1
|
Singh A, Singh A, Saraswati SSK, Rana AK, Singh A, Verma C, Sinha V, Kalra K, Natarajan K. Suppressive effects of toll-like receptor 2, toll-like receptor 4, and toll-like receptor 7 on protective responses to Mycobacterium bovis BCG from epithelial cells. Microbes Infect 2025; 27:105428. [PMID: 39368609 DOI: 10.1016/j.micinf.2024.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Mycobacteria have several mechanisms for evasion of protective responses mounted by the host. In this study, we unravel yet another mechanism that is mediated by Toll-Like Receptors TLR2, TLR4, and TLR7 in epithelial cells. We show that mycobacterial infection of epithelial cells increases the expression of TLR2, TLR4, and TLR7. Stimulation of either TLR along with mycobacterial infection results in an inhibition of oxidative burst resulting in increased survival of mycobacteria inside epithelial cells. TLR stimulation along with mycobacterial infection also inhibits activation of epithelial cells for T cell responses by differentially regulating the activation of ERK-MAPK and p38-MAPK along with inhibition of co-stimulatory molecule CD86 expression. Furthermore, stimulation of either TLR inhibits the induction of apoptosis and autophagy. Knockdown of either TLR by specific siRNAs reverses the inhibition by ROS and apoptosis by mycobacteria and results in reduced intracellular survival of mycobacteria in a MyD88-dependent manner. These results point towards a negative role for TLR2, TLR4, and TLR7 in regulating protective responses to M. bovis BCG infection in epithelial cells.
Collapse
Affiliation(s)
- Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
3
|
Sinha V, Singh A, Singh A, Saraswati SSK, Rana AK, Kalra K, Natarajan K. Potassium ion channel Kir2.1 negatively regulates protective responses to Mycobacterium bovis BCG. J Leukoc Biol 2024; 116:644-656. [PMID: 38489665 DOI: 10.1093/jleuko/qiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tuberculosis caused by the pathogen Mycobacterium tuberculosis leads to increased mortality and morbidity worldwide. The prevalence of highly drug-resistant strains has reinforced the need for greater understanding of host-pathogen interactions at the cellular and molecular levels. Our previous work demonstrated critical roles of calcium ion channels in regulating protective responses to mycobacteria. In this report, we deciphered the roles of inwardly rectifying K+ ion channel Kir2.1 in epithelial cells. Data showed that infection of epithelial cells (and macrophages) increases the surface expression of Kir2.1. This increased expression of Kir2.1 results in higher intracellular mycobacterial survival, as either inhibiting or knocking down Kir2.1 results in mounting of a higher oxidative burst leading to a significant attenuation of mycobacterial survival. Further, inhibiting Kir2.1 also led to increased expression of T cell costimulatory molecules accompanied with increased activation of MAP kinases and transcription factors nuclear factor κB and phosphorylated CREB. Furthermore, inhibiting Kir2.1 induced increased autophagy and apoptosis that could also contribute to decreased bacterial survival. Interestingly, an increased association of heat shock protein 70 kDa with Kir2.1 was observed. These results showed that mycobacteria modulate the expression and function of Kir2.1 in epithelial cells to its advantage.
