1
|
Laitinen T, Meili T, Koyioni M, Koutentis PA, Poso A, Hofmann-Lehmann R, Asquith CRM. Synthesis and evaluation of 1,2,3-dithiazole inhibitors of the nucleocapsid protein of feline immunodeficiency virus (FIV) as a model for HIV infection. Bioorg Med Chem 2022; 68:116834. [PMID: 35653871 DOI: 10.1016/j.bmc.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
We disclose a series of potent anti-viral 1,2,3-dithiazoles, accessed through a succinct synthetic approach from 4,5-dichloro-1,2,3-dithiazolium chloride (Appel's salt). A series of small libraries of compounds were screened against feline immunodeficiency virus (FIV) infected cells as a model for HIV. This approach highlighted new structure activity relationship understanding and led to the development of sub-micro molar anti-viral compounds with reduced toxicity. In addition, insight into the mechanistic progress of this system is provided via advanced QM-MM modelling. The 1,2,3-dithiazole represents a versatile scaffold with potential for further development to treat both FIV and HIV.
Collapse
Affiliation(s)
- Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Maria Koyioni
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Regina Hofmann-Lehmann
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Masenga W, Paganotti GM, Seatla K, Gaseitsiwe S, Sichilongo K. A fast-screening dispersive liquid-liquid microextraction-gas chromatography-mass spectrometry method applied to the determination of efavirenz in human plasma samples. Anal Bioanal Chem 2021; 413:6401-6412. [PMID: 34557941 DOI: 10.1007/s00216-021-03604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
We demonstrate the suitability of a fast, green, easy-to-perform, and modified sample extraction procedure, i.e., dispersive liquid-liquid microextraction (DLLME) for the determination of efavirenz (EFV) in human plasma. Data acquisition was done by gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode. The simplicity of the method lies in, among others, the avoidance of the use of large organic solvent volumes as mobile phases and non-volatile buffers that tend to block the plumbing in high-performance liquid chromatography (HPLC). Chromatographic and mass spectral parameters were optimized using bovine whole blood for matrix matching due to insufficient human plasma. Method validation was accomplished using the United States Food and Drug Administration (USFDA) 2018 guidelines. The calibration curve was linear with a dynamic range of 0.10-2.0 μg/mL and an R2 value of 0.9998. The within-run accuracy and precision were both less than 20% at the lower limit of quantification (LLOQ) spike level. The LLOQ was 0.027 μg/mL which compared well with some values but was also orders of magnitude better than others reported in the literature. The percent recovery was 91.5% at the LLOQ spike level. The DLLME technique was applied in human plasma samples from patients who were on treatment with EFV. The human plasma samples gave concentrations of EFV ranging between 0.14-1.00 μg/mL with three samples out of seven showing concentrations that fell within or close to the recommended therapeutic range.
Collapse
Affiliation(s)
- Wangu Masenga
- Department of Chemistry, Faculty of Science, University of Botswana, PB 00704, Gaborone, Botswana
| | - Giacomo Maria Paganotti
- Botswana - University of Pennsylvania Partnership (BUP), Box AC 157 ACH, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, PB 00713, Gaborone, Botswana
| | - Kaelo Seatla
- Botswana Harvard AIDS institute partnership (BHP), P.O. Box BO, 320, Gaborone, Botswana.,Department of Medical Laboratory Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS institute partnership (BHP), P.O. Box BO, 320, Gaborone, Botswana.,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Kwenga Sichilongo
- Department of Chemistry, Faculty of Science, University of Botswana, PB 00704, Gaborone, Botswana.
