1
|
Liu H, Yang Z, Li J, Zhang J, Sun C. Expanding the horizons of bicyclol in multiple diseases: Mechanisms, therapeutic implications and challenges. Eur J Pharmacol 2025; 993:177381. [PMID: 39954842 DOI: 10.1016/j.ejphar.2025.177381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Bicyclol, a drug stemmed from the traditional Chinese medicine Schisandra chinensis, has been widely utilized in clinical practice due to its efficacy and safety to manage hepatopathy. Its diverse biological properties-including antiviral, anti-inflammatory, antifibrotic, immunomodulatory, antioxidative, antisteatotic, and antitumor effects-underscore its significant medicinal effects in versatile hepatic disorders, incorporating viral hepatitis, non-alcoholic fatty liver disease, hepatocellular carcinoma, acute hepatic failure, hepatic fibrosis as well as drug-induced liver injury. Furthermore, ongoing researches into the molecular mechanisms, biological activities and mode of actions concerning bicyclol have uncovered its potential therapeutic implications in other multiple diseases/conditions. Studies have indicated promising efficacy pertaining to bicyclol to treat idiopathic pulmonary fibrosis, acute lung injury, cerebral ischemia/reperfusion injury, renal dysfunction, renal cell carcinoma, and cardiovascular diseases. Accordingly, this narrative review article summarizes the current understanding of diverse biological activities and underpinning mechanisms of bicyclol across a range of diseases, as well as its pharmacokinetics, toxicity profile and shed light on future perspectives.
Collapse
Affiliation(s)
- Heng Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ziyi Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
2
|
Jafernik K, Ekiert H, Szopa A. Schisandra henryi-A Rare Species with High Medicinal Potential. Molecules 2023; 28:molecules28114333. [PMID: 37298808 DOI: 10.3390/molecules28114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Schisandra henryi (Schisandraceae) is a plant species endemic to Yunnan Province in China and is little known in Europe and America. To date, few studies, mainly performed by Chinese researchers, have been conducted on S. henryi. The chemical composition of this plant is dominated by lignans (dibenzocyclooctadiene, aryltetralin, dibenzylbutane), polyphenols (phenolic acids, flavonoids), triterpenoids, and nortriterpenoids. The research on the chemical profile of S. henryi showed a similar chemical composition to S. chinensis-a globally known pharmacopoeial species with valuable medicinal properties whichis the best-known species of the genus Schisandra. The whole genus is characterized by the presence of the aforementioned specific dibenzocyclooctadiene lignans, known as "Schisandra lignans". This paper was intended to provide a comprehensive review of the scientific literature published on the research conducted on S. henryi, with particular emphasis on the chemical composition and biological properties. Recently, a phytochemical, biological, and biotechnological study conducted by our team highlighted the great potential of S. henryi in in vitro cultures. The biotechnological research revealed the possibilities of the use of biomass from S. henryi as an alternative to raw material that cannot be easily obtained from natural sites. Moreover, the characterization of dibenzocyclooctadiene lignans specific to the Schisandraceae family was provided. Except for several scientific studies which have confirmed the most valuable pharmacological properties of these lignans, hepatoprotective and hepatoregenerative, this article also reviews studies that have confirmed the anti-inflammatory, neuroprotective, anticancer, antiviral, antioxidant, cardioprotective, and anti-osteoporotic effects and their application for treating intestinal dysfunction.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| |
Collapse
|
3
|
Li H, Liu NN, Li JR, Wang MX, Tan JL, Dong B, Lan P, Zhao LM, Peng ZG, Jiang JD. Bicyclol ameliorates advanced liver diseases in murine models via inhibiting the IL-6/STAT3 signaling pathway. Biomed Pharmacother 2022; 150:113083. [PMID: 35658240 DOI: 10.1016/j.biopha.2022.113083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Bicyclol, a synthetic hepatoprotective and anti-inflammatory agent approved in China, was widely used to treat various hepatitis accompanied by elevated serum aminotransferases. However, the pharmacological effects and mechanisms of bicyclol on advanced liver diseases, such as fibrosis/cirrhosis and hepatocellular carcinoma (HCC), remain to be explored. Here, we revealed that bicyclol prevents from formatting severe fibrosis, slows the progression of moderate liver fibrosis, accelerates the regression of moderate liver fibrosis, decreases the malignancy of HCC in rat models induced by diethylnitrosamine (DEN), and also blocks steatohepatitis to HCC in mice induced by western diet plus carbon tetrachloride and DEN. The detailed pharmacological mechanism showed that bicyclol alleviates chronic progressive liver diseases by inhibiting the levels of IL-6 and subsequent phosphorylated STAT3. Conclusion: Bicyclol plays significant protective roles in multiply stages of fibrosis/cirrhosis-HCC and nonalcoholic fatty liver disease-related HCC via inhibiting IL-6/STAT3 signaling pathway. Therefore, bicyclol might be a promising therapeutic strategy for treating advanced liver diseases.