., Penicillium sp., and Aspergillus niger, was studied in this work. The fungal biomass of Paecilomyces sp. showed the best results, since it removes 93% at 24 h of incubation, while the biomasses of Penicillium sp. and Aspergillus niger are less efficient, since they remove the metal 77.5% and 70%, respectively, in the same time of incubation, with an optimum pH of removal for the three analyzed biomasses of 5.0 ± 0.2 at 28°C. Regarding the temperature of incubation, the most efficient biomass was that of Paecilomyces sp., since it removes 100%, at 50°C, while the biomasses of Penicillium sp. and Aspergillus niger remove 97.1% and 94.1%, at the same temperature, in 24 hours of incubation. On the contrary, if the concentration of the metal is increased, the removal capacity for the three analyzed biomasses decreases; if the concentration of the bioadsorbent is increased, the removal of the metal also increases. It was observed that, after 4 and 7 days of incubation, 100%, 100%, and 96.4% of Co(II) present in naturally contaminated water were removed, respectively.
Collapse
|
15
|
Cárdenas-González JF, Acosta-Rodríguez I, Téran-Figueroa Y, Rodríguez-Pérez AS. Bioremoval of arsenic (V) from aqueous solutions by chemically modified fungal biomass. 3 Biotech 2017; 7:226. [PMID: 28681286 DOI: 10.1007/s13205-017-0868-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/30/2017] [Indexed: 11/30/2022] Open
Abstract
The biosorption of arsenic (V) on nine chemically modified biomasses (with iron oxide coated) of mycelia fungi: Aspergillus flavus III, IV and V, Aspergillus fumigatus I-II, Paecilomyces sp., Cladosporium sp., Mucor sp-1 and 2 was studied in this work. This study provides evidence that the biomasses of the fungi A. flavus, IV, III and V, Paecilomyces sp., and A. fumigatus I were very efficient at removing 1 mg/L of the metal in solution, using atomic absorption spectroscopy (AAS), achieving the following percentage of removals: 97.1, 92.3, 90.3, 89.0, and 83.4%, respectively. The results of adsorption were obtained at pH 6.0, 30 °C after 24 h of incubation, with 1 g/100 mL of fungal biomass. These results suggest the excellent potential of almost all isolated strains for bioremediation and removal of metals from contaminated sites.
Collapse
Affiliation(s)
- J F Cárdenas-González
- Laboratorio de Micología Experimental, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, 78320, San Luis Potosí, SLP, Mexico.
| | - I Acosta-Rodríguez
- Laboratorio de Micología Experimental, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, 78320, San Luis Potosí, SLP, Mexico
| | - Y Téran-Figueroa
- Laboratorio de Microbiología, Parasitología y Toxicología de Alimentos, Facultad de Enfermería, Universidad Autónoma de San Luis Potosí, Av. Niño Artillero No. 130, Zona Universitaria, 78320, San Luis Potosí, Mexico
| | - A S Rodríguez-Pérez
- Laboratorio de Micología Experimental, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, 78320, San Luis Potosí, SLP, Mexico
| |
Collapse
|
16
|
El-Gendy MMAA, Hassanein NM, Abd El-Hay Ibrahim H, Abd El-Baky DH. Heavy Metals Biosorption from Aqueous Solution by Endophytic Drechslera hawaiiensis of Morus alba L. Derived from Heavy Metals Habitats. MYCOBIOLOGY 2017; 45:73-83. [PMID: 28781539 PMCID: PMC5541151 DOI: 10.5941/myco.2017.45.2.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 06/01/2023]
Abstract
The ability of dead cells of endophytic Drechslera hawaiiensis of Morus alba L. grown in heavy metals habitats for bioremoval of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+) in aqueous solution was evaluated under different conditions. Whereas the highest extent of Cd2+ and Cu2+ removal and uptake occurred at pH 8 as well as Pb2+ occurred at neutral pH (6-7) after equilibrium time 10 min. Initial concentration 30 mg/L of Cd2+ for 10 min contact time and 50 to 90 mg/L of Pb2+ and Cu2+ supported the highest biosorption after optimal contact time of 30 min achieved with biomass dose equal to 5 mg of dried died biomass of D. hawaiiensis. The maximum removal of Cd2+, Cu2+, and Pb2+ equal to 100%, 100%, and 99.6% with uptake capacity estimated to be 0.28, 2.33, and 9.63 mg/g from real industrial wastewater, respectively were achieved within 3 hr contact time at pH 7.0, 7.0, and 6.0, respectively by using the dead biomass of D. hawaiiensis compared to 94.7%, 98%, and 99.26% removal with uptake equal to 0.264, 2.3, and 9.58 mg/g of Cd2+, Cu2+, and Pb2+, respectively with the living cells of the strain under the same conditions. The biosorbent was analyzed by Fourier Transformer Infrared Spectroscopy (FT-IR) analysis to identify the various functional groups contributing in the sorption process. From FT-IR spectra analysis, hydroxyl and amides were the major functional groups contributed in biosorption process. It was concluded that endophytic D. hawaiiensis biomass can be used potentially as biosorbent for removing Cd2+, Cu2+, and Pb2+ in aqueous solutions.
