1
|
Wu X, Yang L, Li Z, Gu C, Jin K, Luo A, Rasheed NF, Fiutak I, Chao K, Chen A, Mao J, Chen Q, Ding W, Shen S. Aging-associated decrease of PGC-1α promotes pain chronification. Aging Cell 2024; 23:e14177. [PMID: 38760908 PMCID: PMC11320346 DOI: 10.1111/acel.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/20/2024] Open
Abstract
Aging is generally associated with declining somatosensory function, which seems at odds with the high prevalence of chronic pain in older people. This discrepancy is partly related to the high prevalence of degenerative diseases such as osteoarthritis in older people. However, whether aging alters pain processing in the primary somatosensory cortex (S1), and if so, whether it promotes pain chronification is largely unknown. Herein, we report that older mice displayed prolonged nociceptive behavior following nerve injury when compared with mature adult mice. The expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in S1 was decreased in older mice, whereas PGC-1α haploinsufficiency promoted prolonged nociceptive behavior after nerve injury. Both aging and PGC-1α haploinsufficiency led to abnormal S1 neural dynamics, revealed by intravital two-photon calcium imaging. Manipulating S1 neural dynamics affected nociceptive behavior after nerve injury: chemogenetic inhibition of S1 interneurons aggravated nociceptive behavior in naive mice; chemogenetic activation of S1 interneurons alleviated nociceptive behavior in older mice. More interestingly, adeno-associated virus-mediated expression of PGC-1α in S1 interneurons ameliorated aging-associated chronification of nociceptive behavior as well as aging-related S1 neural dynamic changes. Taken together, our results showed that aging-associated decrease of PGC-1α promotes pain chronification, which might be harnessed to alleviate the burden of chronic pain in older individuals.
Collapse
Affiliation(s)
- Xinbo Wu
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
Shanghai 10th HospitalTongji University School of MedicineShanghaiChina
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zihua Li
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chenzheng Gu
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kaiyan Jin
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Luo
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Kristina Chao
- Summer Intern ProgramMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Amy Chen
- Summer Intern ProgramMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qian Chen
- Chinese Academy of SciencesZhongshan Institute for Drug Discovery, Shanghai Institute of Materia MedicaShanghaiChina
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
3
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
4
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
5
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
6
|
Sabet N, Soltani Z, Khaksari M, Raji-Amirhasani A. The effects of two different dietary regimens during exercise on outcome of experimental acute kidney injury. J Inflamm (Lond) 2022; 19:2. [PMID: 35236328 PMCID: PMC8889785 DOI: 10.1186/s12950-022-00299-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a syndrome characterized by rapid loss of excretory function of kidney. Both exercise and some diets have been shown to increase silent information regulator (SIRT1) expression leading to reduction of kidney injury. In this study, the effect of two different diets during exercise on kidney function, oxidative stress, inflammation and also SIRT1 in AKI was investigated. MATERIALS AND METHODS A number of rats were randomly divided into four groups; control without exercise, control with exercise, exercise + calorie restriction (CR), and exercise + time restriction (TR). Each group was divided into two subgroups of without AKI and with AKI (six rats in each group). Endurance exercise and diets were implemented before AKI. Serum urea and creatinine, urinary albumin, kidney malondialdehyde (MDA), total antioxidant capacity (TAC), transforming growth factor (TGF-β1), and SIRT1 levels, glomerular filtration rate (GFR) and relative kidney weight were measured before and 24 h after AKI induction. RESULTS After induction of kidney injury, serum urea and creatinine, urinary albumin, kidney MDA and TGF-β1 levels increased in rats with both previous exercise and no previous exercise, while GFR, and kidney TAC and SIRT1 levels significantly decreased. These changes after AKI were less in the group with previous exercise than in the group that had no exercise (p <0.001). The TR diet during exercise caused a less increase in serum urea (p <0.01) and creatinine (p <0.01), and urinary albumin (p <0.001) levels after the injury compared to the just exercise group. Also, both CR and TR diets during exercise caused less change in MDA (p <0.001) and TAC (p <0.05, p <0.001, respectively) levels compared to just exercise group. CONCLUSIONS The results showed that exercise alone had no effect on preventing function impairment of kidney, oxidative stress, inflammation and also SIRT1 alteration following AKI, although these indexes were less among those with exercise than those without exercise. However, when the CR and TR diets were implemented during exercise, strong renoprotective effects appeared, and the protective effect of TR diet was greater.
