1
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Taskaldiran ES, Tuter G, Yucel AA, Yaman M. Effects of smoking on the salivary and GCF levels of IL-17 and IL-35 in periodontitis. Odontology 2024; 112:616-623. [PMID: 37566245 DOI: 10.1007/s10266-023-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Periodontitis progression is associated with a host response in which anti-inflammatory and pro-inflammatory cytokine networks play a key role. Smoking is involved in the production of various mediators. The study aims to evaluate the levels of IL-17 and IL-35 in saliva and gingival crevicular fluid (GCF), to investigate the effects of smoking on these cytokines in smoker and non-smoker periodontitis patients. 19 smokers with periodontitis, 20 non-smokers with periodontitis, and 18 periodontally healthy subjects were included in the study. Periodontal clinical indexes were recorded and the levels of IL-17 and IL-35 in saliva and GCF were analyzed. No significant difference was detected among the groups in terms of salivary IL-17 and IL-35 levels. GCF IL-17 and IL-35 concentration levels in the non-smoker periodontitis group were significantly lower than the others (p < 0.05). Total levels of GCF IL-17 were significantly higher in both periodontitis groups than the control group; and total levels of GCF IL-35 were significantly higher in non-smoker periodontitis group than the others (p < 0.05). A positive correlation was detected between the salivary IL-17 and IL-35 levels (r = 0.884), GCF IL-17 and IL-35 concentrations (r = 0.854), and total GCF IL-17 and IL-35 (r = 0.973) levels (p < 0.01). The present study revealed a positive correlation between the IL-35 and IL-17 levels both in saliva and GCF. IL-17 and IL-35 can be considered as one of the cytokines that play a role in periodontal health and periodontitis; and smoking may be among the factors that affect the levels of these cytokines in GCF and saliva.
Collapse
Affiliation(s)
- Ezgi Sila Taskaldiran
- Department of Periodontology, Faculty of Dentistry, Istanbul Aydin University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Gulay Tuter
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | - Aysegul Atak Yucel
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Melek Yaman
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Grandi A, Ferrini E, Mecozzi L, Ciccimarra R, Zoboli M, Leo L, Khalajzeyqami Z, Kleinjan A, Löwik CWGM, Donofrio G, Villetti G, Stellari FF. Indocyanine-enhanced mouse model of bleomycin-induced lung fibrosis with hallmarks of progressive emphysema. Am J Physiol Lung Cell Mol Physiol 2023; 324:L211-L227. [PMID: 36625471 PMCID: PMC9925167 DOI: 10.1152/ajplung.00180.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of new drugs for idiopathic pulmonary fibrosis strongly relies on preclinical experimentation, which requires the continuous improvement of animal models and integration with in vivo imaging data. Here, we investigated the lung distribution of bleomycin (BLM) associated with the indocyanine green (ICG) dye by fluorescence imaging. A long-lasting lung retention (up to 21 days) was observed upon oropharyngeal aspiration (OA) of either ICG or BLM + ICG, with significantly more severe pulmonary fibrosis, accompanied by the progressive appearance of emphysema-like features, uniquely associated with the latter combination. More severe and persistent lung fibrosis, together with a progressive air space enlargement uniquely associated with the BLM + ICG group, was confirmed by longitudinal micro-computed tomography (CT) and histological analyses. Multiple inflammation and fibrosis biomarkers were found to be increased in the bronchoalveolar lavage fluid of BLM- and BLM + ICG-treated animals, but with a clear trend toward a much stronger increase in the latter group. Similarly, in vitro assays performed on macrophage and epithelial cell lines revealed a significantly more marked cytotoxicity in the case of BLM + ICG-treated mice. Also unique to this group was the synergistic upregulation of apoptotic markers both in lung sections and cell lines. Although the exact mechanism underlying the more intense lung fibrosis phenotype with emphysema-like features induced by BLM + ICG remains to be elucidated, we believe that this combination treatment, whose overall effects more closely resemble the human disease, represents a valuable alternative model for studying fibrosis development and for the identification of new antifibrotic compounds.
Collapse
Affiliation(s)
- Andrea Grandi
- 1Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Erica Ferrini
- 2Department of Veterinary Science, University of Parma, Parma, Italy
| | - Laura Mecozzi
- 3Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Matteo Zoboli
- 2Department of Veterinary Science, University of Parma, Parma, Italy
| | - Ludovica Leo
- 3Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Zahra Khalajzeyqami
- 4Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alex Kleinjan
- 5Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Clemens W. G. M. Löwik
- 6Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gaetano Donofrio
- 2Department of Veterinary Science, University of Parma, Parma, Italy
| | - Gino Villetti
- 1Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | | |
Collapse
|
4
|
Teixeira DS, Louzeiro GC, Figueiredo MA, Cherubini K, Salum FG. Erythromycin: an alternative for the management of oral mucositis? Med Oral Patol Oral Cir Bucal 2022; 27:e452-e459. [PMID: 35717620 PMCID: PMC9445611 DOI: 10.4317/medoral.25439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Oral mucositis (OM) is an important acute adverse effect of anticancer therapy. This condition presents high morbidity and may lead to the suspension of anticancer therapy. MATERIAL AND METHODS We reviewed the literature on the pathobiology of OM and the properties of erythromycin (EM), to consider the possibility of its use for the prevention and treatment of OM. We searched the PubMed, Scopus and Web of Science databases and selected complete articles published in English or Spanish that met the inclusion criteria. The search terms "erythromycin", "inflammation", "immunomodulation" and "oral mucositis" were used. RESULTS The control of free radicals, transcription factors and pro-inflammatory cytokines has been considered as the key to the management of OM. EM has the ability to modulate oxidative stress, acts on the transcriptional system and inhibits the production of several cytokines that have been directly implicated in OM pathobiology. CONCLUSIONS The present review suggests that EM could be effective in the treatment of OM. Experimental studies investigating the use of EM in OM should be encouraged.
