1
|
Ilari S, Nucera S, Passacatini LC, Caminiti R, Mazza V, Macrì R, Serra M, Scarano F, Malafoglia V, Palma E, Oppedisano F, Maiuolo J, Tomino C, Mollace V, Muscoli C. SIRT1: A likely key for future therapeutic strategies for pain management. Pharmacol Res 2025; 213:107670. [PMID: 39983332 DOI: 10.1016/j.phrs.2025.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Sirtuin 1 (SIRT1), a NAD+ -dependent histone deacetylase, plays a crucial role in mitigating oxidative stress, regulating inflammation, and maintaining mitochondrial function. Reduced SIRT1 activity has been linked to elevated pro-inflammatory cytokines, mitochondrial dysfunction, and chronic pain, all of which are observed in long COVID pathology. Emerging evidence identifies mitochondrial dysfunction and oxidative stress as central contributors to these symptoms. Increases reactive oxygen species (ROS) such as superoxide, nitric oxide, and peroxynitrite, leading to oxidative damage, chronic inflammation, and central/peripheral sensitization. Nutraceuticals, particularly the polyphenolic fraction of bergamot (BPF), have demonstrated potent antioxidant, anti-inflammatory, and antiviral properties. This study highlights BPF's ability to modulate SIRT1 activity in a rat model of inflammation and hyperalgesia. It provides novel evidence of SIRT1 nitration within the nucleus as a key event in inflammatory pain pathogenesis. BPF administration preserved SIRT1 activity, reduced oxidative stress markers such as malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG), and minimized post-translational modifications of nuclear proteins, including nitration, acetylation, and carbonylation. Additionally, it alleviated hyperalgesia and allodynia. These findings underscore the therapeutic potential of polyphenols like BPF in reducing oxidative stress and inflammation-driven pain. By activating SIRT1, BPF may provide relief for pain conditions. Further research on SIRT1-targeted therapies is essential to combat inflammation and oxidative stress, preventing chronic conditions and enhancing treatment options.
Collapse
Affiliation(s)
- Sara Ilari
- IRCCS San Raffaele Roma, Rome 00166, Italy; Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome 00166, Italy.
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Valeria Mazza
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy.
| |
Collapse
|
2
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
3
|
Qiu F, Liu Y, Liu Z. The Role of Protein S-Nitrosylation in Mitochondrial Quality Control in Central Nervous System Diseases. Aging Dis 2024:AD.2024.0099. [PMID: 38739938 DOI: 10.14336/ad.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
S-Nitrosylation is a reversible covalent post-translational modification. Under physiological conditions, S-nitrosylation plays a dynamic role in a wide range of biological processes by regulating the function of substrate proteins. Like other post-translational modifications, S-nitrosylation can affect protein conformation, activity, localization, aggregation, and protein interactions. Aberrant S-nitrosylation can lead to protein misfolding, mitochondrial fragmentation, synaptic damage, and autophagy. Mitochondria are essential organelles in energy production, metabolite biosynthesis, cell death, and immune responses, among other processes. Mitochondrial dysfunction can result in cell death and has been implicated in the development of many human diseases. Recent evidence suggests that S-nitrosylation and mitochondrial dysfunction are important modulators of the progression of several diseases. In this review, we highlight recent findings regarding the aberrant S- nitrosylation of mitochondrial proteins that regulate mitochondrial biosynthesis, fission and fusion, and autophagy. Specifically, we discuss the mechanisms by which S-nitrosylated mitochondrial proteins exercise mitochondrial quality control under pathological conditions, thereby influencing disease. A better understanding of these pathological events may provide novel therapeutic targets to mitigate the development of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
5
|
Maccallini C, Amoroso R. Neuronal Nitric Oxide Synthase and Post-Translational Modifications in the Development of Central Nervous System Diseases: Implications and Regulation. Molecules 2023; 28:6691. [PMID: 37764469 PMCID: PMC10538099 DOI: 10.3390/molecules28186691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the Central Nervous System (CNS), Nitric Oxide (NO) is mainly biosynthesized by neuronal Nitric Oxide Synthase (nNOS). The dysregulated activation of nNOS in neurons is critical in the development of different conditions affecting the CNS. The excessive production of NO by nNOS is responsible for a number of proteins' post-translational modifications (PTMs), which can lead to aberrant biochemical pathways, impairing CNS functions. In this review, we briefly revise the main implications of dysregulated nNOS in the progression of the most prevalent CNS neurodegenerative disorders, i.e., Alzheimer's disease (AD) and Parkinson's disease, as well as in the development of neuronal disorders. Moreover, a specific focus on compounds able to modulate nNOS activity as promising therapeutics to tackle different neuronal diseases is presented.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | | |
Collapse
|
6
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Kopacz A, Rojo AI, Patibandla C, Lastra-Martínez D, Piechota-Polanczyk A, Kloska D, Jozkowicz A, Sutherland C, Cuadrado A, Grochot-Przeczek A. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic Biol Med 2022; 192:37-49. [PMID: 36100148 DOI: 10.1016/j.freeradbiomed.2022.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Chinmai Patibandla
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Diego Lastra-Martínez
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
9
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Malfa GA, Tomasello B, Acquaviva R, Mantia AL, Pappalardo F, Ragusa M, Renis M, Di Giacomo C. The Antioxidant Activities of Betula etnensis Rafin. Ethanolic Extract Exert Protective and Anti-diabetic Effects on Streptozotocin-Induced Diabetes in Rats. Antioxidants (Basel) 2020; 9:E847. [PMID: 32927638 PMCID: PMC7555603 DOI: 10.3390/antiox9090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological mechanisms correlating diabetes mellitus with associated complications are still not completely clear, even though oxidative stress seems to play a pivotal role. Literature data suggest that cell damages induced by hyperglycemia, although multifactorial, have a common pathway in oxidative/nitrosative stress. The present study evaluated the effects of Betula etnensis Raf. bark extract, a plant belonging to the Betulaceae family endemic to Sicily, on oxidative stress and in preventing and/or retarding diabetes-associated complications in streptozotocin diabetic rats treated with the extract at dose of 0.5 g/kg body weight per day for 28 consecutive days. The extract administration significant decreased food and water intake, fasting blood glucose, weight loss and polyuria, compared with untreated diabetic animals. Furthermore, oxidative stress markers particularly, lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol groups (RSH), γ-glutamyl-cysteine-synthetase (γ-GCS) activities and expression, heme oxygenase-1 (HO-1), endothelial and inducible nitric oxide synthases (i-NOS e-NOS) expression, significantly changed by streptozocin treatment, were markedly restored both in plasma and tissues together with nuclear sirtuins activity (Sirt1). Results suggested that B. etnensis bark alcoholic extract is able to counteract oxidative stress and to ameliorate some general parameters related to diabetes.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Alfonsina La Mantia
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Francesco Pappalardo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Monica Ragusa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Marcella Renis
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| |
Collapse
|
11
|
Sutter CH, Rainwater HM, Sutter TR. Contributions of Nitric Oxide to AHR-Ligand-Mediated Keratinocyte Differentiation. Int J Mol Sci 2020; 21:ijms21165680. [PMID: 32784365 PMCID: PMC7460822 DOI: 10.3390/ijms21165680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AHR) in normal human epidermal keratinocytes (NHEKs) accelerates keratinocyte terminal differentiation through metabolic reprogramming and reactive oxygen species (ROS) production. Of the three NOS isoforms, NOS3 is significantly increased at both the RNA and protein levels by exposure to the very potent and selective ligand of the AHR, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Inhibition of NOS with the chemical N-nitro-l-arginine methyl ester (l-NAME) reversed TCDD-induced cornified envelope formation, an endpoint of terminal differentiation, as well as the expression of filaggrin (FLG), a marker of differentiation. Conversely, exposure to the NO-donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), increased the number of cornified envelopes above control levels and augmented the levels of cornified envelopes formed in response to TCDD treatment and increased the expression of FLG. This indicates that nitric oxide signaling can increase keratinocyte differentiation and that it is involved in the AHR-mediated acceleration of differentiation. As the nitrosylation of cysteines is a mechanism by which NO affects the structure and functions of proteins, the S-nitrosylation biotin switch technique was used to measure protein S-nitrosylation. Activation of the AHR increased the S-nitrosylation of two detected proteins of about 72 and 20 kD in size. These results provide new insights into the role of NO and protein nitrosylation in the process of epithelial cell differentiation, suggesting a role of NOS in metabolic reprogramming and the regulation of epithelial cell fate.
Collapse
Affiliation(s)
- Carrie Hayes Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (H.M.R.); (T.R.S.)
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
- Correspondence:
| | - Haley M. Rainwater
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (H.M.R.); (T.R.S.)
| | - Thomas R. Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (H.M.R.); (T.R.S.)