| |
Collapse
|
3
|
Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale? Cells 2021; 10:cells10051212. [PMID: 34063534 PMCID: PMC8156893 DOI: 10.3390/cells10051212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
After the introduction of antiretroviral treatment (ART) back in 1996, the lifespan of people living with HIV (PLWH) has been substantially increased, while the major causes of morbidity and mortality have switched from opportunistic infections and AIDS-related neoplasms to cardiovascular and liver diseases. HIV itself may lead to liver damage and subsequent liver fibrosis (LF) through multiple pathways. Apart from HIV, viral hepatitis, alcoholic and especially non-alcoholic liver diseases have been implicated in liver involvement among PLWH. Another well known cause of hepatotoxicity is ART, raising clinically significant concerns about LF in long-term treatment. In this review we present the existing data and analyze the association of LF with all ART drug classes. Published data derived from many studies are to some extent controversial and therefore remain inconclusive. Among all the antiretroviral drugs, nucleoside reverse transcriptase inhibitors, especially didanosine and zidovudine, seem to carry the greatest risk for LF, with integrase strand transfer inhibitors and entry inhibitors having minimal risk. Surprisingly, even though protease inhibitors often lead to insulin resistance, they do not seem to be associated with a significant risk of LF. In conclusion, most ART drugs are safe in long-term treatment and seldom lead to severe LF when no liver-related co-morbidities exist.
Collapse
|
4
|
Mostoufi A, Chamkouri N, Kordrostami S, Alghasibabaahmadi E, Mojaddami A. 3-Hydroxypyrimidine-2, 4-dione Derivatives as HIV Reverse Transcriptase-Associated RNase H Inhibitors: QSAR Analysis and Molecular Docking Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:84-97. [PMID: 32922472 PMCID: PMC7462486 DOI: 10.22037/ijpr.2020.1101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIDS, as a lethal disease, is caused by infection with the HIV virus that affects millions of people. Three essential enzymes should be encoded for replication of HIV virus: protease, integrase and reverse transcriptase (RT). RT has two different activities including DNA polymerase and ribonuclease H (RNase H). However, all of the marketed RT inhibitors target only the DNA polymerase activity. Therefore, ribonuclease H activity may serve as a new target for drug discovery. In the present study, a series of 3-Hydroxypyrimidine-2, 4-dione derivatives as potent RT-associated RNase H inhibitors were applied to QSAR analysis. Two methods including multiple linear regressions (MLR) and partial least squared based on genetic algorithm (GA-PLS) were utilized to find the relationship between the structural feathers and inhibitory activities of these compounds. The best multiple linear regression equation was generated by GA-PLS method. A combination of 2D autocorrelations, topological, atom-centered, and geometrical descriptors were selected by GA-PLS as they had more effects on the inhibitory activity. Then, the molecular docking studies were carried out. The results showed that the important amino acids inside the active site of the enzyme responsible for essential interactions were Gln475, Asp549, Tyr501, Ser515, Trp534, Asp493, Tyr472, and Gln480 which took part in hydrogen bond formation. Furthermore, docking energy was plotted against pIC50 predicted by GA-PLS method. The result showed that there is a good correlation with R2=0.71. Consequently, these findings suggest that the better method, GA-PLS, could be applied to design new compounds and predict their inhibitory activity.
Collapse
Affiliation(s)
- Azar Mostoufi
- Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Samaneh Kordrostami
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Alghasibabaahmadi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ayyub Mojaddami
- Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Kumar M, Mandal K, Blakeley MP, Wymore T, Kent SBH, Louis JM, Das A, Kovalevsky A. Visualizing Tetrahedral Oxyanion Bound in HIV-1 Protease Using Neutrons: Implications for the Catalytic Mechanism and Drug Design. ACS OMEGA 2020; 5:11605-11617. [PMID: 32478251 PMCID: PMC7254801 DOI: 10.1021/acsomega.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
HIV-1 protease is indispensable for virus propagation and an important therapeutic target for antiviral inhibitors to treat AIDS. As such inhibitors are transition-state mimics, a detailed understanding of the enzyme mechanism is crucial for the development of better anti-HIV drugs. Here, we used room-temperature joint X-ray/neutron crystallography to directly visualize hydrogen atoms and map hydrogen bonding interactions in a protease complex with peptidomimetic inhibitor KVS-1 containing a reactive nonhydrolyzable ketomethylene isostere, which, upon reacting with the catalytic water molecule, is converted into a tetrahedral intermediate state, KVS-1TI. We unambiguously determined that the resulting tetrahedral intermediate is an oxyanion, rather than the gem-diol, and both catalytic aspartic acid residues are protonated. The oxyanion tetrahedral intermediate appears to be unstable, even though the negative charge on the oxyanion is delocalized through a strong n → π* hyperconjugative interaction into the nearby peptidic carbonyl group of the inhibitor. To better understand the influence of the ketomethylene isostere as a protease inhibitor, we have also examined the protease structure and binding affinity with keto-darunavir (keto-DRV), which similar to KVS-1 includes the ketomethylene isostere. We show that keto-DRV is a significantly less potent protease inhibitor than DRV. These findings shed light on the reaction mechanism of peptide hydrolysis catalyzed by HIV-1 protease and provide valuable insights into further improvements in the design of protease inhibitors.