Collapse
Affiliation(s)
- D-S Teixeira
- Serviço de Estomatologia Hospital São Lucas, PUCRS Av. Ipiranga, 6690 Room 231 90610-000, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
5
|
Feng J, Wu Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int Immunopharmacol 2022; 110:108938. [PMID: 35759811 DOI: 10.1016/j.intimp.2022.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
The immune response is of great significance in the initiation and progression of a diversity of cardiovascular diseases involving pro-and anti-inflammatory cytokines. Interleukin-35 (IL-35), a cytokine of the interleukin-12 family, is a novel anti-inflammation and immunosuppressive cytokine, maintaining inflammatory suppression and regulating immune homeostasis. The role of IL-35 in cardiovascular diseases (CVDs) has aroused enthusiastic attention, a diversity of experimental or clinical evidence has indicated that IL-35 potentially has a pivot role in protecting against cardiovascular diseases, especially atherosclerosis and myocarditis. In this review, we initiate an overview of the relationship between Interleukin-35 and cardiovascular diseases, including atherosclerosis, acute coronary syndrome, pulmonary hypertension, abdominal aortic aneurysm, heart failure, myocardial ischemia-reperfusion, aortic dissection and myocarditis. Although the specific molecular mechanisms entailing the protective effects of IL-35 remain an unsolved issue, targeted therapies with IL-35 might provide a promising and effective solution to prevent and cure cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, Wan Ahmad WAN, Nurul AA. Lignosus rhinocerotis Cooke Ryvarden ameliorates airway inflammation, mucus hypersecretion and airway hyperresponsiveness in a murine model of asthma. PLoS One 2021; 16:e0249091. [PMID: 33784348 PMCID: PMC8009377 DOI: 10.1371/journal.pone.0249091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
Collapse
Affiliation(s)
- Malagobadan Johnathan
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Aminah Muhamad
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ezumi Mohd Fuad
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
7
|
Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios +Foxp3 + Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol 2021; 132:236-249. [PMID: 33494935 PMCID: PMC8058740 DOI: 10.1016/j.molimm.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T lymphocytes are important targets for the treatment of acute respiratory distress syndrome (ARDS). IL-35 is a newly identified IL-12 cytokine family member that plays an important protective role in a variety of immune system diseases by regulating Treg cell differentiation; however, the role of IL-35 in the pathogenesis of ARDS is still unclear. Here, we found that IL-35 was significantly elevated in adult patients with ARDS compared to controls. Additionally, IL-35 was positively and significantly correlated with IL-6, IL-10 and the oxygenation index (PaO2/FiO2 ratio) but negatively correlated with TNF-α, IL-1β and APACHE II score during ARDS. Moreover, the proportion of Treg/CD4+ cells in the peripheral blood of ARDS patients and the expression of NF-κB in PMBCs were significantly higher than in healthy individuals. Recombinant IL-35 improved survival in a murine model of CLP-induced ARDS. Additionally, IL-35 administration decreased the inflammatory response, as reflected by lower levels of cytokines (including IL-2, TNF-α, IL-1β and IL-6) and less lung damage in CLP-induced ARDS. Furthermore, recombinant IL-35 reduced the apoptosis of lung tissue and the expression of NF-κB signalling in a CLP-induced ARDS model and increased the proportion of Treg cells in spleen and peripheral blood. In vitro experiments revealed that IL-35 can affect the phosphorylation of STAT5 during differentiation of naïve CD4+ T lymphocytes into Foxp3+Helios+ Tregs. Our findings suggest that IL-35 attenuates ARDS by promoting the differentiation of naïve CD4+ T cells into Foxp3+Helios+ Tregs, thereby providing a novel tool for anti-ARDS therapy.
Collapse
|
8
|
Liu J, Zhong X, He Z, Zhang J, Bai J, Liu G, Liang Y, Ya L, Qin X. Erythromycin Suppresses the Cigarette Smoke Extract-Exposed Dendritic Cell-Mediated Polarization of CD4 + T Cells into Th17 Cells. J Immunol Res 2020; 2020:1387952. [PMID: 32411785 PMCID: PMC7201779 DOI: 10.1155/2020/1387952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoke is a major effector of chronic obstructive pulmonary disease (COPD), and Th17 cells and dendritic cells (DCs) involve in the pathogenesis of COPD. Previous studies have demonstrated the anti-inflammatory effects of macrolides. However, the effects of macrolides on the cigarette smoke extract- (CSE-) induced immune response are unclear. Accordingly, in this study, we evaluated the effects of erythromycin (EM) on CSE-exposed DCs polarizing naïve CD4+ T cells into Th17 cells. DCs were generated from bone marrow-derived mononuclear cells isolated from male BALB/c mice and divided into five groups: control DC group, CSE-exposed DC group, CD40-antibody-blocked CSE-exposed DC group, and EM-treated CSE-exposed DC group. The function of polarizing CD4+ T cells into Th17 cells induced by all four groups of DCs was assayed based on the mixed lymphocyte reaction (MLR) of naïve CD4+ T cells. CD40 expression in DCs in the CSE-exposed group increased significantly compared with that in the control group (P < 0.05). The Th17 cells in the CSE-exposed DC/MLR group increased significantly compared with those in the control DC/MLR group (P < 0.05). Moreover, Th17 cells in the CD40-blocked CSE-exposed DC/MLR group and EM-treated CSE-exposed DC/MLR group were reduced compared with those in the CSE-exposed DC/MLR group (P < 0.05). Thus, these findings suggested that EM suppressed the CSE-exposed DC-mediated polarization of CD4+ T cells into Th17 cells and that this effect may be mediated through inhibition of the CD40/CD40L pathway.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhiyi He
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jianquan Zhang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jing Bai
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangnan Liu
- Department of Respiratory Disease, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Yi Liang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Leilei Ya
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianglin Qin
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
9
|
|
10
|