Collapse
Affiliation(s)
- Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Shakuntala Surender Kumar Saraswati
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| |
Collapse
|
4
|
Bahlool AZ, Cavanagh B, Sullivan AO, MacLoughlin R, Keane J, Sullivan MPO, Cryan SA. Microfluidics produced ATRA-loaded PLGA NPs reduced tuberculosis burden in alveolar epithelial cells and enabled high delivered dose under simulated human breathing pattern in 3D printed head models. Eur J Pharm Sci 2024; 196:106734. [PMID: 38417586 DOI: 10.1016/j.ejps.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is second only to COVID-19 as the top infectious disease killer worldwide. Multi-drug resistant TB (MDR-TB) may arise because of poor patient adherence to medications due to lengthy treatment duration and side effects. Delivering novel host directed therapies (HDT), like all trans retinoic acid (ATRA) may help to improve drug regimens and reduce the incidence of MDR-TB. Local delivery of ATRA to the site of infection leads to higher bioavailability and reduced systemic side effects. ATRA is poorly soluble in water and has a short half-life in plasma. Therefore, it requires a formulation step before it can be administered in vivo. ATRA loaded PLGA nanoparticles suitable for nebulization were manufactured and optimized using a scalable nanomanufacturing microfluidics (MF) mixing approach (MF-ATRA-PLGA NPs). MF-ATRA-PLGA NPs demonstrated a dose dependent inhibition of Mtb growth in TB-infected A549 alveolar epithelial cell model while preserving cell viability. The MF-ATRA-PLGA NPs were nebulized with the Aerogen Solo vibrating mesh nebulizer, with aerosol droplet size characterized using laser diffraction and the estimated delivered dose was determined. The volume median diameter (VMD) of the MF-ATRA-PLGA NPs was 3.00 ± 0.18 μm. The inhaled dose delivered in adult and paediatric 3D printed head models under a simulated normal adult and paediatric breathing pattern was found to be 47.05 ± 3 % and 20.15 ± 3.46 % respectively. These aerosol characteristics of MF-ATRA-PLGA NPs supports its suitability for delivery to the lungs via inhalation. The data generated on the efficacy of an inhalable, scalable and regulatory friendly ATRA-PLGA NPs formulation provides a foundation on which further pre-clinical testing can be built. Overall, the results of this project are promising for future research into ATRA loaded NPs formulations as inhaled host directed therapies for TB.
Collapse
Affiliation(s)
- Ahmad Z Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, Dublin 2, Ireland
| | - Andrew O' Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P O' Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland; SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, Dublin, Ireland.
| |
Collapse
|
5
|
Das S, Chauhan KS, Ahmed M, Akter S, Lu L, Colonna M, Khader SA. Lung type 3 innate lymphoid cells respond early following Mycobacterium tuberculosis infection. mBio 2024; 15:e0329923. [PMID: 38407132 PMCID: PMC11005430 DOI: 10.1128/mbio.03299-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Tuberculosis is the leading cause of death due to an infectious disease worldwide. Innate lymphoid type 3 cells (ILC3s) mediate early protection during Mycobacterium tuberculosis (Mtb) infection. However, the early signaling mechanisms that govern ILC3 activation or recruitment within the lung during Mtb infection are unclear. scRNA-seq analysis of Mtb-infected mouse lung innate lymphoid cells (ILCs) has revealed the presence of different clusters of ILC populations, suggesting heterogeneity. Using mouse models, we show that during Mtb infection, interleukin-1 receptor (IL-1R) signaling on epithelial cells drives ILC3 expansion and regulates ILC3 accumulation in the lung. Furthermore, our data revealed that C-X-C motif chemokine receptor 5 (CXCR5) signaling plays a crucial role in ILC3 recruitment from periphery during Mtb infection. Our study thus establishes the early responses that drive ILC3 accumulation during Mtb infection and points to ILC3s as a potential vaccine target. IMPORTANCE Tuberculosis is a leading cause of death due to a single infectious agent accounting for 1.6 million deaths each year. In our study, we determined the role of type 3 innate lymphoid cells in early immune events necessary for achieving protection during Mtb infection. Our study reveals distinct clusters of ILC2, ILC3, and ILC3/ILC1-like cells in Mtb infection. Moreover, our study reveal that IL-1R signaling on lung type 2 epithelial cells plays a key role in lung ILC3 accumulation during Mtb infection. CXCR5 on ILC3s is involved in ILC3 homing from periphery during Mtb infection. Thus, our study provides novel insights into the early immune mechanisms governed by innate lymphoid cells that can be targeted for potential vaccine-induced protection.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kuldeep Singh Chauhan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Olmo-Fontánez AM, Scordo JM, Schami A, Garcia-Vilanova A, Pino PA, Hicks A, Mishra R, Jose Maselli D, Peters JI, Restrepo BI, Nargan K, Naidoo T, Clemens DL, Steyn AJC, Thacker VV, Turner J, Schlesinger LS, Torrelles JB. Human alveolar lining fluid from the elderly promotes Mycobacterium tuberculosis intracellular growth and translocation into the cytosol of alveolar epithelial cells. Mucosal Immunol 2024; 17:155-168. [PMID: 38185331 PMCID: PMC11034793 DOI: 10.1016/j.mucimm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.