Collapse
Affiliation(s)
- Nazanin Sabet
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Adipose triglyceride lipase decrement affects skeletal muscle homeostasis during aging through FAs-PPARα-PGC-1α antioxidant response. Oncotarget 2018; 7:23019-32. [PMID: 27056902 PMCID: PMC5029607 DOI: 10.18632/oncotarget.8552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
During aging skeletal muscle shows an accumulation of oxidative damage as well as intramyocellular lipid droplets (IMLDs). However, although the impact of these modifications on muscle tissue physiology is well established, the direct effectors critical for their occurrence are poorly understood. Here we show that during aging the main lipase of triacylglycerols, ATGL, significantly declines in gastrocnemius and its downregulation in C2C12 myoblast leads to the accumulation of lipid droplets. Indeed, we observed an increase of oxidative damage to proteins in terms of carbonylation, S-nitrosylation and ubiquitination that is dependent on a defective antioxidant cell response mediated by ATGL-PPARα-PGC-1α. Overall our findings describe a pivotal role for ATGL in the antioxidant/anti-inflammatory response of muscle cells highlighting this lipase as a therapeutic target for fighting the progressive decline in skeletal muscle mass and strength.
Collapse
|
8
|
Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front Cell Neurosci 2018; 12:4. [PMID: 29387000 PMCID: PMC5776087 DOI: 10.3389/fncel.2018.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Collapse
Affiliation(s)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Daniele Lettieri-Barbato
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Yang J, Nishihara R, Zhang X, Ogino S, Qian ZR. Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer? J Diabetes Complications 2017; 31:1228-1236. [PMID: 28465145 PMCID: PMC5501176 DOI: 10.1016/j.jdiacomp.2017.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The recently rapid increase of obesity and type 2 diabetes mellitus has caused great burden to our society. A positive association between type 2 diabetes and risk of colorectal cancer has been reported by increasing epidemiological studies. The molecular mechanism of this connection remains elusive. However, type 2 diabetes may result in abnormal carbohydrate and lipid metabolism, high levels of circulating insulin, insulin growth factor-1, and adipocytokines, as well as chronic inflammation. All these factors could lead to the alteration of energy sensing pathways such as the AMP activated kinase (PRKA), mechanistic (mammalian) target of rapamycin (mTOR), SIRT1, and autophagy signaling pathways. The resulted impaired SIRT1 and autophagy signaling pathway could increase the risk of gene mutation and cancer genesis by decreasing genetic stability and DNA mismatch repair. The dysregulated mTOR and PRKA pathway could remodel cell metabolism during the growth and metastasis of cancer in order for the cancer cell to survive the unfavorable microenvironment such as hypoxia and low blood supply. Moreover, these pathways may be coupling metabolic and epigenetic alterations that are central to oncogenic transformation. Further researches including molecular pathologic epidemiologic studies are warranted to better address the precise links between these two important diseases.
Collapse
Affiliation(s)
- Juhong Yang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; 211 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215.
| |
Collapse
|
10
|
Gouw AM, Efe G, Barakat R, Preecha A, Mehdizadeh M, Garan SA, Brooks GA. Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis. Physiol Genomics 2016; 49:88-95. [PMID: 28011880 DOI: 10.1152/physiolgenomics.00073.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.
Collapse
Affiliation(s)
- Arvin M Gouw
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and.,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| | - Gizem Efe
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Rita Barakat
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Andrew Preecha
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Morvarid Mehdizadeh
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Steven A Garan
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - George A Brooks
- Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and .,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| |
Collapse
|
11
|
Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell. Aging (Albany NY) 2016; 7:869-81. [PMID: 26540513 PMCID: PMC4637211 DOI: 10.18632/aging.100832] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial-and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species (mtROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 (nFoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.
