1
|
Chamkouri H, Si J, Chen P, Ni H, Bragin DE, Ahmadlouydarab M, Niu C, Chen L. Overcoming challenges of clinical cell therapies for Parkinson's disease with photobiomodulation. INTERDISCIPLINARY MEDICINE 2024; 2:e20240013. [PMID: 40342605 PMCID: PMC12061111 DOI: 10.1002/inmd.20240013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 05/11/2025]
Abstract
Photobiomodulation (PBM) has emerged as a rapidly growing and innovative therapeutic method for various illnesses in recent years. Due to the irreversible nature of Parkinson's disease (PD), it has proven challenging to impede or postpone the progression of the disease. Despite research on pharmacological approaches to halt neuronal degeneration, the viability of these techniques has been called into doubt due to apprehensions over potential side effects and the ethical implications associated with the utilization of embryonic cell transplantation. Hence, developing an innovative therapeutic approach to halting neuronal degeneration and safeguarding neurons from this neurodegenerative disorder is imperative. This review examines the pathogenesis, challenges, and limitations of conventional PD therapies, allowing a closer examination of PBM's distinctive approach within this medical context. Delving into PBM's therapeutic mechanisms in the cells, the effects of different wavelengths on cell therapies in PD patients, and considerations for patient care administration to overcome traditional challenges, this study offers insights into its potential as a promising avenue for PD management.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jianmin Si
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Peng Chen
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Haiyong Ni
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, Anhui, China
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Intelligent Manufacturing Institute of HFUT, Hefei, Anhui, China
| |
Collapse
|
2
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
3
|
Gordon LC, Martin KL, Torres N, Benabid A, Mitrofanis J, Stone J, Moro C, Johnstone DM. Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. Eur J Neurosci 2023; 57:1611-1624. [PMID: 36949610 PMCID: PMC10947039 DOI: 10.1111/ejn.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.
Collapse
Affiliation(s)
- Luke C. Gordon
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kristy L. Martin
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Napoleon Torres
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | | | - John Mitrofanis
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Jonathan Stone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Cecile Moro
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Daniel M. Johnstone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
4
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
5
|
Fukui K, Kimura S, Kato Y, Kohno M. Effects of far infrared light on Alzheimer's disease-transgenic mice. PLoS One 2021; 16:e0253320. [PMID: 34138944 PMCID: PMC8211253 DOI: 10.1371/journal.pone.0253320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Far infrared light has been used in many medical procedures. However, the detailed biological mechanisms of infrared light's effects have not yet been elucidated. Many researchers have pointed out the thermal effects of treatments such as infrared saunas, which are known to increase blood flow. Alzheimer's disease (AD) is associated with gradual decreases in brain blood flow and resulting dementia. In this study, we attempted to clarify the beneficial effects of far infrared light using the 5xFAD mouse, a transgenic model of AD. We exposed 5xFAD mice to far infrared light for 5 months. Among the far infrared-exposed AD mice, body weights were significantly decreased, and the levels of nerve growth factor and brain-derived neurotrophic factor protein were significantly increased in selected brain areas (compared to those in non-irradiated AD mice). However, cognition and motor function (as assessed by Morris water maze and Rota Rod tests, respectively) did not differ significantly between the irradiated and non-irradiated AD mouse groups. These results indicated that exposure to far infrared light may have beneficial biological effects in AD mice. However, the experimental schedule and methods may need to be modified to obtain clearer results.