Tang S, Ma T, Zhang H, Zhang J, Zhong X, Tan C, Qiu Y, Zeng W, Feng X. Erythromycin Prevents Elastin Peptide-Induced Emphysema and Modulates CD4 +T Cell Responses in Mice. Int J Chron Obstruct Pulmon Dis 2019; 14:2697-2709. [PMID: 31819402 PMCID: PMC6890220 DOI: 10.2147/copd.s222195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Elastin peptides (EP) can induce lung inflammation and emphysema. Erythromycin has been shown to decrease acute exacerbation frequency and delay lung function decline in chronic obstructive pulmonary disease patients and ameliorate emphysema in murine models; however, the mechanism remains unclear. We aimed to observe the preventive and immunomodulatory effects of erythromycin in a mouse model of EP-induced emphysema. Methods In the in vivo study, Balb/c mice were treated with EP intranasally on day 0, and then administered erythromycin (100 mg/kg) or vehicle orally on day 1, which was continued every other day. Mice exposed to cigarette smoke were used as an emphysema positive control. The severity of emphysema and inflammation in the lungs of EP-exposed mice with or without erythromycin treatment were observed on day 40 after EP administration. In the in vitro study, naïve CD4+T cells were isolated from healthy mice spleens and stimulated by EP with or without erythromycin incubation. Flow cytometry was used to measure the proportions of Th1, Th17, and Treg cells. ELISA was used to detect cytokine levels of IFN-γ, IL-17, IL-6, and TGF-β. Transcript levels of Ifnγ, IL17a, and Foxp3 were evaluated by qRT-PCR. Results After exposure to EP, Th1 and Th17 cell percentages and the levels of inflammatory cytokines increased in vivo and in vitro, while Treg cells decreased in vivo. Erythromycin reduced IFN-γ, IL-17, IL-6 inflammatory cytokines, MLI, and the inflammation score in the lungs of EP-exposed mice. In vitro, erythromycin also limited Th17 and Th1 cell differentiation and downregulated transcript levels of Ifnγ and IL17a in the EP-stimulated CD4+T cells. Conclusion The Th1 and Th17 cell responses were increased in EP-induced emphysema. Prophylactic use of erythromycin effectively ameliorated emphysema and modulated CD4+T cells responses in EP-induced lung inflammation in mice.
Collapse
Affiliation(s)
- Shudan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Tingting Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Hui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Caimei Tan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Ye Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Wen Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xin Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
11
|
Zhang H, Zhou X, Chen X, Lin Y, Qiu S, Zhao Y, Tang Q, Liang Y, Zhong X. Rapamycin attenuates Tc1 and Tc17 cell responses in cigarette smoke-induced emphysema in mice. Inflamm Res 2019; 68:957-968. [PMID: 31468083 DOI: 10.1007/s00011-019-01278-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN Chronic exposure to cigarette smoke promotes airway inflammation and emphysema accompanied by enhanced CD8+ interferon (IFN)-γ+ T(Tc1) and CD8+ interleukin (IL)-17+ T(Tc17) cell responses. The mammalian target of rapamycin (mTOR) has been involved in the pathogenesis of emphysema. Inhibiting mTOR by rapamycin has been reported to alleviate emphysema, but the mechanism is not fully understood. We aimed to explore the effect of rapamycin on Tc1 and Tc17 cell responses induced by cigarette smoke exposure. MATERIALS Male C57BL/6 mice were exposed to cigarette smoke or room air for 24 weeks. Half of the smoke-exposed mice received rapamycin in the last 12 weeks. The severity of emphysema in those mice was evaluated by mean linear intercept (MLI), mean alveolar airspace area (MAA) and destructive index (DI). Bronchoalveolar lavage was collected and analyzed. Phosphorylated (p-) mTOR in CD8+ T cells, Tc1 and Tc17 cells were detected by flow cytometry. The relative expression of p-mTOR in lungs was determined by western blot analysis. IFN-γ and IL-17A levels were detected by enzyme-linked immunosorbent assays. IFN-γ, mTOR and RAR-related orphan receptor (ROR)γt mRNA levels were evaluated by the real-time polymerase chain reaction. RESULTS Elevated p-mTOR expression in CD8+ T cells and lung tissue was accompanied by the enhanced Tc1 and Tc17 cell responses in lungs of mice exposed to cigarette smoke. Rapamycin reduced inflammatory cells in BALF and decreased MLI, DI and MAA in lungs. Rapamycin decreased p-mTOR expression, and down-regulation of mTOR and RORγt mRNA levels along with the attenuation of Tc1 and Tc17 cell responses in mice with emphysema. CONCLUSIONS The mTOR was activated in CD8+ T cells accompanied by the enhanced Tc1 and Tc17 cell responses in cigarette smoke-related pulmonary inflammation. Rapamycin ameliorated emphysema and attenuated Tc1 and Tc17 cell responses probably caused by inhibiting mTOR in cigarette smoke-exposed mice.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yuanzhen Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Shilin Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Qiya Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China.
| |
Collapse
|
12
|
Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:504. [PMID: 31728357 DOI: 10.21037/atm.2019.09.28] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome associated with oxygenation failure resulting from a direct pulmonary or indirect systemic insult. It is a complex etiological phenomenon involving an array of immune cells acting in a delicate balance between pathogen clearance and immunopathology. There is emerging evidence of the involvement of different immune cell types in ARDS pathogenesis. This includes polarization of alveolar macrophages (AMs), neutrophil netosis, the pro-inflammatory response of T helper 17 subsets, and the anti-inflammatory and regenerative role of T regulatory cell subsets. Knowledge of these pathogenic mechanisms has led to translational opportunities, for example, research in the use of methylprednisolone, DNAse, aspirin, keratinocyte growth factor and in the development of stem cell therapy for ARDS. Discovering subgroups of patients with ARDS afflicted with homogenous pathologic mechanisms can provide prognostic and/or predictive insight that will enable precision medicine. Lastly, new high dimensional immunomic technologies are promising tools in evaluating the host immune response in ARDS and will be discussed in this review.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
13
|
Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation. Cell Death Dis 2019; 10:678. [PMID: 31515489 PMCID: PMC6742640 DOI: 10.1038/s41419-019-1909-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Neutrophil extracellular traps (NETs) may play a critical role in smoking-related chronic airway inflammation. However, the mechanism by which NETs induced by cigarette smoke initiate the adaptive immunity in chronic obstructive pulmonary disease (COPD) is not fully understood. In this study, we explored the effects of NETs induced by cigarette smoke on the myeloid dendritic cells (mDCs) and Th1 and Th17 cells. Additionally, we observed the inhibitory effect of erythromycin on NETs induced by cigarette smoke. We found that elevated NET levels in the sputum of COPD patients were correlated with the circulating Th1 response, mDC activation and airflow limitation. NETs induced by cigarette smoke extract (CSE) could activate monocyte-derived mDCs and promote Th1 and Th17 differentiation in vitro. Erythromycin effectively inhibited NET formation induced by CSE. In vivo, erythromycin decreased NETs in the airway and ameliorated emphysema with Th1 and Th17 cell down-regulation and CD40+ and CD86+ mDCs suppression in mice chronically exposed to cigarette smoke. These findings provide direct evidence that NETs promote the differentiation of Th1 and Th17 and play a role in the adaptive immunity of smoking-related chronic lung inflammation. Erythromycin is a potential therapeutic strategy for NETs inhibition in COPD.