Collapse
Affiliation(s)
- Mervat Morsy Abbas Ahmed El-Gendy
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Naziha M Hassanein
- Department of Microbiology, Faculty of Science, Ain-Shams University, Cairo 11566, Egypt
| | | | - Doaa H Abd El-Baky
- National Institute of Occupational Safety & Health (NIOSH), Cairo 2208, Egypt
| |
Collapse
|
17
|
Luk CHJ, Yip J, Yuen CWM, Pang SK, Lam KH, Kan CW. Biosorption Performance of Encapsulated Candida krusei for the removal of Copper(II). Sci Rep 2017; 7:2159. [PMID: 28526881 PMCID: PMC5438343 DOI: 10.1038/s41598-017-02350-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
The use of microorganisms in biosorption is one of the most promising ways to remove trace amounts of heavy metal ions. Nevertheless, the enhancement of the successful removal of heavy metal ions by using different combinations of biosorbents is not generally guaranteed which leaves room to explore the application of the technique. In this study, the performance of free and immobilized forms of a yeast strain, Candida krusei (C. krusei), and calcium alginate (CaAlg) are evaluated for their ability to remove copper(II). Infrared spectroscopy, studies on the effects of pH and temperature, and kinetics and isotherm modelling are carried out to evaluate the biosorption. The infrared spectroscopy shows that the primary biosorption sites on the biosorbents are carboxylate groups. In addition, a higher pH and higher temperatures promote biosorption while a decline in biosorption ability is observed for C. krusei at 50 °C. The kinetics study shows that C. krusei, CaAlg and immobilized C. krusei (MCaAlg) conform with good correlation to pseudo-second order kinetics. MCaAlg and CaAlg fit well to the Langmuir isotherm while C. krusei fits well to the Temkin isotherm. From the experimental data, encapsulating C. krusei showed improved biosoprtion and address clogging in practical applications.
Collapse
Affiliation(s)
- Chi Him Jim Luk
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HungHom, Hong Kong
| | - Joanne Yip
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HungHom, Hong Kong.
| | - Chun Wah Marcus Yuen
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HungHom, Hong Kong
| | - Siu Kwong Pang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HungHom, Hong Kong
| | - Kim Hung Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, HungHom, Hong Kong
| | - Chi Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, HungHom, Hong Kong
| |
Collapse
|
18
|
ALI A, GUO D, MAHAR A, WANG P, SHEN F, LI R, ZHANG Z. Mycoremediation of Potentially Toxic Trace Elements—a Biological Tool for Soil Cleanup: A Review. PEDOSPHERE 2017; 27:205-222. [DOI: 10.1016/s1002-0160(17)60311-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
19
|
Removal of Zinc from Aqueous Solution by Optimized Oil Palm Empty Fruit Bunches Biochar as Low Cost Adsorbent. Bioinorg Chem Appl 2017; 2017:7914714. [PMID: 28420949 PMCID: PMC5379131 DOI: 10.1155/2017/7914714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/19/2017] [Indexed: 11/18/2022] Open
Abstract
This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability.