Collapse
Affiliation(s)
- Koji Fukui
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of Systems Engineering and Sciences, Shibaura Institute of Technology (SIT), Minato, Japan
- Department of Functional Control Systems, Molecular Cell Biology Laboratory, Graduate School of Engineering and Science, SIT, Minato, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Japan
| | - Shunsuke Kimura
- Department of Bioscience and Engineering, Molecular Cell Biology Laboratory, College of Systems Engineering and Sciences, Shibaura Institute of Technology (SIT), Minato, Japan
| | - Yugo Kato
- Department of Functional Control Systems, Molecular Cell Biology Laboratory, Graduate School of Engineering and Science, SIT, Minato, Japan
| | - Masahiro Kohno
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Japan
- SIT Research Laboratories, The Brain Science & Life Technology Research Center, SIT, Minato, Japan
| |
Collapse
|
6
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
8
|
Photobiomodulation for Parkinson's Disease in Animal Models: A Systematic Review. Biomolecules 2020; 10:biom10040610. [PMID: 32326425 PMCID: PMC7225948 DOI: 10.3390/biom10040610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation (PBM) might be an effective treatment for Parkinson’s disease (PD) in human patients. PBM of the brain uses red or near infrared light delivered from a laser or an LED at relatively low power densities, onto the head (or other body parts) to stimulate the brain and prevent degeneration of neurons. PD is a progressive neurodegenerative disease involving the loss of dopamine-producing neurons in the substantia nigra deep within the brain. PD is a movement disorder that also shows various other symptoms affecting the brain and other organs. Treatment involves dopamine replacement therapy or electrical deep brain stimulation. The present systematic review covers reports describing the use of PBM to treat laboratory animal models of PD, in an attempt to draw conclusions about the best choice of parameters and irradiation techniques. There have already been clinical trials of PBM reported in patients, and more are expected in the coming years. PBM is particularly attractive as it is a non-pharmacological treatment, without any major adverse effects (and very few minor ones).
Collapse
|
9
|
Foo ASC, Soong TW, Yeo TT, Lim KL. Mitochondrial Dysfunction and Parkinson's Disease-Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Front Aging Neurosci 2020; 12:89. [PMID: 32308618 PMCID: PMC7145956 DOI: 10.3389/fnagi.2020.00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
As the main driver of energy production in eukaryotes, mitochondria are invariably implicated in disorders of cellular bioenergetics. Given that dopaminergic neurons affected in Parkinson's disease (PD) are particularly susceptible to energy fluctuations by their high basal energy demand, it is not surprising to note that mitochondrial dysfunction has emerged as a compelling candidate underlying PD. A recent approach towards forestalling dopaminergic neurodegeneration in PD involves near-infrared (NIR) photobiomodulation (PBM), which is thought to enhance mitochondrial function of stimulated cells through augmenting the activity of cytochrome C oxidase. Notwithstanding this, our understanding of the neuroprotective mechanism of PBM remains far from complete. For example, studies focusing on the effects of PBM on gene transcription are limited, and the mechanism through which PBM exerts its effects on distant sites (i.e., its "abscopal effect") remains unclear. Also, the clinical application of NIR in PD proves to be challenging. Efficacious delivery of NIR light to the substantia nigra pars compacta (SNpc), the primary site of disease pathology in PD, is fraught with technical challenges. Concerted efforts focused on understanding the biological effects of PBM and improving the efficiency of intracranial NIR delivery are therefore essential for its successful clinical translation. Nonetheless, PBM represents a potential novel therapy for PD. In this review, we provide an update on the role of mitochondrial dysfunction in PD and how PBM may help mitigate the neurodegenerative process. We also discussed clinical translation aspects of this treatment modality using intracranially implanted NIR delivery devices.
Collapse
Affiliation(s)
- Aaron Song Chuan Foo
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
10
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
11
|
El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid AL, Mitrofanis J. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 2017; 235:1861-1874. [DOI: 10.1007/s00221-017-4937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
|
12
|
Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Front Neurosci 2016; 9:500. [PMID: 26793049 PMCID: PMC4707222 DOI: 10.3389/fnins.2015.00500] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600-1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients.