Collapse
Affiliation(s)
- Angélica M Olmo-Fontánez
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, Texas, USA.
| | - Julia M Scordo
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Alyssa Schami
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Andreu Garcia-Vilanova
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Paula A Pino
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Amberlee Hicks
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Diego Jose Maselli
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Jay I Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Blanca I Restrepo
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; University of Texas Health Science Center at Houston, School of Public Health, Brownsville campus, Brownsville, Texas, USA; South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha, South Africa
| | - Daniel L Clemens
- University of California, Los Angeles Health Sciences, Los Angeles, California, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA; International Center for the Advancement of Research and Education (I●CARE), Texas Biomedical Research Institute, San Antonio, TX, US.
| |
Collapse
|
7
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
8
|
Hassanshahi F, Noroozi Karimabad M, Miranzadeh E, Hassanshahi G, Torabizadeh SA, Jebali A. The Serum Level of CXCL9, CXCL10, and CXCL11 and the Expression of CXCR3 of Peripheral Blood Mononuclear Cells in Brucellosis Patients. Curr Microbiol 2023; 80:201. [PMID: 37140634 DOI: 10.1007/s00284-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.
Collapse
Affiliation(s)
- Farzaneh Hassanshahi
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran.
| | - Elahe Miranzadeh
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jebali
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| |
Collapse
|
9
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
10
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis (Edinb) 2022; 135:102208. [DOI: 10.1016/j.tube.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
|
13
|
Maranatha D, Ambarwati D. Association of serum MMP-9 level and lung function in new pulmonary tuberculosis case. CURRENT RESPIRATORY MEDICINE REVIEWS 2022. [DOI: 10.2174/1573398x18666220407084457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Histopathological abnormalities of pulmonary tuberculosis (TB) include caseous granuloma formation, tissue damage, and cavity formation, all of which could lead to permanent changes in the pulmonary anatomy. In pulmonary TB, an increase in serum Matrix Metalloproteinase (MMP)-9 correlates with disease severity and worse prognosis. This study aims to analyze the association between serum MMP-9 levels and the values of FVC, FEV1, and FEV1/FVC.
Methods:
A cross-sectional study of patients with pulmonary tuberculosis was conducted in the Tuberculosis Outpatient Clinic, Dr. Soetomo Academic Hospital, Surabaya, Indonesia. Spirometry and serum MMP-9 levels were examined in new pulmonary TB patients prior to anti-tuberculosis therapy. The relationship between serum MMP-9 levels and results of spirometry examination was then analyzed.
Results:
There were 44 new pulmonary TB cases with a mean age of 37.90 ± 15.15 years. The patients who experienced symptoms in < 1 month were 20.5%, ≥ 1 month 59.1%, and ≥ 2 months 20.4%. The mean MMP-9 serum level was 11.27±5.47 ng/ml. Spirometry results: FVC 1.83±0.69 L, FVC predicted 56.24±18.74%, FEV1 1.71±0.72 L/sec, FEV1 predicted 60.85±21.30%, and FEV1/FVC 104.16 ± 17.45%. In pulmonary TB patients with symptoms experienced in < 1 month to diagnosis, a significant relationship between MMP-9 and FVC levels was found with r = -0.839 (p = 0.005).
Conclusion:
There is a correlation between serum MMP-9 level and restrictive pulmonary impairment in new pulmonary TB cases with symptoms experienced in < 1 month.