Collapse
|
14
|
Martínez-Alcantar L, Talavera-Carrillo D, Pineda-Salazar J, Ávalos-Viveros M, Gutiérrez-Ospina G, Phillips-Farfán B, Fuentes-Farías A, Meléndez-Herrera E. Anterior chamber associated immune deviation to cytosolic neural antigens avoids self-reactivity after optic nerve injury and polarizes the retinal environment to an anti-inflammatory profile. J Neuroimmunol 2019; 333:476964. [DOI: 10.1016/j.jneuroim.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
|
15
|
Xue W, Yan D, Kan Q. Interleukin-35 as an Emerging Player in Tumor Microenvironment. J Cancer 2019; 10:2074-2082. [PMID: 31205568 PMCID: PMC6548173 DOI: 10.7150/jca.29170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
IL-35 is the newest member of IL-12 family. A dimeric protein consisting of two separate subunits has manifested suppressive actions on immune system, which is counterproductive in the context of cancers. Various reports have confirmed its inhibitory role on immune system which is carried out via formation of IL-35-producing regulatory T cells (iTr35), increased Treg development and suppressive Th17 cells growth. Although last decade has seen a great deal of scientific interest on this subject, the exact role, precise signal transduction and elaborative functions of IL-35 in tumor microenvironment (TME) remained elusive. Search for anti-IL-35 therapies have exhibited limited success in animal models. Contrarily, few studies have denied the idea that IL-35 plays a role in cancer. The purpose of this review is to analyze the reported scientific data on continuous symphony of IL-35 in cancers since the inception of former.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Dan Yan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Lin S, Wu H, Wang C, Xiao Z, Xu F. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications. Front Immunol 2018; 9:1545. [PMID: 30038616 PMCID: PMC6046379 DOI: 10.3389/fimmu.2018.01545] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ALI) was described in 1967. The uncontrolled inflammation is a central issue of the syndrome. The regulatory T cells (Tregs), formerly known as suppressor T cells, are a subpopulation of T cells. Tregs indirectly limits immune inflammation-inflicted tissue damage by employing multiple mechanisms and creating the appropriate immune environment for successful tissue repair. And it plays a central role in the resolution of ALI. Accordingly, for this review, we will focus on Treg populations which are critical for inflammatory immunity of ALI, and the effect of interaction between Treg subsets and cytokines on ALI. And then explore the possibility of cytokines as beneficial factors in inflammation resolution of ALI.
Collapse
Affiliation(s)
- Shihui Lin
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States
| | - Chuanjiang Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Xu
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Ohe M, Shida H, Horita T, Furuya K, Hashino S. Successful treatment of primary immune thrombocytopenia accompanied by diabetes mellitus treated using clarithromycin followed by prednisolone. Drug Discov Ther 2018; 12:101-103. [DOI: 10.5582/ddt.2018.01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Masashi Ohe
- Department of Internal Medicine, JCHO Hokkaido Hospital
| | - Haruki Shida
- Department of Internal Medicine, JCHO Hokkaido Hospital
| | | | - Ken Furuya
- Department of Internal Medicine, JCHO Hokkaido Hospital
| | | |
Collapse
|
18
|
Interluekin-35 in Asthma and Its Potential as an Effective Therapeutic Agent. Mediators Inflamm 2017; 2017:5931865. [PMID: 28553015 PMCID: PMC5434467 DOI: 10.1155/2017/5931865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/26/2017] [Indexed: 02/04/2023] Open
Abstract
Interleukin- (IL-) 35 is a member of the IL-12 cytokine family and a heterodimeric protein formed by Epstein-Barr-induced gene 3 (EBI3) and IL-12p35. Emerging evidence shows that IL-35 is a key player in the regulation of cellular communication, differentiation, and inflammation. Altered IL-35 expression has been found in disease conditions such as cancer, rheumatoid arthritis, and, more recently, asthma. In cancer, IL-35 is involved in the regulation of tumorigenesis, cancer progression, and metastasis. In rheumatoid arthritis, IL-35 acts as a negative regulator of inflammation. Similarly, IL-35 also appears to suppress allergic inflammation in asthma. In an in vivo murine model of asthma, transfer of adenovirus-mediated IL-35 markedly reduced the degree of airway hyperresponsiveness (AHR) and inflammatory cell infiltration. Many studies have shown the involvement of IL-35 in a number of aspects of allergic inflammation, such as eosinophil and neutrophil recruitment as well as inhibition of inflammatory mediators of the Th2 subtype. However, the exact molecular mechanisms underlying the role of IL-35 in human asthma have yet to be fully elucidated. This review describes the current evidence regarding the role of IL-35 in the pathophysiology of asthma and evaluates the potential of IL-35 as a biomarker for airway inflammation and a therapeutic target for the treatment of asthma.