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
12
|
Faienza F, Rizza S, Giglio P, Filomeni G. TRAP1: A Metabolic Hub Linking Aging Pathophysiology to Mitochondrial S-Nitrosylation. Front Physiol 2020; 11:340. [PMID: 32411008 PMCID: PMC7201090 DOI: 10.3389/fphys.2020.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, Rome, Italy.,Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
13
|
Kopacz A, Klóska D, Proniewski B, Cysewski D, Personnic N, Piechota-Polańczyk A, Kaczara P, Zakrzewska A, Forman HJ, Dulak J, Józkowicz A, Grochot-Przęczek A. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biol 2020; 28:101304. [PMID: 31491600 PMCID: PMC6731384 DOI: 10.1016/j.redox.2019.101304] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. Here, we show that both human primary endothelial cells (ECs) and murine aortas lacking Nrf2 signaling are senescent but unexpectedly do not encounter damaging oxidative stress. Instead, they exhibit markedly increased S-nitrosation of proteins. A functional role of S-nitrosation is protection of ECs from death by inhibition of NOX4-mediated oxidative damage and redirection of ECs to premature senescence. S-nitrosation and senescence are mediated by Keap1, a direct binding partner of Nrf2, which colocalizes and precipitates with nitric oxide synthase (NOS) and transnitrosating protein GAPDH in ECs devoid of Nrf2. We conclude that the overabundance of this "unrestrained" Keap1 determines the fate of ECs by regulation of S-nitrosation and propose that Keap1/GAPDH/NOS complex may serve as an enzymatic machinery for S-nitrosation in mammalian cells.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106, Warsaw, Poland
| | - Nicolas Personnic
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
14
|
Nesci S, Trombetti F, Algieri C, Pagliarani A. A Therapeutic Role for the F 1F O-ATP Synthase. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:893-903. [PMID: 31266411 DOI: 10.1177/2472555219860448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, the F1FO-ATP synthase, due to its dual role of life enzyme as main adenosine triphosphate (ATP) maker and of death enzyme, as ATP dissipator and putative structural component of the mitochondrial permeability transition pore (mPTP), which triggers cell death, has been increasingly considered as a drug target. Accordingly, the enzyme offers new strategies to counteract the increased antibiotic resistance. The challenge is to find or synthesize compounds able to discriminate between prokaryotic and mitochondrial F1FO-ATP synthase, exploiting subtle structural differences to kill pathogens without affecting the host. From this perspective, the eukaryotic enzyme could also be made refractory to macrolide antibiotics by chemically produced posttranslational modifications. Moreover, because the mitochondrial F1FO-ATPase activity stimulated by Ca2+ instead of by the natural modulator Mg2+ is most likely involved in mPTP formation, effectors preferentially targeting the Ca2+-activated enzyme may modulate the mPTP. If the enzyme involvement in the mPTP is confirmed, Ca2+-ATPase inhibitors may counteract conditions featured by an increased mPTP activity, such as neurodegenerative and cardiovascular diseases and physiological aging. Conversely, mPTP opening could be pharmacologically stimulated to selectively kill unwanted cells. On the basis of recent literature and promising lab findings, the action mechanism of F1 and FO inhibitors is considered. These molecules may act as enzyme modifiers and constitute new drugs to kill pathogens, improve compromised enzyme functions, and limit the deathly enzyme role in pathologies. The enzyme offers a wide spectrum of therapeutic strategies to fight at the molecular level diseases whose treatment is still insufficient or merely symptomatic.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
15
|
Newsholme P, Keane KN, Carlessi R, Cruzat V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol 2019; 317:C420-C433. [PMID: 31216193 DOI: 10.1152/ajpcell.00141.2019] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: β-cell dysfunction and peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Larrick JW, Mendelsohn AR. Regulation of S-Nitrosylation in Aging and Senescence. Rejuvenation Res 2019; 22:171-174. [DOI: 10.1089/rej.2019.2194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James W. Larrick
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| | - Andrew R. Mendelsohn
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
17
|
S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci U S A 2018; 115:E3388-E3397. [PMID: 29581312 DOI: 10.1073/pnas.1722452115] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.