Collapse
Affiliation(s)
- Daniel Maranatha
- Department of Pulmonology and Respiratory Medicine
Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| | - Devi Ambarwati
- Department of Pulmonology and Respiratory Medicine
Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| |
Collapse
|
14
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
15
|
McCormick TS, Hejal RB, Leal LO, Ghannoum MA. GM-CSF: Orchestrating the Pulmonary Response to Infection. Front Pharmacol 2022; 12:735443. [PMID: 35111042 PMCID: PMC8803133 DOI: 10.3389/fphar.2021.735443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes the structure and function of the alveolar unit, comprised of alveolar macrophage and epithelial cell types that work in tandem to respond to infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) helps to maintain the alveolar epithelium and pulmonary immune system under physiological conditions and plays a critical role in restoring homeostasis under pathologic conditions, including infection. Given the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and global spread of coronavirus disease 2019 (COVID-19), with subsequent acute respiratory distress syndrome, understanding basic lung physiology in infectious diseases is especially warranted. This review summarizes clinical and preclinical data for GM-CSF in respiratory infections, and the rationale for sargramostim (yeast-derived recombinant human [rhu] GM-CSF) as adjunctive treatment for COVID-19 and other pulmonary infectious diseases.
Collapse
Affiliation(s)
- Thomas S. McCormick
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Rana B. Hejal
- Medical Intensive Care Unit, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Pulmonary and Critical Care Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luis O. Leal
- Partner Therapeutics, Lexington, MA, United States
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
16
|
Dias AA, Silva CADME, da Silva CO, Linhares NRC, Santos JPS, Vivarini ADC, Marques MÂDM, Rosa PS, Lopes UG, Berrêdo-Pinho M, Pessolani MCV. TLR-9 Plays a Role in Mycobacterium leprae-Induced Innate Immune Activation of A549 Alveolar Epithelial Cells. Front Immunol 2021; 12:657449. [PMID: 34456901 PMCID: PMC8397448 DOI: 10.3389/fimmu.2021.657449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human β-defensin-2 (hβD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.
Collapse
Affiliation(s)
- André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Camila Oliveira da Silva
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - João Pedro Sousa Santos
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Ângela de Mello Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University (CSU), Fort Collins, CO, United States
| | | | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Márcia Berrêdo-Pinho
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
17
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
18
|
Anes E, Azevedo-Pereira JM, Pires D. Cathepsins and Their Endogenous Inhibitors in Host Defense During Mycobacterium tuberculosis and HIV Infection. Front Immunol 2021; 12:726984. [PMID: 34421929 PMCID: PMC8371317 DOI: 10.3389/fimmu.2021.726984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden. Both pathogens work synergistically contributing to speed up the replication of each other. Mycobacterium tuberculosis (Mtb) and HIV infections are in the 21st century among the leaders of morbidity and mortality of humankind. There is an urgent need for development of new approaches for prevention, better diagnosis, and new therapies for both infections. Moreover, these approaches should consider Mtb and HIV as a co-infection, rather than just as separate problems, to prevent further aggravation of the HIV-TB syndemic. Both pathogens manipulate the host immune responses to establish chronic infections in intracellular niches of their host cells. This includes manipulation of host relevant antimicrobial proteases such as cathepsins or their endogenous inhibitors. Here we discuss recent understanding on how Mtb and HIV interact with cathepsins and their inhibitors in their multifactorial functions during the pathogenesis of both infections. Particularly we will address the role on pathogen transmission, during establishment of intracellular chronic niches and in granuloma clinical outcome and tuberculosis diagnosis. This area of research will open new avenues for the design of innovative therapies and diagnostic interventions so urgently needed to fight this threat to humanity.