Collapse
|
19
|
Qiu S, Zhong X. Macrolides: a promising pharmacologic therapy for chronic obstructive pulmonary disease. Ther Adv Respir Dis 2016; 11:147-155. [PMID: 28030992 PMCID: PMC5933650 DOI: 10.1177/1753465816682677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation plays a central role in the pathogenesis of chronic
obstructive pulmonary disease (COPD). However, there are no effective
anti-inflammatory pharmacologic therapies available for COPD so far. Recent
evidence suggests that an immunologic mechanism has a role in the pathogenesis
of COPD. Macrolides possess anti-inflammatory and immune-modulating effects may
be helpful in the treatment of COPD. Several clinical studies have shown that
long-term use of macrolides reduces the frequency of COPD exacerbations.
However, the subgroups that most effectively respond to long-term treatment of
macrolides still need to be determined. The potential adverse events to
individuals and the microbial resistance in community populations raises great
concern on the long-term use of macrolides. Thus, novel macrolides have
anti-inflammatory and immuno-modulating effects, but without antibiotic effects,
and are promising as an anti-inflammatory agent for the treatment of COPD. In
addition, the combination of macrolides and other anti-inflammatory
pharmacologic agents may be a new strategy for the treatment of COPD.
Collapse
Affiliation(s)
- Shilin Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Shuangyong road, Nanning, Guangxi 530021, China
| |
Collapse
|
20
|
Ruan W, Zhong J, Guan Y, Xia Y, Zhao X, Han Y, Sun X, Liu S, Ye C, Zhou X. Detection of smoke-induced pulmonary lesions by hyperpolarized129Xe diffusion kurtosis imaging in rat models. Magn Reson Med 2016; 78:1891-1899. [DOI: 10.1002/mrm.26566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Jianping Zhong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Yu Guan
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Yi Xia
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
21
|
Du WX, He Y, Jiang HY, Ai Q, Yu JL. Interleukin 35: A novel candidate biomarker to diagnose early onset sepsis in neonates. Clin Chim Acta 2016; 462:90-95. [PMID: 27616624 DOI: 10.1016/j.cca.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Early onset sepsis (EOS) remains a major cause of morbidity and mortality in newborns; however, current diagnostic tools are inadequate. We evaluated the accuracy of a novel cytokine, interleukin (IL)-35, for the diagnosis of EOS in comparison with other infection markers. METHODS One hundred fifty-seven neonates with suspected sepsis in the first 3days of life were enrolled in this perspective study. All enrolled patients were divided into infected group and unlikely infected group according to clinical data. IL-35, C-reactive protein (CRP), procalcitonin (PCT), white blood cell (WBC) count, and blood culture were measured once the suspected EOS was documented. RESULTS Serum concentration of IL-35 was increased significantly in the infected group compared with the unlikely infected group (median 36.4 versus 27.1pg/ml, respectively, p<0.001). The area under receiver-operating characteristic (ROC) curve were 0.756 for IL-35, 0.713 for PCT (age-adjusted), 0.670 for CRP, and 0.619 for WBC. With a cut-off value of 31.7pg/ml, the diagnostic sensitivity and specificity of IL-35 were 78.48% and 66.67%, respectively. Moreover, unlike PCT concentration, IL-35 concentration did not fluctuate in neonates who were unlikely to be infected (p=0.885). CONCLUSION The diagnostic performance of IL-35 was superior to that of PCT and other commonly used markers, suggesting that IL-35 may be a valuable tool for EOS diagnosis.
Collapse
Affiliation(s)
- Wei-Xia Du
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, PR China; China International Science and Technology Cooperation base of Child development and Critical Disorders, PR China; Chongqing City Key Lab of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, PR China; China International Science and Technology Cooperation base of Child development and Critical Disorders, PR China; Chongqing City Key Lab of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Hong-Yan Jiang
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, PR China; China International Science and Technology Cooperation base of Child development and Critical Disorders, PR China; Chongqing City Key Lab of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Qing Ai
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, PR China; China International Science and Technology Cooperation base of Child development and Critical Disorders, PR China; Chongqing City Key Lab of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Jia-Lin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, PR China; China International Science and Technology Cooperation base of Child development and Critical Disorders, PR China; Chongqing City Key Lab of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
22
|
Enhanced LPS-induced activation of IL-27 signalling in sarcoidosis. Respir Med 2016; 117:243-53. [PMID: 27492538 DOI: 10.1016/j.rmed.2016.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE Granulomas in sarcoidosis have recently been described as containing Interleukin (IL)-27, one of the members of the IL-12 family of cytokines, which also includes IL-35. Levels of these cytokines and the IL-27 receptor subunits were hypothesised to differ between patients with sarcoidosis compared to healthy controls in peripheral blood. METHODS Using a cross-sectional study design, plasma and peripheral blood mononuclear cells (PBMC) were collected from patients and control subjects. Protein and mRNA (in PBMC) levels for IL-27 and IL-35 (IL27, EBI3, IL12A subunits) as well as IL-27 receptor (IL6ST and IL27RA subunits) were assessed spontaneously and following direct (LPS) and indirect (anti-CD3/28 activation beads) macrophage stimulation using RT- PCR, ELISA and flow cytometry. RESULTS Following stimulation with LPS, PBMC of patients with sarcoidosis displayed significantly enhanced expression of IL27 and EBI3 mRNA (p = 0.020 and p = 0.037 respectively) compared to PBMCs from healthy controls. There was also significantly enhanced production of IL-27 by PBMC from patients with sarcoidosis compared to healthy controls in response to LPS stimulation (p = 0.027). IL6ST mRNA and IL6ST protein were significantly lower in patients with sarcoidosis (mRNA p = 0.0002; MFI p = 0.0015) whilst IL27RA protein levels were significantly higher in patients with sarcoidosis compared to healthy controls (MFI p < 0.0001). Plasma IL-35 protein levels did not differ between control and sarcoidosis subjects (p = 0.23). CONCLUSION These results suggest there may be exaggerated activation of IL-27 signalling in response to LPS in sarcoidosis.