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Nan-Nan Liu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Li Tan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Li H, Liu NN, Li JR, Dong B, Wang MX, Tan JL, Wang XK, Jiang J, Lei L, Li HY, Sun H, Jiang JD, Peng ZG. Combined Use of Bicyclol and Berberine Alleviates Mouse Nonalcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:843872. [PMID: 35250593 PMCID: PMC8889073 DOI: 10.3389/fphar.2022.843872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), is a liver disease worldwide without approved therapeutic drugs. Anti-inflammatory and hepatoprotective drug bicyclol and multi-pharmacological active drug berberine, respectively, have shown beneficial effects on NAFLD in murine nutritional models and patients, though the therapeutic mechanisms remain to be illustrated. Here, we investigated the combined effects of bicyclol and berberine on mouse steatosis induced by Western diet (WD), and NASH induced by WD/CCl4. The combined use of these was rather safe and better reduced the levels of transaminase in serum and triglycerides and cholesterol in the liver than their respective monotherapy, accompanied with more significantly attenuating hepatic inflammation, steatosis, and ballooning in mice with steatosis and NASH. The combined therapy also significantly inhibited fibrogenesis, characterized by the decreased hepatic collagen deposition and fibrotic surface. As per mechanism, bicyclol enhanced lipolysis and β-oxidation through restoring the p62-Nrf2-CES2 signaling axis and p62-Nrf2-PPARα signaling axis, respectively, while berberine suppressed de novo lipogenesis through downregulating the expression of acetyl-CoA carboxylase and fatty acid synthetase, along with enrichment of lipid metabolism-related Bacteroidaceae (family) and Bacteroides (genus). Of note, the combined use of bicyclol and berberine did not influence each other but enhanced the overall therapeutic role in the amelioration of NAFLD. Conclusion: Combined use of bicyclol and berberine might be a new available strategy to treat NAFLD.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Nan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Xi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Li Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Ahmed OM, Ahmed AA, Fahim HI, Zaky MY. Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis. Drug Chem Toxicol 2022; 45:262-273. [PMID: 31665932 DOI: 10.1080/01480545.2019.1683187] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
This study was designed to assess the preventive effects and to suggest the probable mechanisms of action of quercetin and naringein in diethylnitrosamine (DEN)/2-acetylaminofluorene (2AAF)-induced hepatocarcinogenesis in Wistar male rats. The chemical-induction of hepatocarcinogenesis was performed by injection of DEN intraperitoneally at 150 mg/kg body weight (b.w.) twice/week for two weeks, followed by oral administration of 2AAF at 20 mg/kg body weight (b.w.) 4 times/week for 3 weeks. The DEN/2AAF-administered rats were co-treated with quercetin and naringenin at dose level of 10 mg/kg b. w. by oral gavage for 20 weeks. The treatment of DEN/2AAF-administered rats with quercetin and naringenin significantly prevented the elevations in serum levels of liver function indicators (ALT, AST, ALP, γ-GT, total bilirubin and albumin) and liver tumor biomarkers including AFP, CEA and CA19.9. The cancerous histological lesions and inflammatory cells infiltration in liver of DEN/2AAF-administered rats were remarkably suppressed by treatments with quercetin and naringenin. The hepatic oxidative stress markers including NO level and lipid peroxidation significantly decreased while the SOD, GPx and CAT activities and GSH content significantly increased in DEN/2AAF-administered rats treated with quercetin and naringenin when compared to DEN/2AFF-administered control rats. Furthermore, the lowered mRNA expression of liver IL-4, P53 and Bcl-2 in of DEN/2AAF-administered rats were significantly counteracted by treatment with quercetin and naringenin. Taken together, our results demonstrate that quercetin and naringenin may abate hepatocarcinogenesis via enhancement of anti-inflammatory, anti-oxidant and apoptotic actions.