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Remot A, Carreras F, Coupé A, Doz-Deblauwe É, Boschiroli ML, Browne JA, Marquant Q, Descamps D, Archer F, Aseffa A, Germon P, Gordon SV, Winter N. Mycobacterial Infection of Precision-Cut Lung Slices Reveals Type 1 Interferon Pathway Is Locally Induced by Mycobacterium bovis but Not M. tuberculosis in a Cattle Breed. Front Vet Sci 2021; 8:696525. [PMID: 34307535 PMCID: PMC8299756 DOI: 10.3389/fvets.2021.696525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis exacts a terrible toll on human and animal health. While Mycobacterium tuberculosis (Mtb) is restricted to humans, Mycobacterium bovis (Mb) is present in a large range of mammalian hosts. In cattle, bovine TB (bTB) is a noticeable disease responsible for important economic losses in developed countries and underestimated zoonosis in the developing world. Early interactions that take place between mycobacteria and the lung tissue early after aerosol infection govern the outcome of the disease. In cattle, these early steps remain poorly characterized. The precision-cut lung slice (PCLS) model preserves the structure and cell diversity of the lung. We developed this model in cattle in order to study the early lung response to mycobacterial infection. In situ imaging of PCLS infected with fluorescent Mb revealed bacilli in the alveolar compartment, in adjacent or inside alveolar macrophages, and in close contact with pneumocytes. We analyzed the global transcriptional lung inflammation signature following infection of PCLS with Mb and Mtb in two French beef breeds: Blonde d'Aquitaine and Charolaise. Whereas, lungs from the Blonde d'Aquitaine produced high levels of mediators of neutrophil and monocyte recruitment in response to infection, such signatures were not observed in the Charolaise in our study. In the Blonde d'Aquitaine lung, whereas the inflammatory response was highly induced by two Mb strains, AF2122 isolated from cattle in the UK and Mb3601 circulating in France, the response against two Mtb strains, H37Rv, the reference laboratory strain, and BTB1558, isolated from zebu in Ethiopia, was very low. Strikingly, the type I interferon pathway was only induced by Mb but not Mtb strains, indicating that this pathway may be involved in mycobacterial virulence and host tropism. Hence, the PCLS model in cattle is a valuable tool to deepen our understanding of early interactions between lung host cells and mycobacteria. It revealed striking differences between cattle breeds and mycobacterial strains. This model could help in deciphering biomarkers of resistance vs. susceptibility to bTB in cattle as such information is still critically needed for bovine genetic selection programs and would greatly help the global effort to eradicate bTB.
Collapse
Affiliation(s)
- Aude Remot
- INRAE, Université de Tours, Nouzilly, France
| | | | | | | | - Maria L Boschiroli
- Paris-Est University, National Reference Laboratory for Tuberculosis, Animal Health Laboratory, Anses, Maisons-Alfort, France
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | | | - Fabienne Archer
- INRAE, UMR754, Viral Infections and Comparative Pathology, IVPC, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, Lyon, France
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Stephen V Gordon
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
20
|
Ali ZA, Mankhi AA, Ad'hiah AH. Significance of the chemokine CXCL10 and human beta-defensin-3 as biomarkers of pulmonary tuberculosis. Tuberculosis (Edinb) 2021; 128:102078. [PMID: 33773403 DOI: 10.1016/j.tube.2021.102078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
The biomarker significance of IL-35, chemokines (CXCL9 and CXCL10) and human beta-defensins (hBD2 and hBD3) was determined in pulmonary tuberculosis (TB) of 105 Iraqi patients; 37 had active disease, 41 had multi-drug resistant (MDR) PTB and 27 had a relapse of TB. A control sample of 79 healthy persons was also included. Serum levels of markers were assessed using enzyme-linked immunosorbent assay kits. Kruskal-Wallis test together with Dunn-Bonferroni post hoc test revealed significance differences between patients and controls in levels of IL-35, CXCL9, CXCL10 and hBD3, while hBD2 showed no significant difference. Receiver operating characteristic analysis demonstrated that CXCL10 and hBD3 were the most significant markers in predicting TB, particularly active disease. Logistic regression analysis proposed the susceptibility role of CXCL10 in TB. Gender- and age-dependent variations were also observed. Spearman's rank correlation analysis showed different correlations between markers in each group of patients and controls. In conclusion, CXCL10 was up-regulated in serum of TB patients, while hBD3 showed down-regulated level. Both serum proteins are possible candidate biomarkers for evaluation of TB progression, particularly in active disease.