Collapse
|
23
|
Chu S, Zhong X, Zhang J, Lai X, Xie J, Li Y. Four SNPs and Systemic Level of FOXP3 in Smokers and Patients with Chronic Obstructive Pulmonary Disease. COPD 2016; 13:760-766. [DOI: 10.1080/15412555.2016.1192112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shuyuan Chu
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoying Lai
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajun Xie
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Li
- Department of Respiratory Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Sun Y, Jin X, Liu X, Zhang M, Liu W, Li Z, Han N, Tan M, Chi D, Zhu J, Zhang B, Yu B, Wu J. MicroRNA let-7i regulates dendritic cells maturation targeting interleukin-10 via the Janus kinase 1-signal transducer and activator of transcription 3 signal pathway subsequently induces prolonged cardiac allograft survival in rats. J Heart Lung Transplant 2015; 35:378-388. [PMID: 26755202 DOI: 10.1016/j.healun.2015.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 10/31/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In this study, we investig1ated whether microRNA let-7i regulates dendric cell maturation targeting interleukin-10 (IL-10) via the Janus kinase 1-signal transducer and activator of transcription 3 (JAK1-STAT3) signal pathway subsequently prolongs rat cardiac allograft survival. METHODS Quantitative real-time reverse transcriptase polymerase chain reaction, enzyme linked immunosorbent assay, and dual-luciferase assay were performed to verify whether IL-10 was the target of let-7i, and regulatory T cells were assessed by flow cytometry and immunohistochemical study. Western blot was performed to detect JAK1, STAT3, and phosphorylated STAT3 expression. Lewis recipients of Dark Agouti hearts were transfused with phosphate-buffered saline, lipopolysaccharide (LPS)-mature dendritic cells (mDCs), or let-7i-inhibitor-mDCs. Allograft survival times were recorded, and histologic studies were performed. RESULTS Expression of IL-10 messenger RNA level and production of IL-10 were increased in let-7i-inhibitor-mDCs compared with LPS-mDCs. Luciferase activity showed that the translational level of the IL-10 luciferase reporter was decreased by let-7i mimic but increased by let-7i-inhibitor. MicroRNA let-7i inhibitor suppressed DC maturation; however, pretreatment of IL-10 small interfering RNA attenuated the suppression. Expression of JAK1, STAT3, and phosphorylated STAT3 in mDCs were suppressed by let-7i mimic, and pre-treatment of IL-10 small interfering RNA, however, were upregulated by let-7i inhibitor. Lewis recipients transfused with let-7i-inhibitor-mDCs significantly prolonged Dark Agouti cardiac allograft survival. The allografts transfused with let-7i-inhibitor-mDCs showed slight cell infiltration and significantly preserved graft structure. Inhibition of let-7i increased CD4(+)CD25(+)forkhead box P3(+) regulatory T cells and modulated cytokine profiles in vivo and in vitro. CONCLUSIONS MicroRNA let-7i regulated DC maturation and function targeting IL-10 through the JAK1-STAT3 pathway. Moreover, transfusion of LPS-induced mDCs transfected with let-7i inhibitor induced prolonged cardiac allograft survival and generated regulatory T cells.
Collapse
Affiliation(s)
- Yong Sun
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyuan Jin
- Department of Thoracic Surgery, the Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglan Liu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Liu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenchao Li
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Han
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoxin Tan
- Department of Cardiology, the First Hospital of Fangshan District, Beijing, China
| | - Di Chi
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyi Zhu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Wu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Xu GH, Shen J, Sun P, Yang ML, Zhao PW, Niu Y, Lu JK, Wang ZQ, Gao C, Han X, Liu LL, Liu CC, Cong ZY. Anti-inflammatory effects of potato extract on a rat model of cigarette smoke-induced chronic obstructive pulmonary disease. Food Nutr Res 2015; 59:28879. [PMID: 26498426 PMCID: PMC4620637 DOI: 10.3402/fnr.v59.28879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022] Open
Abstract
Highlights: (1) Potato extract (PE) exhibits non-toxic effects on mice. (2) Cigarette smoke (CS)–induced COPD rats exhibit significant thickened and disordered lung markings. (3) PE could improve the histopathological symptoms of lung tissue in COPD. (4) PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats.
Collapse
Affiliation(s)
- Gui Hua Xu
- Department of Clinical Medical Research Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Jie Shen
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Peng Sun
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Min Li Yang
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Inner Mongolia Mengjian Biotechnology company, Wuchua, Inner Mongolia, China;
| | - Peng Wei Zhao
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China;
| | - Yan Niu
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing Kun Lu
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhi Qiang Wang
- Department of Anatomy, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chao Gao
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xue Han
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lei Lei Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chen Chen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhang Yue Cong
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
26
|
Wei J, Zhao H, Fan G, Li J. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema. Biochem Biophys Res Commun 2015; 465:180-7. [PMID: 26232645 DOI: 10.1016/j.bbrc.2015.07.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. OBJECTIVES To assess the capacity of bilirubin to protect against smoke-induced emphysema. METHODS Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. RESULTS Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P < 0.05). Indirect serum bilirubin levels were lower in COPD patients than patients without COPD (P < 0.05). In rats, cigarette smoke reduced serum total and indirect bilirubin levels. Administration of bilirubin reduced mean linear intercept and mean alveoli area, increased mean alveoli number, reduced macrophage, neutrophil and TNF-α content of BALF, and increased BALF and serum IL-10 level, but lowered local and systemic CCL2, CXCL2, CXCL8 and IL-17 levels. Bilirubin suppressed the smoke-induced systemic and regional oxidative lipid damage associated with increased SOD activity. CONCLUSION Bilirubin attenuated smoking-induced pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China; Department of Respiratory Medicine, Shanxi Medical University Second Hospital, Taiyuan 030001, China
| | - Hui Zhao
- Department of Respiratory Medicine, Shanxi Medical University Second Hospital, Taiyuan 030001, China
| | - Guoquan Fan
- Teaching and Research Office of Microbiology & Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianqiang Li
- Department of Respiratory Medicine, Shanxi Medical University Second Hospital, Taiyuan 030001, China.