Collapse
Affiliation(s)
- Osama M Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa I Fahim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanopartciles Against DEN-Induced Hepatocellular Cancer in Rats. Appl Biochem Biotechnol 2021; 194:368-381. [PMID: 34792748 DOI: 10.1007/s12010-021-03765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Biosynthesized silver nanoparticles have a wide range of biological activities and using nanoparticles as one of the novel approaches in cancer therapy. In this present research work, the anti-cancer efficacy of Cucumis melo fruit extract and its silver nanoparticles was explored. Wistar rats were divided into six groups and hepatic cancer was induced with 0.01% DEN (diethylnitrosamine) through drinking water for 16 weeks. Cyclophosphamide was given as the standard drug at the dose of 50 mg/kg body weight. Hematological parameters showed a decrease in the levels of hemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and platelets (PLTS) levels except white blood cell (WBC) in DEN-induced cancer animals. Significant alterations in the hematological parameters were observed after treatment which indicate the protective effect of Cucumis melo fruit on the hemopoietic system. The structural integrity of the cells has been damaged in cancer-induced animals, and this results in cytoplasmic leakage of enzyme into the blood stream, leads to the elevated levels of these enzymes in blood with subsequent fall in the tissues. Hence, the levels of liver function markers such as AST ALT, ALP, LDH, GGT, and 5'NT were significantly elevated in serum and the liver of cancer-induced rats. The levels of serum tumor markers, viz., alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), elevated in rats induced with DEN, which then were reduced following Cucumis melo fruit treatment, indicating the anti-cancer activity of the drug. Histological evaluation of the liver and kidney was also performed to authenticate the present work. Treatment with crude extract and silver nanoparticles of Cucumis melo fruit indicates that Cucumis melo fruit could have exerted its protective effect.
Collapse
|
7
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
8
|
Sharma R, Ali T, Negi I, Das A, Duseja A, Kaur J. Dietary modulations of folic acid affect the development of diethylnitrosamine induced hepatocellular carcinoma in a rat model. J Mol Histol 2021; 52:335-350. [PMID: 33438102 DOI: 10.1007/s10735-020-09955-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
The present study evaluated the role of dietary folate modulations in the development of hepatocellular carcinoma (HCC) in a rat model. Male Wistar rats were given diethylnitrosamine (DEN) carcinogen for a period of 18 weeks in addition to different folate modulations. Biochemical parameters were assayed and liver tissues were examined using various histopathological stains viz. Hematoxylin and eosin (H&E), Masson's trichrome, Immunohistochemistry (IHC) staining for arginase-1 and α-smooth muscle actin (SMA). Serum folate and hepatic folate stores were decreased and increased in folate deficiency (FD) and folate oversupplemented (FO) group respectively. Analysis of serum liver function tests revealed deranged liver functioning in all the groups. H&E staining of rat liver demonstrated vague nodularity from 2nd to 8th week, fibrosis from 10th to 15th week, cirrhosis and HCC from 16th to 18th week. Combining the observations of H&E with IHC for arginase-1, 14 (50%), 11 (39.3%) and 17 (58.6%) rats showed HCC positivity in FN (folate normal), FD and FO diets respectively. IHC for α-SMA depicted increased staining with progression of the disease from fibrosis to cirrhosis in all the dietary groups. Collectively, findings of all the histopathological stains, revealed increase in the number of cirrhotic cases and decrease in the number of HCC cases in FD group, indicating delayed progression of HCC with FD. Moreover, FO led to more number of HCC and reduction in the number of cirrhotic cases, signifying early progression of HCC.
Collapse
Affiliation(s)
- Renuka Sharma
- Dept. of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Taqveema Ali
- Dept. of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Ishwar Negi
- Dept of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Ashim Das
- Dept of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Ajay Duseja
- Dept of Hepatology, PGIMER, Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Dept. of Biochemistry, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
9
|
Mobasher MA, Germoush MO, Galal El-Tantawi H, Samy El-Said K. Metformin Improves Biochemical and Pathophysiological Changes in Hepatocellular Carcinoma with Pre-Existed Diabetes Mellitus Rats. Pathogens 2021; 10:59. [PMID: 33440701 PMCID: PMC7830090 DOI: 10.3390/pathogens10010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world's most widely recognized malignant tumors that accounts for 90% of all the primary liver cancers and is a major cause of death from cancer, representing half a million deaths per year. Obesity and associated metabolic irregularities, particularly diabetes mellitus (DM) and insulin resistance, are important risk factors for the advancement of HCC. Recently, retrospective studies showed that metformin (MET) could protect the hepatic tissues in pre-existing diabetes mellitus from HCC. The purpose of this study was to assess the role of MET treatment in the pre-existing diabetic rats before and after HCC induction by diethylnitrosamine (DEN). Thirty-five male Sprague Dawley albino rats were partitioned into the following groups: Group 1 (Gp1) was the control. Gp2 was injected intraperitoneally (i.p) with streptozotocin (STZ) (80 mg/kg) and DEN (50 mg/kg/7 weeks). Gp3, Gp4, and Gp5 were injected as in Gp2 and treated with MET (150 mg/kg) before and/or after HCC induction. Biochemical parameters including liver functions, lipid profile, and oxidative stress biomarkers were determined. Furthermore, histological and immunohistochemical changes were assessed in all groups. Our results illustrated that the group of rats that were treated with STZ and DEN had significant changes in both liver functions and were associated with alterations in the liver histopathological architectures. Treatment with MET before or after HCC induction ameliorated the cellular changes in the liver tissues; however, the utmost protection was found in a group of rats, which were treated with MET before and after HCC induction.