Collapse
Affiliation(s)
- Zainab A Ali
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ahmed A Mankhi
- National Specialized Center for Chest and Respiratory Diseases, Ministry of Health and Environment, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
21
|
Rao L, De La Rosa I, Xu Y, Sha Y, Bhattacharya A, Holtzman MJ, Gilbert BE, Eissa NT. Pseudomonas aeruginosa survives in epithelia by ExoS-mediated inhibition of autophagy and mTOR. EMBO Rep 2021; 22:e50613. [PMID: 33345425 PMCID: PMC7857434 DOI: 10.15252/embr.202050613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS-deficient P. aeruginosa but does not affect the survival of ExoS-containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP-ribosyltransferase domain. Inhibition of mTOR is caused by ExoS-mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.
Collapse
Affiliation(s)
- Lang Rao
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
- Southern California Institute for Research and EducationLong BeachCAUSA
| | | | - Yi Xu
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Youbao Sha
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | | | - Michael J Holtzman
- Department of Internal MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Brian E Gilbert
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
| | - N Tony Eissa
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
| |
Collapse
|
22
|
Mehta M, Dhanjal DS, Paudel KR, Singh B, Gupta G, Rajeshkumar S, Thangavelu L, Tambuwala MM, Bakshi HA, Chellappan DK, Pandey P, Dureja H, Charbe NB, Singh SK, Shukla SD, Nammi S, Aljabali AA, Wich PR, Hansbro PM, Satija S, Dua K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Daljeet S Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Bhupender Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - S Rajeshkumar
- Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai, Tamilnadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai, Tamilnadu, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Hamid A Bakshi
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 12401, India
| | - Nitin B Charbe
- Departamento de Química Orgánica, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Santiago, Macul, Chile
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Alaa A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Peter R Wich
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia.
- School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Bajhol, Sultanpur, Solan, 173 229, India.
| |
Collapse
|
23
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Gaps in Study Design for Immune Parameter Research for Latent Tuberculosis Infection: A Systematic Review. J Immunol Res 2020; 2020:8074183. [PMID: 32377537 PMCID: PMC7191376 DOI: 10.1155/2020/8074183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background Immune parameters (IP) have been extensively studied to distinguish between latent tuberculosis (LTBI) and active tuberculosis (TB). Objective To determine the IP associated with LTBI, compared to active TB and individuals not infected by M. tuberculosis published in literature. Methods We conducted a systematic search using Google Scholar and PubMed databases, combining the MeSH terms latent tuberculosis, Mycobacterium tuberculosis, cytokines, and biological markers, with the free terms, biomarkers and cytokines. Spanish, English, and Portuguese articles comparing the concentration of IP associated with LTBI, either in plasma/serum or in vitro, in adults and nonimmunocompromised versus individuals with TB or without M. tuberculosis infection between 2006 July and 2018 July were included. Two blinded reviewers carried out the searches, read the abstracts, and selected the articles for analysis. Participants' information, diagnostic criteria, IP, detection methods, and biases were collected. Results We analyzed 36 articles (of 637 abstracts) with 93 different biomarkers in different samples. We found 24 parameters that were increased only in active TB (TGF-α, CSF3, CSF2, CCL1 [I-309], IL-7, TGF-β1, CCL3 [MIP-1α], sIL-2R, TNF-β, CCL7 [MCP-3], IFN-α, fractalkine, I-TAG, CCL8 [MCP-2], CCL21 [6Ckine], PDGF, IL-22, VEGF-A, LXA4, PGE2, PGF2α, sCD163, sCD14, and 15-Epi-LXA4), five were elevated in LTBI (IL-5, IL-17F, IL-1, CCL20 [MIP-3α], and ICAM-1), and two substances were increased among uninfected individuals (IL-23 and basic FGF). We found high heterogeneity between studies including failure to account for the time/illness of the individuals studied; varied samples and protocols; different clinical classification of TB; different laboratory methods for IP detection, which in turn leads to variable units of measurement and assay sensitivities; and selection bias regarding TST and booster effect. None of the studies adjusted the analysis for the effect of ethnicity. Conclusions It is mandatory to harmonize the study of immune parameters for LTBI diagnosis. This systematic review is registered with PROSPERO CRD42017073289.