| |
Collapse
|
27
|
Sun XJ, Li ZH, Zhang Y, Zhou G, Zhang JQ, Deng JM, Bai J, Liu GN, Li MH, MacNee W, Zhong XN, He ZY. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-δ/Akt pathway and increasing GR expression. Am J Physiol Lung Cell Mol Physiol 2015; 309:L139-46. [PMID: 25957293 DOI: 10.1152/ajplung.00292.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Corticosteroid insensitivity, which is induced by cigarette smoke extract (CSE), is a significant barrier when treating chronic obstructive pulmonary disease (COPD). Erythromycin (EM) has been shown to have an anti-inflammatory role in some chronic airway inflammatory diseases, particularly diffuse panbronchiolitis and cystic fibrosis. Here, we explored whether the combination therapy of EM and dexamethasone (Dex) reverses corticosteroid insensitivity and investigated the molecular mechanism by which this occurs. We demonstrated that the combination of EM and Dex restored corticosteroid sensitivity in peripheral blood mononuclear cells (PBMCs) from COPD patients and U937 cells after CSE exposure. Moreover, pretreatment with 10, 50, or 100 μg/ml EM reversed the HDAC2 protein reduction induced by CSE exposure in a dose-dependent manner. U937 cells exposed to CSE show a reduction in histone deacetylase (HDAC) activity, which was potently reversed by EM or combination treatment. Although 10 and 17.5% CSE increased phosphorylated Akt (PAkt) expression in a concentration-dependent manner, preapplication of EM and the combination treatment in particular blocked this PAkt increase. Total Akt levels were unaffected by CSE or EM treatments. Furthermore, the combination treatment enhanced glucocorticoid receptor (GR)α expression. Our results demonstrate that the combination therapy of EM and Dex can restore corticosteroid sensitivity through inhibition of the PI3K-δ/Akt pathway and enhancing GRα expression.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Zhan-Hua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Yang Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Guang Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jian-Quan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing-Min Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Guang-Nan Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Mei-Hua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - William MacNee
- EIGI Colt Laboratory, Medical Research Council Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Zhi-Yi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| |
Collapse
|
28
|
Wang W, Li P, Chen YF, Yang J. A potential immunopathogenic role for reduced IL-35 expression in allergic asthma. J Asthma 2015; 52:763-71. [PMID: 26044961 DOI: 10.3109/02770903.2015.1038390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Allergic asthma is a chronic airway inflammation resulting from an imbalance of T helper (Th) cell responses to allergens. Interleukin (IL)-35 has been shown to have potent immunoregulatory properties. Whether IL-35 participates in the immunopathogenesis of allergic asthma patients is still unknown. METHODS CD4+ T cells and CD4+ CD25- T cells were obtained from peripheral blood mononuclear cells (PBMCs) using magnetic separation. The concentration of IL-35 in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of the IL-35 subunits, EBI3 and IL-12p35, were detected by quantitative real-time PCR (qPCR). The proliferative responses of CFSE-labeled CD4+ CD25- T cells in the presence or absence of rhIL-35 were evaluated by flow cytometry. Cytokine production of activated CD4+ CD25- T cells was examined by flow cytometry and ELISA. RESULTS IL-35 protein and mRNA levels were decreased in allergic asthmatics. The frequencies of CD4+ CD25+ Foxp3+ Tregs and CD4+ IL-12p35+ T cells in allergic asthma patients were lower than in healthy controls. Moreover, the addition of rhIL-35 suppressed CFSE+ CD4+ CD25- T cell proliferation in vitro in a dose-dependent manner, and the suppression induced by rhIL-35 was associated with decreases in IL-4 but not IFN-γ and IL-17 production of activated CD4+ CD25- T cells. The increased level of Th1/Th2 was observed in allergic asthmatics in the presence of rhIL-35. CONCLUSIONS Our data suggest that IL-35 can effectively suppress the proliferation and IL-4 production of activated CD4+ CD25- T cells in allergic asthma, and that IL-35 may be a new immunotherapy for asthma patients.
Collapse
Affiliation(s)
- Wei Wang
- a Department of Respiratory Medicine , Zhongnan Hospital of Wuhan University , Wuhan , China
| | | | | | | |
Collapse
|
29
|
Abstract
Interleukin (IL)-35, a recently identified cytokine of the IL-12 family, is a potent immunosuppressive cytokine secreted by regulatory T (Treg) cells and the newly reported regulatory B (Breg) cells. IL-35 functions as a crucial immunosuppressive factor in immune-mediated diseases, and the predominant mechanism of suppression is its ability to suppress T cell proliferation and effector functions. The pathogenic processes of the non-cytopathic hepatitis B virus (HBV) infection-related liver diseases are immune-mediated, including liver damage and viral control. It has been found that IL-35 is detectable in peripheral CD4(+) T cells in chronic HBV-infected patients, whereas it is undetectable in healthy individuals. There is growing evidence that cytokine-mediated immune responses play a pivotal role in determining the clinical outcome during HBV infection. It is particularly important to investigate the effects of IL-35 in the immunopathogenesis of chronic HBV infection. In this study, the recent understanding of this issue is discussed.