Collapse
Affiliation(s)
- Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Department of Clinical Pathology, El Ahrar Educational Hospital, Ministry of Health, Zagazig 44511, Egypt
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 41412, Saudi Arabia;
| | | | - Karim Samy El-Said
- Chemistry Department, Biochemistry Division, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
10
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
11
|
Therapeutic potential of bicyclol in liver diseases: Lessons from a synthetic drug based on herbal derivative in traditional Chinese medicine. Int Immunopharmacol 2020; 91:107308. [PMID: 33383448 DOI: 10.1016/j.intimp.2020.107308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Bicyclol, an innovative chemical drug with proprietary intellectual property rights in China, is based on derivative of traditional Chinese medicine (TCM) Schisandra chinensis (Wuweizi) of North. Mounting data has proved that bicyclol has therapeutic potential in various pathological conditions in liver. In this narrative review, we provide the first summary of pharmacological activities, pharmacokinetic characteristics and toxicity of bicyclol, and discuss future research perspectives. Our results imply that bicyclol has a wide spectrum of pharmacological properties, including anti-viral, anti-inflammatory, immuno-regulatory, anti-oxidative, antisteatotic, anti-fibrotic, antitumor, cell death regulatory effects and modulation of heat shock proteins. Pharmacokinetic studies have indicated that bicyclol is the main substrate of CYP3A/2E1. Additionally, no obvious drug interactions have been found when bicyclol is administered simultaneously with other prescriptions. Furthermore, the results of chronic toxicity have strongly addressed that bicyclol has no noticeable toxic effects on all biochemical indices and pathological examinations of the main organs. In view of good pharmacological actions and safety, bicyclol is anticipated to be a potential candidate for various liver diseases, including acute liver injury, fulminant hepatitis, non-alcoholic fatty liver disease, fibrosis and hepatocellular carcinoma. Further studies are therefore required to delineate its molecular mechanisms and targets to confer this well-designed drug a far greater potency. We hope that bicyclol-based therapeutics for liver diseases might be broadly used in clinical practice worldwide.
Collapse
|
12
|
Effect of protocatechuic acid-layered double hydroxide nanoparticles on diethylnitrosamine/phenobarbital-induced hepatocellular carcinoma in mice. PLoS One 2019; 14:e0217009. [PMID: 31141523 PMCID: PMC6541272 DOI: 10.1371/journal.pone.0217009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Researchers investigating cancer chemotherapy and management continue to search for agents that selectively kill malignant cells and leave healthy neighboring cells intact. Natural products provide relevant resources for anti-cancer drug discovery. However, the physicochemical properties of these compounds limit their efficient uptake and bioavailability. We introduced a nanocarrier system, namely, zinc-aluminum-layered double hydroxide (ZnAl-LDH) intercalated with protocatechuic acid. In this study, the efficacy and toxicity of protocatechuic acid intercalated in zinc aluminum-layered double hydroxide nanoparticles (PCA-ZnAl) against diethylnitrosamine/phenobarbital (DEN/PB)-induced hepatocellular carcinoma (HCC) in BALB/c mice was evaluated. HCC in male mice was induced by a single-dose intraperitoneal administration of DEN and was promoted by the introduction of PB via drinking water for 12 weeks. HCC induction was confirmed after the DEN/PB introduction period by measurement of the elevated level of serum α-feto protein (AFP). The results showed that the level of α-fetoprotein was significantly reduced in PCA-ZnAl (350±43.90 ng/mL), doxorubicin (DOX) (290±20.52 ng/mL) and ZnAl-LDH (390±19.65 ng/mL) treated animals compared to HCC mice treated with normal saline (580.4± 52.04 ng/mL). Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were significantly increased, whereas the level of lipid peroxidation was significantly decreased in HCC mice treated with DOX, PCA-ZnAl and ZnAl-LDH compared with those in HCC mice treated with saline. Restoration of hepatocyte morphology was observed following treatment that was comparable to that in the normal control group. Deterioration of hepatic cells and a significant increase of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were observed in the cancer-induced untreated group compared with that in the groups treated with nanoparticles. The histopathological features of the liver obtained from PCA-ZnAl-treated mice showed a uniform size with a similar distribution of the nuclear-cytoplasmic ratio and nucleus centrally located in the cytoplasm, similar to the normal liver cells. The results underscored the potential of PCA-ZnAl for the treatment of hepatocellular carcinoma.