Collapse
|
25
|
Yue S, Jie J, Xie L, Li Y, Zhang J, Lai X, Xie J, Guo X, Zhai Y. Antimicrobial peptide CAMA-syn expressed in pulmonary epithelium by recombination adenovirus inhibited the growth of intracellular bacteria. J Gene Med 2019; 22:e3149. [PMID: 31770482 DOI: 10.1002/jgm.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Intracellular bacteria, especially Mycobacterium tuberculosis, are important pathogenic microorganisms that endanger human health. Purified and synthesized cecropin A-magainin 2 (CAMA-syn) can exhibit a higher antibacterial activity and lower cytotoxicity. To enhance such antimicrobial potential, it would be desirable to deliver CAMA-syn expressed in lung epithelial cells by an adenovirus vector using gene therapy. METHODS A549 cells in vitro and lung epithelial cells in vivo were used to express CAMA-syn by transducing recombinant adenovirus Ad-SPC-CAMA/GFP, and the expression of CAMA-syn was determined by a reverse transcriptase-polymerase reaction (RT-PCR) and immunofluorescence. The antimicrobial activity in cells was investigated by colony-forming rate and growth curve. Forty Kunming mice of a Bacillus Calmette-Guerin (BCG) infection animal model were randomly divided into three groups: adenoviruses delivery of Ad-SPC-CAMA/GFP, Ad-CMV-CAMA/GFP and empty-virus Ad-CMV-GFP. The expression of CAMA-syn in mice was confirmed by RT-PCR and immunofluorescence. After tracheal injection of adenoviral vector for 3 days, lungs from the mouse model were extracted and homogenized for detection of colony-forming efficiency. RESULTS CAMA-syn expressed in lung epithelial cells A549 conferred antimicrobial activity against a series of bacteria, including Salmonella abortusovis and BCG. The results obtained in vivo showed that the colony-forming rate of Ad-SPC-CAMA/GFP (74.54%) and Ad-CMV-CAMA/GFP (62.31%) transduced into mice was significantly lower than that of the control group. CONCLUSIONS Lung epithelial-specific expression of antimicrobial peptide CAMA-syn mediated by adenovirus suppressed the growth of intracellular bacteria, providing a promising approach for the control of refractory intracellular infection.
Collapse
Affiliation(s)
- Shuohao Yue
- Fermentation Engineering, Ministry of Education, College of Bioengineering and Food, Hubei University of Technology, Wuhan, China.,Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Jing Jie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Lilan Xie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Yi Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Junlin Zhang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaojing Lai
- College of Health Sclence Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Jumin Xie
- Medical school of Hubei Polytechnic University, No.16 Guilin North Road, Huangshi, Hubei, China
| | - Xiaohong Guo
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Zhai
- State and Local Joint Engineering Laboratory of Recombinant Protein and Gene Detection Technology, Shandong Boaoke Biotechnology Co., LTD, Liaocheng, China
| |
Collapse
|
26
|
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, Enciso-Moreno JA, Rivas-Santiago B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2019; 199:230-243. [PMID: 31631328 DOI: 10.1111/cei.13388] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/12/2023] Open
Abstract
Smoking increases susceptibility to becoming infected with and developing tuberculosis. Among the components of cigarette smoke, nicotine has been identified as the main immunomodulatory molecule; however, its effect on the innate immune system is unknown. In the present study, the effect of nicotine on molecules of the innate immune system was evaluated. Lung epithelial cells and macrophages were infected with Mycobacterium tuberculosis (Mtb) and/or treated with nicotine. The results show that nicotine alone decreases the expression of the Toll-like receptors (TLR)-2, TLR-4 and NOD-2 in all three cell types, as well as the production of the SP-D surfactant protein in type II pneumocytes. Moreover, it was observed that nicotine decreases the production of interleukin (IL)-6 and C-C chemokine ligand (CCL)5 during Mtb infection in epithelial cells (EpCs), whereas in macrophages derived from human monocytes (MDMs) there is a decrease in IL-8, IL-6, tumor necrosis factor (TNF)-α, IL-10, CCL2, C-X-C chemokine ligand (CXCL)9 and CXCL10 only during infection with Mtb. Although modulation of the expression of cytokines and chemokines appears to be partially mediated by the nicotinic acetylcholine receptor α7, blocking this receptor found no effect on the expression of receptors and SP-D. In summary, it was found that nicotine modulates the expression of innate immunity molecules necessary for the defense against tuberculosis.