Collapse
Affiliation(s)
- Xiao Gang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Translational Laboratory of Liver Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | |
Collapse
|
30
|
Qiu SL, Zhong XN. Current status and inspiration on macrolides in the treatment of chronic obstructive pulmonary disease. J Transl Int Med 2015; 3:85-88. [PMID: 27847894 PMCID: PMC4936464 DOI: 10.1515/jtim-2015-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Xiao-ning Zhong
- Address for Correspondence: Xiao-ning Zhong, Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China. E-mail:
| |
Collapse
|
31
|
Ringkowski S, Thomas PS, Herbert C. Interleukin-12 family cytokines and sarcoidosis. Front Pharmacol 2014; 5:233. [PMID: 25386143 PMCID: PMC4209812 DOI: 10.3389/fphar.2014.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. It is believed to be caused by exposure to pathogenic antigens in genetically susceptible individuals but the causative antigen has not been identified. The formation of non-caseating granulomas at sites of ongoing inflammation is the key feature of the disease. Other aspects of the pathogenesis are peripheral T-cell anergy and disease progression to fibrosis. Many T-cell-associated cytokines have been implicated in the immunopathogenesis of sarcoidosis, but it is becoming apparent that IL-12 cytokine family members including IL-12, IL-23, IL-27, and IL-35 are also involved. Although the members of this unique cytokine family are heterodimers of similar subunits, their biological functions are very diverse. Whilst IL-23 and IL-12 are pro-inflammatory regulators of Th1 and Th17 responses, IL-27 is bidirectional for inflammation and the most recent family member IL-35 is inhibitory. This review will discuss the current understanding of etiology and immunopathogenesis of sarcoidosis with a specific focus on the bidirectional impact of IL-12 family cytokines on the pathogenesis of sarcoidosis.
Collapse
Affiliation(s)
- Sabine Ringkowski
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Respiratory Medicine Department, Prince of Wales Hospital Sydney, NSW, Australia ; Faculty of Medicine, University of Heidelberg Heidelberg, Germany
| | - Paul S Thomas
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Respiratory Medicine Department, Prince of Wales Hospital Sydney, NSW, Australia
| | - Cristan Herbert
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
32
|
Jafarzadeh A, Jamali M, Mahdavi R, Ebrahimi HA, Hajghani H, Khosravimashizi A, Nemati M, Najafipour H, Sheikhi A, Mohammadi MM, Daneshvar H. Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci 2014; 55:891-7. [PMID: 25326790 DOI: 10.1007/s12031-014-0443-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/10/2014] [Indexed: 01/03/2023]
Abstract
The regulatory T (Treg) cells play a major role in the control of the autoimmunity and inflammation, and IL-35 has been described as an immunosuppressive cytokine that is mainly produced by CD4(+)FOXP3(+) Treg cells. The aim of this study was to evaluate the serum levels of IL-35 and a single nucleotide polymorphism (SNP), rs3761548, in FOXP3 gene in patients with multiple sclerosis. The blood samples were collected from 140 multiple sclerosis (MS) patients (including 51 untreated and 89 treated patients) and 140 healthy subjects as a control group. The serum levels of IL-35 were measured by ELISA. The DNA was analyzed for SNP rs3761548 in FOXP3 gene using SSP-PCR. There was no significant difference between untreated MS patients and control group regarding the mean serum levels of IL-35, although this parameter was higher in untreated patients. However, the mean serum level of IL-35 in treated MS patients was significantly higher than that in the control group (P < 0.008). The mean serum levels of IL-35 in patients who were treated with interferon-β, methylprednisolone, or with the both interferon-β and methylprednisolone were significantly higher than that in the healthy group (P < 0.01, P < 0.01, and P < 0.2, respectively). The frequencies of AA and AC genotypes at rs3761548 in the FOXP3 gene were significantly higher in MS group as compared with healthy subjects (P < 0.05). The frequency of CC genotype at rs3761548 was significantly lower in the MS group in comparison with healthy control subjects (P < 0.001). Moreover, the frequency of A allele was significantly higher whereas the frequency of C allele was significantly lower in MS patients in comparison to healthy subjects (P < 0.001). The mean serum level of IL-35 was significantly lower in MS patients or healthy subjects with AA genotype as compared with those with CC genotype at rs3761548 in FOXP3 gene (P < 0.01 and P < 0.001, respectively). These results showed higher serum levels of IL-35 in treated MS patients representing that the benefit effects of treatment may in part performed through the upregulation of the IL-35 production. The SNP rs3761548 may influence the susceptibility to MS disease and the serum levels of IL-35.
Collapse
Affiliation(s)
- A Jafarzadeh
- Neurology Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Olson BM, Sullivan JA, Burlingham WJ. Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance. Front Immunol 2013; 4:315. [PMID: 24151492 PMCID: PMC3798782 DOI: 10.3389/fimmu.2013.00315] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in balancing the effector arm of the immune system is well documented, playing a central role in preventing autoimmunity, facilitating graft tolerance following organ transplantation, and having a detrimental impact on the development of anti-tumor immunity. These regulatory responses use a variety of mechanisms to mediate suppression, including soluble factors. While IL-10 and TGF-β are the most commonly studied immunosuppressive cytokines, the recently identified IL-35 has been shown to have potent suppressive function in vitro and in vivo. Furthermore, not only does IL-35 have the ability to directly suppress effector T cell responses, it is also able to expand regulatory responses by propagating infectious tolerance and generating a potent population of IL-35-expressing inducible Tregs. In this review, we summarize research characterizing the structure and function of IL-35, examine its role in disease, and discuss how it can contribute to the induction of a distinct population of inducible Tregs.
Collapse
Affiliation(s)
- Brian M Olson
- Department of Medicine, Carbone Cancer Center, University of Wisconsin , Madison, WI , USA
| | | | | |
Collapse
|
34
|
Ye S, Wu J, Zhou L, Lv Z, Xie H, Zheng S. Interleukin-35: the future of hyperimmune-related diseases? J Interferon Cytokine Res 2013; 33:285-91. [PMID: 23472662 DOI: 10.1089/jir.2012.0086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin (IL-35) is a newly identified heterodimeric cytokine belonging to the IL-12 family. It contains Epstein-Barr virus-induced gene 3 subunit and IL-27 p35 subunit. Although its receptor and signaling pathway are not clear, we presumed that its receptor is composed by two chains that might be similar to those receptors of IL-12, IL-23, and IL-27. We also believe that the signal transducer activator of transcription family members is involved in its signaling pathway. It was reported that IL-35 could suppress Teff cell proliferation and Th17 development. It was considered to have a potential therapeutic effect against immune diseases. In our perspective, the finding of IL-35 is of great significance, since it can regulate T cells, which is an important therapeutic target of immunological disorders. IL-35 would promote the development of different kinds of vaccines, even vaccine for special cancer, and be promising to cure autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Sunyi Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|