Collapse
|
13
|
Essam RM, Ahmed LA, Abdelsalam RM, El-Khatib AS. Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats: Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways. Life Sci 2019; 222:245-254. [PMID: 30858122 DOI: 10.1016/j.lfs.2019.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Phosphodiestrase (PDE) enzymes are suggested to play a leading role in fibrogenesis of liver where studies showed the possible implication of PDE 1 & 4 in liver injury proposing them as possible targets for treating liver fibrosis. AIM The present study was designed to investigate, for the first time, the possible therapeutic effects of selective inhibitors of PDE-1 (vinpocetine) and PDE-4 (roflumilast) in liver fibrosis induced by diethylnitrosamine (DEN) in rats. MAIN METHODS Rats were given DEN (100 mg/kg, i.p.) once weekly for 6 weeks to induce liver fibrosis. Vinpocetine (10 mg/kg/day) or roflumilast (0.5 mg/kg/day) was then orally administered for 2 weeks. KEY FINDINGS Vinpocetine significantly suppressed the contents of hydroxyproline, transforming growth factor-beta 1 (TGF-β1), nuclear factor-kappa B (NF-κB) whereas roflumilast normalized them. Moreover, tumor necrosis factor-alpha (TNF-α) content and protein expressions of toll-like receptor 4 (TLR4) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly decreased whereas cAMP response element binding (CREB) protein expression was significantly elevated by both treatments. Additionally, vinpocetine and roflumilast up-regulated the gene expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) receptor where roflumilast showed better results. PDE1 and 4 activities were inhibited by vinpocetine and roflumilast, respectively. The superior results offered by roflumilast could be related to the higher cAMP level obtained relative to vinpocetine. SIGNIFICANCE Our study manifested the up-regulation of PDE enzymes (1 & 4) in liver fibrosis and addressed the therapeutic role of vinpocetine and roflumilast as PDEIs through a cAMP-mediated TLR4 inflammatory and fibrogenic signaling pathways.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Rania M Abdelsalam
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Aiman S El-Khatib
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
14
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
15
|
Sugihara T, Tanaka S, Braga-Tanaka I, Murano H, Nakamura-Murano M, Komura JI. Screening of biomarkers for liver adenoma in low-dose-rate γ-ray-irradiated mice. Int J Radiat Biol 2018; 94:315-326. [PMID: 29424599 DOI: 10.1080/09553002.2018.1439193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic low-dose-rate (20 mGy/day) γ-irradiation increases the incidence of hepatocellular adenomas (HCA) in female B6C3F1 mice. The purpose of this study is to identify potential serum biomarkers for these HCAs by a new approach. MATERIAL AND METHODS Microarray analysis were performed to compare the gene expression profiles of HCAs from mice exposed to low-dose-rate γ-rays with those of normal livers from non-irradiated mice. From the differentially expressed genes, those for possibly secretory proteins were selected. Then, the levels of the proteins in sera were analysed by ELISA. RESULTS Microarray analysis identified 4181 genes differentially expressed in HCAs (>2.0-fold). From these genes, those for α-fetoprotein (Afp), α-1B-glycoprotein (A1bg) and serine peptidase inhibitor Kazal type-3 (Spink3) were selected as the genes for candidate proteins. ELISA revealed that the levels of Afp and A1bg proteins in sera significantly increased and decreased, respectively, in low-dose-rate irradiated mice with HCAs and also same tendency was observed in human patients with hepatocellular carcinomas. CONCLUSION These results indicate that A1bg could be a new serum biomarker for liver tumor. This new approach of using microarray to select genes for secretory proteins is useful for prediction of novel tumor markers in sera.