Collapse
Affiliation(s)
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - Jonathan Stone
- Department of Physiology, University of Sydney Sydney, NSW, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - John Mitrofanis
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| |
Collapse
|
13
|
Jang I, Han C. Can phototherapy ameliorate the progression of Parkinson's disease? Photomed Laser Surg 2014; 32:525-6. [PMID: 25093424 DOI: 10.1089/pho.2014.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Insoo Jang
- 1 Department of Internal Medicine, College of Korean Medicine, Woosuk University , Jeonbuk, Republic of Korea
| | | |
Collapse
|
14
|
Johnstone DM, el Massri N, Moro C, Spana S, Wang XS, Torres N, Chabrol C, De Jaeger X, Reinhart F, Purushothuman S, Benabid AL, Stone J, Mitrofanis J. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism - an abscopal neuroprotective effect. Neuroscience 2014; 274:93-101. [PMID: 24857852 DOI: 10.1016/j.neuroscience.2014.05.023] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuroprotective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (∼30% increase vs sham-treated MPTP mice, p<0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (∼50% increase vs sham-treated MPTP mice, p<0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over transcranial irradiation.
Collapse
Affiliation(s)
- D M Johnstone
- Bosch Institute, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia.
| | - N el Massri
- Discipline of Anatomy & Histology, University of Sydney, Australia
| | - C Moro
- CEA, LETI, 38054 Grenoble, France
| | - S Spana
- Bosch Institute, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | - X S Wang
- Bosch Mass Spectrometry Facility, Bosch Institute, University of Sydney, Australia
| | - N Torres
- CEA, LETI, 38054 Grenoble, France
| | | | | | | | - S Purushothuman
- Bosch Institute, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | | | - J Stone
- Bosch Institute, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | - J Mitrofanis
- Bosch Institute, University of Sydney, Australia; Discipline of Anatomy & Histology, University of Sydney, Australia
| |
Collapse
|
15
|
Purushothuman S, Nandasena C, Johnstone DM, Stone J, Mitrofanis J. The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism. Brain Res 2013; 1535:61-70. [PMID: 23998985 DOI: 10.1016/j.brainres.2013.08.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 01/11/2023]
Abstract
We have examined whether near-infrared light (NIr) treatment mitigates oxidative stress and increased expression of hyperphosphorylated tau in a tau transgenic mouse strain (K3) that has a progressive degeneration of dopaminergic cells in the substantia nigra pars compacta (SNc). The brains of wild-type (WT), untreated K3 and NIr-treated K3 mice, aged five months (thus after the onset of parkinsonian signs and neuropathology), were labelled immunohistochemically for the oxidative stress markers 4-hydroxynonenal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHDG), hyperphosphorylated tau (using the AT8 antibody) and tyrosine hydroxylase (TH). The average intensity and area of 4-HNE, 8-OHDG and AT8 immunoreactivity were measured using the MetaMorph software and TH⁺ cell number was estimated using stereology. Our results showed immunoreactivity for 4-HNE, 8-OHDG and AT8 within the SNc was increased in K3 mice compared to WT, and that this increase was mitigated by NIr. Results further showed that TH⁺ cell number was lower in K3 mice than in WT, and that this loss was mitigated by NIr. In summary, NIr treatment reduced the oxidative stress caused by the tau transgene in the SNc of K3 mice and saved SNc cells from degeneration. Our results, when taken together with those in other models, strengthen the notion that NIr treatment saves dopaminergic cells in the parkinsonian condition.
Collapse
Affiliation(s)
- Sivaraman Purushothuman
- Discipline of Physiology, University of Sydney, Australia; Bosch Institute, University of Sydney, Australia
| | | | | | | | | |
Collapse
|
16
|
Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, Mitrofanis J, Benabid AL. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC Neurosci 2013; 14:40. [PMID: 23531041 PMCID: PMC3616839 DOI: 10.1186/1471-2202-14-40] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson's disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. RESULTS Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH⁺ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH⁺ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. CONCLUSIONS In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr through skin and fur, provides a clearer model of protection than the C57BL/6 strain.
Collapse
Affiliation(s)
- Cécile Moro
- CEA, LETI, CLINATEC, Grenoble, 38054, France
| | | | - Nabil El Massri
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| | - David Ratel
- CEA, LETI, CLINATEC, Grenoble, 38054, France
| | | | - Jonathan Stone
- Department of Physiology, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| | | |
Collapse
|