Collapse
Affiliation(s)
- Mukesh Kumar
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kalyaneswar Mandal
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue−Langevin, 38000 Grenoble, France
| | - Troy Wymore
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen B. H. Kent
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. Louis
- Laboratory of Chemical Physics, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Amit Das
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Andrey Kovalevsky
- Neutron Scattering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
6
|
Olofsson IA, Kogelman L, Rasmussen A, Erikstrup C, Sørensen E, Paarup HM, Hjalmgrim H, Banasik K, Nielsen KR, Burgdorf KS, Pedersen OBV, Ullum H, Olesen J, Hansen TF. Prevalence and socio-demographic characteristics of persons who have never had a headache among healthy voluntary blood donors - a population-based study. Cephalalgia 2020; 40:1055-1062. [PMID: 32312100 DOI: 10.1177/0333102420920653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Headache is an extremely prevalent disorder with a lifetime prevalence of 90-99%. However, a small fraction of people never experiences a headache. Research on people without headache could uncover protective factors in headache, but to our knowledge no study on headache-free individuals has been published. We aim to estimate the prevalence of headache-free individuals among Danish blood donors, and to describe the socio-demographics and health factors of headache-free participants. MATERIALS AND METHODS In all, 38,557 healthy volunteers were recruited as part of the Danish Blood Donor Study. Headache-free participants were identified based on the question "Have you ever experienced a headache of any kind?". Utilising the Danish registries and self-reported questionnaires, we analysed socio-demographic and lifestyle factors using logistic regression adjusted for age and sex. RESULTS The prevalence of headache-free individuals was 4.1% (n = 1362) with a female-male ratio of 1:2.2. To be headache free was significantly associated with an employment status as a student, a low level of income and a regular alcohol consumption. DISCUSSION The prevalence of headache-free individuals was comparable to population-wide studies of headache. To be headache free was not associated with a high socio-economic status. Further studies on people without headache will hopefully reveal protective factors in headache, and this novel approach might be useful in other very prevalent disorders.
Collapse
Affiliation(s)
- Isa Amalie Olofsson
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Lisette Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Andreas Rasmussen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Helene M Paarup
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Henrik Hjalmgrim
- Department of Epidemiological Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark.,Novo Nordisk Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
8
|
Asquith CRM, Sil BC, Laitinen T, Tizzard GJ, Coles SJ, Poso A, Hofmann-Lehmann R, Hilton ST. Novel epidithiodiketopiperazines as anti-viral zinc ejectors of the Feline Immunodeficiency Virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem 2019; 27:4174-4184. [PMID: 31395510 DOI: 10.1016/j.bmc.2019.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/02/2023]
Abstract
Focused libraries of multi-substituted epidithiodiketopiperazines (ETP) were prepared and evaluated for efficacy of inhibiting the nucleocapsid protein function of the Feline Immunodeficiency Virus (FIV) as a model for HIV. This activity was compared and contrasted to observed toxicity utilising an in-vitro cell culture approach. This resulted in the identification of several promising lead compounds with nanomolar potency in cells with low toxicity and a favorable therapeutic index.