Collapse
Affiliation(s)
- Takashi Sugihara
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Hayato Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Masako Nakamura-Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| |
Collapse
|
16
|
Hassan I, Khan AA, Aman S, Qamar W, Ebaid H, Al-Tamimi J, Alhazza IM, Rady AM. Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo. Sci Rep 2018; 8:1682. [PMID: 29374195 PMCID: PMC5786010 DOI: 10.1038/s41598-018-19410-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Wajhul Qamar
- Biological Unit, Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Horng CT, Huang CW, Yang MY, Chen TH, Chang YC, Wang CJ. Nelumbo nucifera leaf extract treatment attenuated preneoplastic lesions and oxidative stress in the livers of diethylnitrosamine-treated rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:2327-2340. [PMID: 28804948 DOI: 10.1002/tox.22434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Lotus (Nelumbo nucifera Gaertn) possesses antioxidant, hepatoprotective, and anticancer potential. This study determined the protective role of aqueous extract from Nelumbo nucifera leaves (NLE) against N-diethylnitrosamine (DEN)-induced oxidative stress and hepatocellular carcinogenesis in a sample of Sprague-Dawley rats. NLE was fed orally to rats in which hepatic carcinoma was induced with DEN for 12 weeks. Five groups of 12 rats each were used for the study: Group I (control group) rats received distilled water; Group II rats were induced with DEN; Group III rats were induced with DEN and cotreated with 0.5% NLE; Group IV rats were induced with DEN and cotreated with 1.0% NLE; and Group V rats were induced with DEN and cotreated with 2.0% NLE. Clinical chemistry, organ weight, inflammatory marker, protein expression, enzyme, and antioxidant analyses were conducted. NLE administration to rats resulted in significantly decreased levels of serum alanine aminotransferase, aspartate aminotransferase, and albumin, which is indicative of hepatocellular damage, compared with the control group. DEN-induced oxidative stress was inhibited by NLE and this inhibition was paralleled by decreased lipid peroxides and increased glutathione transferase, superoxide dismutase, catalase, and glutathione peroxidase activity in liver tissues. The status of nonenzymatic antioxidants, such as reduced glutathione, was also found to be increased in NLE-administered rats. Furthermore, NLE decreased tumor size, hepatic Rac1, PKCα, and GSTπ expressions compared with the DEN-only group. Thus, supplementation of NLE reduced the adverse changes that occur because of liver cancer. These results prove that NLE protects against liver carcinogenesis induced because of treatment with DEN through blocking lipid peroxidation, hepatic cell damage, and enhancing the antioxidant defense system.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Chien-Wei Huang
- Division of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
| | - Mon-Yuan Yang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Tzu-Hsin Chen
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Yun-Ching Chang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| |
Collapse
|
18
|
Kuang H, Tang Z, Wang X, Yang B, Wang Z, Wang Q. Chemical constituents from Sambucus williamsii Hance fruits and hepatoprotective effects in mouse hepatocytes. Nat Prod Res 2017; 32:2008-2016. [DOI: 10.1080/14786419.2017.1361948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenqiu Tang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinguo Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
20
|
Bao Y, Wang S, Yang X, Li T, Xia Y, Meng X. Metabolomic study of the intervention effects of Shuihonghuazi Formula, a Traditional Chinese Medicinal formulae, on hepatocellular carcinoma (HCC) rats using performance HPLC/ESI-TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:468-478. [PMID: 28108381 DOI: 10.1016/j.jep.2017.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolomics is the comprehensive assessment of endogenous metabolites of a biological system in a holistic context, and its property consists with the global view of Traditional Chinese Medicine (TCM). Shuihonghuazi Formula (SHHZF) has been used for liver cancer early treatment in clinical for more than thirty years, but its mechanism remains unclear completely. This paper was designed to explore the therapeutic effects of SHHZF on liver cancer and its metabolomic characters. MATERIALS AND METHODS All the rats were given diethylnitrosamine (DEN) at the dosage of 70mg/kg for 14 weeks. From the 7th weeks, SHHZF was given to the rats which lasted for 10 weeks. Therapeutic effects of SHHZF was compared with that of cyclophosphamide (CTX). High performance liquid-chromatography/electrospray-ionization time of flight mass spectrometer (HPLC/ESI-TOF-MS) combined with pattern recognition approaches including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), was integrated to approximate the comprehensive metabolic signature and discover differentiating metabolites by Agilent MPP 12.1. The changes in metabolic profiling in plasma were restored to their baseline values after SHHZF treatment according to the PLS-DA score plots. RESULTS The results indicated that 23 ions as "differentiating metabolites". The alterations in those metabolites were associated with perturbations in fatty acid and bile acid metabolism, in response to liver cancer through immune and nervous system. And SHHZF could increase the uptake and utilization of linoleic acid and oleic acid, increase arachidonic acid-like substance content and enhance organism immunity of liver cancer rats. And it also could increase the translation from phosphatidylethanolamine (PE) to phosphatidylcholine (PC), linoleic acid metabolism and inhibits abnormal metabolism of bile acid. CONCLUSIONS The mechanism of therapeutic effects of SHHZF on liver cancer by adjusting the activities of PE N-methyl transferase (PEMT), Lysophospholipase D, methylenetetrahydrofolate reductase (MTHFR) and lysophospholipase was elucidated by the method of metabonomics for the first time.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Chromatography, High Pressure Liquid/methods
- Discriminant Analysis
- Drugs, Chinese Herbal/pharmacology
- Least-Squares Analysis
- Lipid Metabolism/drug effects
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Male
- Medicine, Chinese Traditional
- Metabolomics/methods
- Principal Component Analysis
- Rats
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization/methods
Collapse
Affiliation(s)
- Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian 116600, PR China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian 116600, PR China
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Yueming Xia
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian 116600, PR China.