Collapse
Affiliation(s)
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.,IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Maria R Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
12
|
Wood SH, van Dam S, Craig T, Tacutu R, O'Toole A, Merry BJ, de Magalhães JP. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol 2015; 16:285. [PMID: 26694192 PMCID: PMC4699360 DOI: 10.1186/s13059-015-0847-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Caloric restriction (CR) can increase longevity in rodents and improve memory function in humans. α-Lipoic acid (LA) has been shown to improve memory function in rats, but not longevity. While studies have looked at survival in rodents after switching from one diet to another, the underlying mechanisms of the beneficial effects of CR and LA supplementation are unknown. Here, we use RNA-seq in cerebral cortex from rats subjected to CR and LA-supplemented rats to understand how changes in diet can affect aging, neurodegeneration and longevity. RESULTS Gene expression changes during aging in ad libitum-fed rats are largely prevented by CR, and neuroprotective genes are overexpressed in response to both CR and LA diets with a strong overlap of differentially expressed genes between the two diets. Moreover, a number of genes are differentially expressed specifically in rat cohorts exhibiting diet-induced life extension. Finally, we observe that LA supplementation inhibits histone deacetylase (HDAC) protein activity in vitro in rat astrocytes. We find a single microRNA, miR-98-3p, that is overexpressed during CR feeding and LA dietary supplementation; this microRNA alters HDAC and histone acetyltransferase (HAT) activity, which suggests a role for HAT/HDAC homeostasis in neuroprotection. CONCLUSIONS This study presents extensive data on the effects of diet and aging on the cerebral cortex transcriptome, and also emphasises the importance of epigenetics and post-translational modifications in longevity and neuroprotection.
Collapse
Affiliation(s)
- Shona H Wood
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robi Tacutu
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy O'Toole
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian J Merry
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
13
|
Liu B, Zhang R, Tao G, Lehwald NC, Liu B, Koh Y, Sylvester KG. Augmented Wnt signaling as a therapeutic tool to prevent ischemia/reperfusion injury in liver: Preclinical studies in a mouse model. Liver Transpl 2015; 21:1533-42. [PMID: 26335930 DOI: 10.1002/lt.24331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Abstract
The Wnt signaling pathway has established biological roles in liver development, regeneration, and carcinogenesis. Given the common need for cellular energy utilization in each of these processes, we hypothesized that Wnt signaling would directly regulate hepatocyte mitochondrial function. Mice were engineered to overexpress Wnt1 in hepatocytes under the control of a tetracycline analogue. Wnt1 and wild-type mice underwent ischemia/reperfusion injury (IRI) to induce oxidative mitochondrial injury. Alpha mouse liver 12 (AML12) hepatocytes were exposed to Wnt agonists for in vitro hypoxia/reoxygenation (H-R) experiments. We observed stabilized mitochondrial membrane potential and reduced levels of hepatocyte apoptosis involving the mitochondrial pathway in Wnt1 mice compared to controls following IRI. Wnt1 mice also demonstrated increased mitochondrial DNA copy number, as well as an increased tricarboxylic acid cycle activity and adenosine triphosphate levels indicating that mitochondrial function is preserved by Wnt1 overexpression following IRI. AML12 cells treated by Wnt3a or the glycogen synthase kinase 3β inhibitor LiCl exposed to H-R demonstrated decreased reactive oxygen species and reduced apoptosis compared to controls. Increased nucleus-localized PGC-1α and phosphorylated SIRT1 was observed in both Wnt1+ mice as well as AML12 cells treated with Wnt3a or LiCl. Activated Wnt signaling protects hepatocytes against oxidative injury and apoptosis through mitochondrial stabilization and preserved oxidative phosphorylation function. Mechanistically, these effects are accompanied by an increase in phosphorylated SIRT1 and nucleus-localized PGC-1α. These findings expand the understanding of Wnt signaling biology in hepatocytes and suggest the potential for the therapeutic application of Wnt pathway manipulation in a variety of clinical applications including organ transplantation.