Collapse
Affiliation(s)
- Christopher R M Asquith
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bruno C Sil
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, United Kingdom
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Stephen T Hilton
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
9
|
Asquith CRM, Meili T, Laitinen T, Baranovsky IV, Konstantinova LS, Poso A, Rakitin OA, Hofmann-Lehmann R. Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem Lett 2019; 29:1765-1768. [PMID: 31101470 DOI: 10.1016/j.bmcl.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
We report the first biological evaluation the 1,2,3-thiaselenazole class of compound and utilising a concise synthetic approach of sulfur extrusion, selenium insertion of the 1,2,3-dithiazoles. We created a small diverse library of compounds to contrast the two ring systems. This approach has highlighted new structure activity relationship insights and lead to the development of sub-micro molar anti-viral compounds with reduced toxicity. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of FIV and HIV.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Theres Meili
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Ilia V Baranovsky
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Antti Poso
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
10
|
Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 Entry Inhibitors: A Review of Experimental and Computational Studies. Chem Biodivers 2018; 15:e1800159. [PMID: 30027572 DOI: 10.1002/cbdv.201800159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
Abstract
The HIV-1 life cycle consists of different events, such as cell entry and fusion, virus replication, assembly and release of the newly formed virions. The more logical way to inhibit HIV transmission among individuals is to inhibit its entry into the immune host cells rather than targeting the intracellular viral enzymes. Both viral and host cell surface receptors and co-receptors are regarded as potential targets in anti-HIV-1 drug design process. Because of the importance of this topic it was decided to summarize recent reports on small-molecule HIV-1 entry inhibitors that have not been considered in the latest released reviews. All the computational studies reported in the literature regarding HIV-1 entry inhibitors since 2014 was also considered in this review.
Collapse
Affiliation(s)
- Tahereh Mostashari Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.,Bioinformatics and Systems Biology Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
11
|
Sancineto L, Iraci N, Tabarrini O, Santi C. NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 2017; 23:260-271. [PMID: 29107765 DOI: 10.1016/j.drudis.2017.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
The major internal component of the HIV virion core is the nucleocapsid protein 7 (NCp7), a small, highly basic protein that is essential for multiple stages of the viral replicative cycle, and whose structure is preserved in all viral strains, including clinical isolates from therapy-experienced patients. This key protein is recognised as a potential target for an effective next-generation antiretroviral therapy, because it could offer the possibility to develop broad-spectrum agents that are less prone to select for resistant strains. Here, we provide a comprehensive overview of the covalent NCp7 inhibitors that have emerged over the past 25 years of drug discovery campaigns, emphasising, where possible, their structure-activity relationships (SARs) and pharmacophoric features.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromolecular Studies, Lodz, Poland.
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
13
|
Kang D, Fang Z, Li Z, Huang B, Zhang H, Lu X, Xu H, Zhou Z, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J Med Chem 2016; 59:7991-8007. [PMID: 27541578 DOI: 10.1021/acs.jmedchem.6b00738] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China.,The Second Hospital, Shandong University , No. 247 Beiyuan Avenue, Jinan 250033, China
| | - Zhenyu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| |
Collapse
|
14
|
Chalcogen bonding interactions between reducible sulfur and selenium compounds and models of zinc finger proteins. J Inorg Biochem 2016; 157:94-103. [DOI: 10.1016/j.jinorgbio.2016.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
|
15
|
Smith SJ, Pauly GT, Akram A, Melody K, Rai G, Maloney DJ, Ambrose Z, Thomas CJ, Schneider JT, Hughes SH. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology 2016; 13:11. [PMID: 26880034 PMCID: PMC4754833 DOI: 10.1186/s12977-016-0244-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. Results Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. Conclusions The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Gary T Pauly
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Aamir Akram
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Kevin Melody
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Zandrea Ambrose
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Joel T Schneider
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
16
|
Pechinskii SV, Kuregyan AG, Ozerov AA, Novikov MS. Design of New Uracil Derivatives Possessing Inhibitory Activity with Respect to Reverse Transcriptase of HIV-1 Mutant K103N/Y181C. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
18
|
Jones E, Ojewole E, Kalhapure R, Govender T. In vitrocomparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev Ind Pharm 2014; 40:669-79. [DOI: 10.3109/03639045.2014.892957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Poongavanam V, Narayana Moorthy NSH, Kongsted J. Dual mechanism of HIV-1 integrase and RNase H inhibition by diketo derivatives – a computational study. RSC Adv 2014. [DOI: 10.1039/c4ra05728g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual inhibition of HIV-1 integrase and RNase H by the diketo derivatives is investigated through ligand and structure based computational methods.