| |
Collapse
|
21
|
Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 2017; 52:419-431. [PMID: 28035485 PMCID: PMC5357489 DOI: 10.1007/s00535-016-1299-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/17/2016] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the leading causes of hepatocellular carcinoma (HCC) worldwide but the mechanistic basis as to how chronic HCV infection furthers the HCC process remains only poorly understood. Accumulating evidence indicates that HCV core and nonstructural proteins provoke activation of the Wnt/β-catenin signaling pathway, and the evidence supporting a role of Wnt/β-catenin signaling in the onset and progression of HCC is compelling. Convincing molecular explanations as to how expression of viral effectors translates into increased activity of the Wnt/β-catenin signaling machinery are still largely lacking, hampering the design of rational strategies aimed at preventing HCC. Furthermore, how such increased signaling is especially associated with HCC oncogenesis in the context of HCV infection remains obscure as well. Here we review the body of contemporary biomedical knowledge on the role of the Wnt/β-catenin pathway in the progression from chronic hepatitis C to cirrhosis and HCC and explore potential hypotheses as to the mechanisms involved.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| |
Collapse
|
22
|
Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016; 21:E559. [PMID: 27136524 PMCID: PMC6273146 DOI: 10.3390/molecules21050559] [Citation(s) in RCA: 976] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 02/03/2023] Open
Abstract
Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.
Collapse
Affiliation(s)
- Haidan Yuan
- College of Pharmacy, Yanbian University, Yanji 133002, China.
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Qianqian Ma
- College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Li Ye
- College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Yanji 133002, China.
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
23
|
Wang B, Liu Z, Li D, Yang S, Hu J, Chen H, Sheng L, Li Y. Application of physiologically based pharmacokinetic modeling in the prediction of pharmacokinetics of bicyclol controlled-release formulation in human. Eur J Pharm Sci 2015; 77:265-72. [PMID: 26116279 DOI: 10.1016/j.ejps.2015.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/12/2015] [Accepted: 06/22/2015] [Indexed: 01/17/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling can assist in formulation development. Bicyclol is a novel anti-hepatitis drug. A bilayer osmotic pump table of bicyclol is being developed. PBPK models for bicyclol immediate-release (IR) and controlled-release (CR) tablets in beagle dog, as well as PBPK model for IR tablets in human were constructed. These models incorporated physicochemical properties and in vitro preclinical data. Parameter sensitivity analysis was performed for the effects of solubility and dissolution on pharmacokinetic (PK) parameters. Models were refined by comparing simulated results to experimental measurements. Furthermore, the clinical PK for bicyclol CR tablets was predicted using the in vivo dissolution profile by deconvolution of the mean PK profile of CR tablets in dogs. In summary, the present study described a strategy employing PBPK models to evaluate the effects of formulation factors on PK profiles and predict the performance of bicyclol CR tablets in human.
Collapse
Affiliation(s)
- Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Zhihao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Dan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Shuang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Hui Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
24
|
Chen X, Zhang J, Han C, Dai H, Kong X, Xu L, Xia Q, Zhang M, Zhang J. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection. Mol Pharmacol 2015; 88:38-47. [PMID: 25901028 DOI: 10.1124/mol.114.097584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/21/2015] [Indexed: 01/10/2023] Open
Abstract
Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Jianjian Zhang
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Conghui Han
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Huijuan Dai
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Xianming Kong
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Longmei Xu
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Ming Zhang
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| | - Jianjun Zhang
- Department of Transplantation and Hepatic Surgery, Renji Hospital (X.C., Jianjian Z., H.D., X.K., Q.X., M.Z., Jianjun Z.), and The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (L.X.); and Department of Urology, Xuzhou Central Hospital, Xuzhou Medical University School of Clinical Medicine, Xuzhou, China (C.H.)