Collapse
|
20
|
Hoque E, Fritscher J. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiologyopen 2016; 5:763-781. [PMID: 27177603 PMCID: PMC5061714 DOI: 10.1002/mbo3.368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we report about a unique aquatic fungus Mucor hiemalisEH8 that can remove toxic ionic mercury from water by intracellular accumulation and reduction into elemental mercury (Hg0 ). EH8 was isolated from a microbial biofilm grown in sulfidic-reducing spring water sourced at a Marching's site located downhill from hop cultivation areas with a history of mercury use. A thorough biodiversity survey and mercury-removal function analyses were undertaken in an area of about 200 km2 in Bavaria (Germany) to find the key biofilm and microbe for mercury removal. After a systematic search using metal removal assays we identified Marching spring's biofilm out of 18 different sulfidic springs' biofilms as the only one that was capable of removing ionic Hg from water. EH8 was selected, due to its molecular biological identification as the key microorganism of this biofilm with the capability of mercury removal, and cultivated as a pure culture on solid and in liquid media to produce germinating sporangiospores. They removed 99% of mercury from water within 10-48 h after initial exposure to Hg(II). Scanning electron microscopy demonstrated occurrence of intracellular mercury in germinating sporangiospores exposed to mercury. Not only associated with intracellular components, but mercury was also found to be released and deposited as metallic-shiny nanospheres. Electron-dispersive x-ray analysis of such a nanosphere confirmed presence of mercury by the HgMα peak at 2.195 keV. Thus, a first aquatic eukaryotic microbe has been found that is able to grow even at low temperature under sulfur-reducing conditions with promising performance in mercury removal to safeguard our environment from mercury pollution.
Collapse
Affiliation(s)
- Enamul Hoque
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstr.1, Neuherberg, 85764, Germany.
| | - Johannes Fritscher
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstr.1, Neuherberg, 85764, Germany
| |
Collapse
|
21
|
Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15386-415. [PMID: 26315592 DOI: 10.1007/s11356-015-5278-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/19/2015] [Indexed: 05/15/2023]
Abstract
Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment.
Collapse
Affiliation(s)
- Shalini Srivastava
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - S B Agrawal
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - M K Mondal
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
22
|
Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci (China) 2014; 26:1223-1231. [PMID: 25079829 DOI: 10.1016/s1001-0742(13)60592-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of filamentous fungi in bioremediation of heavy metal contamination has been developed recently. This research aims to observe the capability of filamentous fungi isolated from forest soil for bioremediation of mercury contamination in a substrate. Six fungal strains were selected based on their capability to grow in 25 mg/L Hg(2+)-contaminated potato dextrose agar plates. Fungal strain KRP1 showed the highest ratio of growth diameter, 0.831, thus was chosen for further observation. Identification based on colony and cell morphology carried out by 18S rRNA analysis gave a 98% match to Aspergillus flavus strain KRP1. The fungal characteristics in mercury(II) contamination such as range of optimum pH, optimum temperature and tolerance level were 5.5-7 and 25-35°C and 100 mg/L respectively. The concentration of mercury in the media affected fungal growth during lag phases. The capability of the fungal strain to remove the mercury(II) contaminant was evaluated in 100 mL sterile 10 mg/L Hg(2+)-contaminated potato dextrose broth media in 250 mL Erlenmeyer flasks inoculated with 10(8) spore/mL fungal spore suspension and incubation at 30°C for 7 days. The mercury(II) utilization was observed for flasks shaken in a 130 r/min orbital shaker (shaken) and non-shaken flasks (static) treatments. Flasks containing contaminated media with no fungal spores were also provided as control. All treatments were done in triplicate. The strain was able to remove 97.50% and 98.73% mercury from shaken and static systems respectively. A. flavus strain KRP1 seems to have potential use in bioremediation of aqueous substrates containing mercury(II) through a biosorption mechanism.
Collapse
Affiliation(s)
- Evi Kurniati
- Department of Agricultural Engineering, Brawijaya University, East Java, 65145, Indonesia; Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan.
| | - Novi Arfarita
- Department of Agrotechnology, Malang Islamic University, East Java 65145, Indonesia
| | - Tsuyoshi Imai
- Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan.
| | - Takaya Higuchi
- Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan
| | - Ariyo Kanno
- Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan
| | - Koichi Yamamoto
- Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan
| | - Masahiko Sekine
- Division of Environmental Science and Sustainable Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 755-0097, Japan
| |
Collapse
|