Collapse
|
18
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Rizza S, Filomeni G. Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR. Free Radic Biol Med 2017; 110:19-30. [PMID: 28533171 DOI: 10.1016/j.freeradbiomed.2017.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
S-nitrosylation is a major redox posttranslational modification involved in cell signaling. The steady state concentration of S-nitrosylated proteins depends on the balance between the relative ability to generate nitric oxide (NO) via NO synthase and to reduce nitrosothiols by denitrosylases. Numerous works have been published in last decades regarding the role of NO and S-nitrosylation in the regulation of protein structure and function, and in driving cellular activities in vertebrates. Notwithstanding an increasing number of observations indicates that impairment of denitrosylation equally affects cellular homeostasis, there is still no report providing comprehensive knowledge on the impact that denitrosylation has on maintaining correct physiological processes and organ activities. Among denitrosylases, S-nitrosoglutathione reductase (GSNOR) represents the prototype enzyme to disclose how denitrosylation plays a crucial role in tuning NO-bioactivity and how much it deeply impacts on cell homeostasis and human patho-physiology. In this review we attempt to illustrate the history of GSNOR discovery and provide the evidence so far reported in support of GSNOR implications in development and human disease.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
20
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 588] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
21
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
22
|
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 2015; 22:377-88. [PMID: 25257172 PMCID: PMC4326572 DOI: 10.1038/cdd.2014.150] [Citation(s) in RCA: 1582] [Impact Index Per Article: 158.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a catabolic process aimed at recycling cellular components and damaged organelles in response to diverse conditions of stress, such as nutrient deprivation, viral infection and genotoxic stress. A growing amount of evidence in recent years argues for oxidative stress acting as the converging point of these stimuli, with reactive oxygen species (ROS) and reactive nitrogen species (RNS) being among the main intracellular signal transducers sustaining autophagy. This review aims at providing novel insight into the regulatory pathways of autophagy in response to glucose and amino acid deprivation, as well as their tight interconnection with metabolic networks and redox homeostasis. The role of oxidative and nitrosative stress in autophagy is also discussed in the light of its being harmful for both cellular biomolecules and signal mediator through reversible posttranslational modifications of thiol-containing proteins. The redox-independent relationship between autophagy and antioxidant response, occurring through the p62/Keap1/Nrf2 pathway, is also addressed in order to provide a wide perspective upon the interconnection between autophagy and oxidative stress. Herein, we also attempt to afford an overview of the complex crosstalk between autophagy and DNA damage response (DDR), focusing on the main pathways activated upon ROS and RNS overproduction. Along these lines, the direct and indirect role of autophagy in DDR is dissected in depth.
Collapse
Affiliation(s)
- G Filomeni
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
| | - D De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
| | - F Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
| |
Collapse
|
23
|
Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P, De Zio D, Maiani E, Muscoli C, Lauro F, Ilari S, Bernardini S, Cannata S, Gargioli C, Ciriolo MR, Cecconi F, Bonaldo P, Filomeni G. S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal 2014; 21:570-87. [PMID: 24684653 PMCID: PMC4086474 DOI: 10.1089/ars.2013.5696] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. RESULTS We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. INNOVATION Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. CONCLUSION These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.
Collapse
|
24
|
S-nitrosation and ubiquitin-proteasome system interplay in neuromuscular disorders. Int J Cell Biol 2014; 2014:428764. [PMID: 24627685 PMCID: PMC3928863 DOI: 10.1155/2014/428764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Protein S-nitrosation is deemed as a prototype of posttranslational modifications governing cell signaling. It takes place on specific cysteine residues that covalently incorporate a nitric oxide (NO) moiety to form S-nitrosothiol derivatives and depends on the ratio between NO produced by NO synthases and nitrosothiol removal catalyzed by denitrosating enzymes. A large number of cysteine-containing proteins are found to undergo S-nitrosation and, among them, the enzymes catalyzing ubiquitination, mainly the class of ubiquitin E3 ligases and the 20S component of the proteasome, have been reported to be redox modulated in their activity. In this review we will outline the processes regulating S-nitrosation and try to debate whether and how it affects protein ubiquitination and degradation via the proteasome. In particular, since muscle and neuronal health largely depends on the balance between protein synthesis and breakdown, here we will discuss the impact of S-nitrosation in the efficiency of protein quality control system, providing lines of evidence and speculating about its involvement in the onset and maintenance of neuromuscular dysfunctions.
Collapse
|
25
|
De Zio D, Cianfanelli V, Cecconi F. New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal 2013; 19:559-71. [PMID: 23025416 PMCID: PMC3717195 DOI: 10.1089/ars.2012.4938] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE When lesions are unrepaired or there are defects in the DNA repair system, DNA damage is often correlated to apoptosis. However, different kinds of lesions and different degrees of lesion severity can trigger numerous signaling responses. RECENT ADVANCES DNA repair proteins involved in specific DNA repair pathways can modulate the function or activity of some apoptotic factors, further emphasizing the crosstalk between DNA damage and cell death. CRITICAL ISSUES Here, we discuss the signaling networks that link DNA damage to apoptosis, and we focus on post-translational modifications, leading to crucial changes in protein behavior, following various kinds of DNA damage. Moreover, we analyze the existence of apoptosis-related functions of typical repair proteins, leading to diverse, often-overlapping, DNA damage responses. FUTURE DIRECTIONS The better understanding of the regulation and the functionality of key DNA repair proteins, also involved in apoptosis regulation, has the potential of modulating the cell outcomes on DNA damage, particularly in the context of cancer treatment.
Collapse
Affiliation(s)
- Daniela De Zio
- Dulbecco Telethon Institute at the Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | |
Collapse
|