Collapse
Affiliation(s)
| | | | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- Odense M, Denmark
| |
Collapse
|
20
|
Virtual Screening for Potential Substances for the Prophylaxis of HIV Infection in Libraries of Commercially Available Organic Compounds. Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Poongavanam V, Kongsted J. Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition. PLoS One 2013; 8:e73478. [PMID: 24066050 PMCID: PMC3774690 DOI: 10.1371/journal.pone.0073478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022] Open
Abstract
The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1 reverse transcriptase associated ribonuclease H (RNase H) function provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico approaches as virtual screening (VS) tools in order to efficiently identify RNase H inhibitors from large chemical databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP) and flexible ligand docking methods. The results show that receptor-based flexible docking experiments provides good enrichment (80–90%) compared to ligand-based approaches such as FLAP (74%), shape similarity (75%) and random forest (72%). Thus, this study suggests that flexible docking experiments is the model of choice in terms of best retrieval of active from inactive compounds and efficiency and efficacy schemes. Moreover, shape similarity, machine learning and FLAP models could also be used for further validation or filtration in virtual screening processes. The best models could potentially be use for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation.
Collapse
Affiliation(s)
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
22
|
Lee YM, Wang YT, Duh Y, Yuan HS, Lim C. Identification of Labile Zn Sites in Drug-Target Proteins. J Am Chem Soc 2013; 135:14028-31. [DOI: 10.1021/ja406300c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | | | - Carmay Lim
- Department of
Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Prestes-Carneiro LE. Antiretroviral therapy, pregnancy, and birth defects: a discussion on the updated data. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2013; 5:181-9. [PMID: 23943659 PMCID: PMC3738258 DOI: 10.2147/hiv.s15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of HIV-infected women of childbearing age are initiating antiretroviral therapy (ART) worldwide. This review aims to discuss updated data of the eligible ART regimens and their role in inducing birth defects in utero. Zidovudine and lamivudine plus a non-nucleoside reverse-transcriptase inhibitor or protease inhibitor (PI) is the first-line regimen applied. The role of zidovudine exposition monotherapy or associated with other ART in inducing birth defects remains inconclusive. The main organ systems involved are genitourinary and cardiovascular. For HIV-infected pregnant women, World Health Organization (WHO) guidelines up to 2010 recommend the same group of drugs that are prescribed to nonpregnant women. The exception is efavirenz, which has been associated with an increase in the risk of teratogenicity. Increased rates of birth defects were found in large cohorts and computational studies conducted recently in infants exposed to efavirenz-containing regimens. The combination of zidovudine and lamivudine and lopinavir/ritonavir is one of the most used ART regimens for prevention of mother-to-child-transmission. Conflicting data about the role of PI exposure in utero and birth defects have been reported. However, a reduced number of studies evaluating the role of PI in inducing birth defects in women are available. An association between prematurity and PI exposure in pregnancy was extensively described. Some questions arise due to the tendency of initiating ART early in the life of HIV-infected individuals or those at risk of infection. Longtime exposure to different ART regimens and the potential effect of birth-defect induction in pregnancy are not completely understood. Developing regions harbor the highest numbers of women of reproductive age exposed to ART. Most of the largest and expressive data come from developed countries, and could not be sufficiently representative of pregnant women living in developing countries.
Collapse
Affiliation(s)
- Luiz Euribel Prestes-Carneiro
- Immunology Department, University of Oeste Paulista, Presidente Prudente, São Paulo, Brazil ; Infectious Diseases Department, Hospital Ipiranga, São Paulo, S P, Brazil
| |
Collapse
|
24
|
Johnson BC, Pauly GT, Rai G, Patel D, Bauman JD, Baker HL, Das K, Schneider JP, Maloney DJ, Arnold E, Thomas CJ, Hughes SH. A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants. Retrovirology 2012; 9:99. [PMID: 23217210 PMCID: PMC3549755 DOI: 10.1186/1742-4690-9-99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022] Open
Abstract
Background The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT) and drug-resistant HIV-1. Results We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling) of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. Conclusions Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors.
Collapse
Affiliation(s)
- Barry C Johnson
- HIV Drug Resistance Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang H, Nkeze J, Zhao RY. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2012; 2:32. [PMID: 22971934 PMCID: PMC3490751 DOI: 10.1186/2045-3701-2-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains.
Collapse
Affiliation(s)
- Hailiu Yang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|