Collapse
Affiliation(s)
- Bowen Liu
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Rong Zhang
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Guozhong Tao
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Nadja Corinna Lehwald
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA.,Department of General, Visceral and Pediatric Surgery, School of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Liu
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Yangseok Koh
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Karl G Sylvester
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA.,Lucile Packard Children's Hospital Stanford, Stanford, CA
| |
Collapse
|
14
|
Fu ZD, Cui JY, Klaassen CD. The Role of Sirt1 in Bile Acid Regulation during Calorie Restriction in Mice. PLoS One 2015; 10:e0138307. [PMID: 26372644 PMCID: PMC4570809 DOI: 10.1371/journal.pone.0138307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022] Open
Abstract
Sirtuin 1 (Sirt1) is an NAD+-dependent protein deacetylase that is proposed to mediate many health-promoting effects of calorie restriction (CR). We recently reported that short-term CR increased the bile acid (BA) pool size in mice, likely due to increased BA synthesis in liver. Given the important role of Sirt1 in the regulation of glucose, lipid, as well as BA metabolism, we hypothesized that the CR-induced increase in BAs is Sirt1-dependent. To address this, the present study utilized genetically-modified mice that were Sirt1 loss of function (liver knockout, LKO) or Sirt1 gain of function (whole body-transgenic, TG). Three genotypes of mice (Sirt1-LKO, wild-type, and Sirt1-TG) were each randomly divided into ad libitum or 40% CR feeding for one month. BAs were extracted from various compartments of the enterohepatic circulation, followed by BA profiling by UPLC-MS/MS. CR increased the BA pool size and total BAs in serum, gallbladder, and small intestine. The CR-induced increase in BA pool size correlated with the tendency of increase in the expression of the rate-limiting BA-synthetic enzyme Cyp7a1. However, in contrast to the hypothesis, the CR-induced increase in BA pool size and Cyp7a1 expression was still observed with ablated expression of Sirt1 in liver, and completely suppressed with whole-body overexpression of Sirt1. Furthermore, in terms of BA composition, CR increased the ratio of 12α-hydroxylated BAs regardless of Sirt1 genotypes. In conclusion, the CR-induced alterations in BA pool size, BA profiles, and expression of BA-related genes do not appear to be dependent on Sirt1.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Curtis D. Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| |
Collapse
|
15
|
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: A Focus on Several Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392169. [PMID: 26180587 PMCID: PMC4477222 DOI: 10.1155/2015/392169] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, L. go F. Vito n.1, 00168 Rome, Italy
- C.N.R. Institute of Chemistry of Molecular Recognition, L. go F. Vito n.1, 00168 Rome, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
16
|
Lettieri Barbato D, Aquilano K, Ciriolo MR. FoxO1 at the nexus between fat catabolism and longevity pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1555-1560. [DOI: 10.1016/j.bbalip.2014.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
|
17
|
Expression of mitochondrial regulators PGC1α and TFAM as putative markers of subtype and chemoresistance in epithelial ovarian carcinoma. PLoS One 2014; 9:e107109. [PMID: 25243473 PMCID: PMC4170973 DOI: 10.1371/journal.pone.0107109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/13/2014] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC), the major cause of gynaecological cancer death, is a heterogeneous disease classified into five subtypes. Each subtype has distinct clinical characteristics and is associated with different genetic risk factors and molecular events, but all are treated with surgery and platinum/taxane regimes. Tumour progression and chemoresistance is generally associated with major metabolic alterations, notably altered mitochondrial function(s). Here, we report for the first time that the expression of the mitochondrial regulators PGC1α and TFAM varies between EOC subtypes; furthermore, we have identified a profile in clear-cell carcinoma consisting of undetectability of PGC1α/TFAM, and low ERα/Ki-67. By contrast, high-grade serous carcinomas were characterised by a converse state of PGC1α/TFAM, ERα positivity and a high Ki-67 index. Interestingly, loss of PGC1α/TFAM and ERα was found also in a non-clear cell EOC cell line made highly resistant to platinum in vitro. Similar to clear-cell carcinomas, these resistant cells also showed accumulation of glycogen. Altogether, our data provide mechanistic insights into the chemoresistant nature of ovarian clear-cell carcinomas. Furthermore, these findings corroborate the need to take into account the diversity of EOC and to develop subtype specific treatment strategies.
Collapse
|
18
|
Lettieri Barbato D, Vegliante R, Desideri E, Ciriolo MR. Managing lipid metabolism in proliferating cells: new perspective for metformin usage in cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1845:317-24. [PMID: 24569230 DOI: 10.1016/j.bbcan.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Cancer cells metabolically adapt to undergo cellular proliferation. Lipids, besides their well-known role as energy storage, represent the major building blocks for the synthesis of neo-generated membranes. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. The changes of expression and activity of lipid metabolising enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumour cells on the deregulated lipid metabolism suggests that proteins involved in this process could be excellent chemotherapeutic targets for cancer treatment. Due to its rare side effects in non-cancerous cells, metformin has been recently revaluated as a potential anti-tumourigenic drug, which negatively affects lipid biosynthetic pathways. In this review we summarised the emerging molecular events linking the anti-proliferative effect of metformin with lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rolando Vegliante
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Enrico Desideri
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Rosa Ciriolo
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; IRCCS San Raffaele, Biochemistry of Ageing, Via di Val Cannuta, 00166 Rome, Italy.
| |
Collapse
|
19
|
Baldelli S, Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. The role of nNOS and PGC-1α in skeletal muscle cells. J Cell Sci 2014; 127:4813-20. [DOI: 10.1242/jcs.154229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction.