| |
Collapse
|
25
|
Ahmed SK, Mohammed SA, Khalaf G, Fikry H. Role of Bone Marrow Mesenchymal Stem Cells in the Treatment of CCL4 Induced Liver Fibrosis in Albino Rats: A Histological and Immunohistochemical Study. Int J Stem Cells 2014; 7:87-97. [PMID: 25473446 PMCID: PMC4249908 DOI: 10.15283/ijsc.2014.7.2.87] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Variety of pathological factors including viral hepatitis, alcohol and drug abuse, metabolic diseases, autoimmune diseases and congenital abnormalities can cause hepatic injury. Liver transplantation is the treatment of choice for end-stage liver diseases, however, it faces several difficulties. So the aim of the work is to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on the liver structure in carbon tetra chloride CCL4 induced liver fibrosis in rats. MATERIALS AND RESULTS BM-MSCs were isolated and characterized from long bones of twenty male albino rats. Sixty female rats were divided into the following two groups: Group I; thirty rats which were the control group. Group II; thirty rats were injected intra-peritoneal (IP) by CCL4 twice weekly for four weeks and was further subdivided into the following three subgroups: Subgroup IIA (CCL4 alone); included ten rats which were sacrificed after this four weeks. Subgroup IIB (CCL4/MSCs); included ten rats which were IP injected by a single dose of BM-MSCs and were sacrificed after four weeks. Subgroup IIC (CCL4/recovery); included ten rats which were left for another four weeks without any intervention. Histological examination of liver specimens showed that CCl4 caused variable pathological changes with elevated liver enzymes. Injection of BM-MSCs revealed an improvement in the histological picture of the liver and its enzymatic profile. On the other hand, most of the pathological lesion were still detected in rats of recovery group. CONCLUSIONS BM-MSC could restore the liver structure and function in experimental model of liver fibrosis.
Collapse
Affiliation(s)
| | | | - Gehan Khalaf
- Correspondence to Gehan Khalaf, Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt, Tel: +20-1060570468, Fax: +20-224445137, E-mail:
| | | |
Collapse
|
26
|
Effects of Echinacea purpurea on Hepatic and Renal Toxicity Induced by Diethylnitrosamine in Rats. Jundishapur J Nat Pharm Prod 2013. [DOI: 10.5812/jjnpp.9686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Rezaie A, Fazlara A, Haghi Karamolah M, Shahriari A, Najaf Zadeh H, Pashmforosh M. Effects of Echinacea purpurea on Hepatic and Renal Toxicity Induced by Diethylnitrosamine in Rats. Jundishapur J Nat Pharm Prod 2013. [DOI: 10.17795/jjnpp-9686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Rezaie A, Fazlara A, Haghi Karamolah M, Shahriari A, Najaf Zadeh H, Pashmforosh M. Effects of Echinacea purpurea on Hepatic and Renal Toxicity Induced by Diethylnitrosamine in Rats. Jundishapur J Nat Pharm Prod 2013; 8:60-4. [PMID: 24624189 PMCID: PMC3941908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/03/2013] [Accepted: 02/12/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nitrites are mainly used in food preservation. These materials could change to nitrosamine due to the effect of heat and gastric acid. Nitrosamine is absorbed in intestine and enters the liver and hepatocytes by portal venous system, and hampers the detoxification system of liver by interfering in cytochrome P450 enzymes, so, the liver gently proceeds to cirrhosis and cancer. OBJECTIVES The current study aimed to investigate the hepatic and renal protective effects of aerial parts of Echinacea purpurea extract (EPE) on injury induced by diethylnitrosamine (DEN). MATERIALS AND METHODS Twenty Wistar rats were divided into 4 groups. Groups were as follow: Control group (normal saline), DEN (200 mg/kg, IP, a single dose), EPE (100 mg/kg, orally, daily) and DEN + EPE which received as group DEN and EPE. After 30 days, Blood samples, and liver and kidney tissues were taken for further examination. Aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), BUN, Creatinine and total and direct bilirubin were estimated in serum. RESULTS DEN induced hepatotoxicity and nephrotoxicity in all the treated animals by elevated serum ALT, AST, ALP and BUN, creatinin and total and direct bilirubin levels. AST, BUN and total and direct bilirubin significantly decreased in DEN + EPE compared to DEN group. After 30 days of DEN administration, histopathological investigation revealed proliferation of hepatic stellate cells and early fibrosis which were partly improved by EPE administration. CONCLUSIONS The current study findings indicated that Echinacea purpurea extract played an important role in the protection against DEN toxicity in rats.
Collapse
Affiliation(s)
- Annahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran,Corresponding author: Annahita Rezaie, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran. Tel.: +98-6113330010, Ext: 4131, E-mail: a.rezaie@scu. ac.ir; rezaie20a@yahoo. com
| | - Ali Fazlara
- Department of food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Mojtaba Haghi Karamolah
- Department of food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Ali Shahriari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Hossein Najaf Zadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Marzieh Pashmforosh
- School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, IR Iran,Research Committee, Jundishapur University of Medical Science, Ahvaz, IR Iran
| |
Collapse
|