Collapse
|
20
|
Aquilano K, Baldelli S, Ciriolo MR. Nuclear recruitment of neuronal nitric-oxide synthase by α-syntrophin is crucial for the induction of mitochondrial biogenesis. J Biol Chem 2013; 289:365-78. [PMID: 24235139 DOI: 10.1074/jbc.m113.506733] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) has various splicing variants and different subcellular localizations. nNOS can be found also in the nucleus; however, its exact role in this compartment is still not completely defined. In this report, we demonstrate that the PDZ domain allows the recruitment of nNOS to nuclei, thus favoring local NO production, nuclear protein S-nitrosylation, and induction of mitochondrial biogenesis. In particular, overexpression of PDZ-containing nNOS (nNOSα) increases S-nitrosylated CREB with consequent augmented binding on cAMP response element consensus sequence on peroxisome proliferator-activated receptor γ co-activator (PGC)-1α promoter. The resulting PGC-1α induction is accompanied by the expression of mitochondrial genes (e.g., TFAM, MtCO1) and increased mitochondrial mass. Importantly, full active nNOS lacking PDZ domain (nNOSβ) does not localize in nuclei and fails in inducing the expression of PGC-1α. Moreover, we substantiate that the mitochondrial biogenesis normally accompanying myogenesis is associated with nuclear translocation of nNOS. We demonstrate that α-Syntrophin, which resides in nuclei of myocytes, functions as the upstream mediator of nuclear nNOS translocation and nNOS-dependent mitochondrial biogenesis. Overall, our results indicate that altered nNOS splicing and nuclear localization could be contributing factors in human muscular diseases associated with mitochondrial impairment.
Collapse
Affiliation(s)
- Katia Aquilano
- From the Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy and
| | | | | |
Collapse
|
21
|
Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis 2013; 4:e861. [PMID: 24136225 PMCID: PMC3920962 DOI: 10.1038/cddis.2013.404] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
Abstract
Finding new molecular pathways and strategies modulating lipolysis in adipocytes is an attractive goal of the current research. Indeed, it is becoming clear that several human age-related pathologies are caused by adipose tissue expansion and altered lipid metabolism. In the present work, we show that transcription factor forkhead homeobox type protein O1 (FoxO1) is upregulated by nutrient restriction (NR) in adipocytes and exerts the transcriptional control of lipid catabolism via the induction of lysosomal acid lipase (Lipa). An increased autophagy and colocalization of lipid droplets (LDs) with lysosomes was observed implying lipophagy in Lipa-mediated LDs degradation. Interestingly, we found that metformin (Metf), a biguanide drug commonly used to treat type-2 diabetes, exerts effects comparable to that of NR. Actually, it was able to elicit FoxO1-dependent Lipa induction as well as LDs degradation through lipophagy. Moreover, we demonstrate that, during NR or Metf treatment, free fatty acids released by Lipa are directed toward AMP-activated protein kinase-mediated mitochondrial oxidation, thus maintaining energetic homeostasis in adipocytes. In conclusion, our data show that lysosomal-mediated lipid catabolism is activated by NR in adipocytes and give further support to the use of Metf as a NR mimetic to combat age-related diseases associated with altered lipid metabolism.
Collapse
Affiliation(s)
- D Lettieri Barbato
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | | | | | | |
Collapse
|
22
|
Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta Gen Subj 2013; 1830:4137-46. [DOI: 10.1016/j.bbagen.2013.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022]
|
23
|
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 2012; 16:706-22. [PMID: 23168220 PMCID: PMC3518570 DOI: 10.1016/j.cmet.2012.08.012] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress-response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA-repair proteins, autophagy, and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer's and Parkinson's diseases, stroke, and depression. Intense concerted efforts of governments, families, schools, and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|