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - L A Trejo Martínez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - F Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - A Rodríguez Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - S P Marin-Luévano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - J P de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - J A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
27
|
Ashhurst AS, McDonald DM, Hanna CC, Stanojevic VA, Britton WJ, Payne RJ. Mucosal Vaccination with a Self-Adjuvanted Lipopeptide Is Immunogenic and Protective against Mycobacterium tuberculosis. J Med Chem 2019; 62:8080-8089. [PMID: 31373811 DOI: 10.1021/acs.jmedchem.9b00832] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) remains a staggering burden on global public health. Novel preventative tools are desperately needed to reach the targets of the WHO post-2015 End-TB Strategy. Peptide or protein-based subunit vaccines offer potential as safe and effective generators of protection, and enhancement of local pulmonary immunity may be achieved by mucosal delivery. We describe the synthesis of a novel subunit vaccine via native chemical ligation. Two immunogenic epitopes, ESAT61-20 and TB10.43-11 from Mycobacterium tuberculosis (Mtb), were covalently conjugated to the TLR2-ligand Pam2Cys to generate a self-adjuvanting lipopeptide vaccine. When administered mucosally to mice, the vaccine enhanced pulmonary immunogenicity, inducing strong Th17 responses in the lungs and multifunctional peripheral T-lymphocytes. Mucosal, but not peripheral vaccination, provided substantial protection against Mtb infection, emphasizing the importance of delivery route for optimal efficacy.
Collapse
|
28
|
Phenotypic Analysis of BrdU Label-Retaining Cells during the Maturation of Conducting Airway Epithelium in a Porcine Lung. Stem Cells Int 2019; 2019:7043890. [PMID: 30936924 PMCID: PMC6415319 DOI: 10.1155/2019/7043890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Stem/progenitor cells have recently been demonstrated to play key roles in the maturation, injury repair, and regeneration of distinct organs or tissues. Porcine has spurred an increased interest in biomedical research models and xenotransplantation, owing to most of its organs share similarities in physiology, cellular composition and size to humans. Therefore, characterization of stem/progenitor cells in porcine organs or tissues may provide a novel avenue to better understand the biology and function of stem cells in humans. In the present study, potential stem/progenitor cells in conducting airway epithelium of a porcine lung were characterized by morphometric analysis of bromodeoxyuridine (BrdU) label-retaining cells (LRCs) during the maturation of the lung. The results showed a pseudostratified mucociliary epithelium comprised of basal, ciliated, goblet, and columnar cells in the conducting airway of a porcine lung. In addition, the majority of primary epithelial cells able to proliferate in vitro expressed keratin 5, a subpopulation of these keratin 5-positive cells, also expressed CD117 (c-Kit) or CD49f (integrin alpha 6, ITGA6), implying that they might be potential epithelial stem/progenitor cells in conducting airway of a porcine lung. Lineage tracing analysis with a BrdU-labeled neonatal piglet showed that the proportion of BrdU-labeled cells in conducting airways decreased over the 90-day period of lung maturation. The BrdU-labeled epithelial cells also expressed keratin 14, mucin 5AC, or prosurfactant protein C (ProSP-C); among them, the keratin 14-positive cells were the most frequent BrdU-labeled epithelial cell type as determined by immunohistochemical and immunofluorescence staining. This study may provide valuable information on the biology and function of epithelial stem/progenitor cells in conducting airway of pigs and humans.
Collapse
|
29
|
de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019; 7:350. [PMID: 31508399 PMCID: PMC6718705 DOI: 10.3389/fped.2019.00350] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
Collapse
Affiliation(s)
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Epithelial Cells Attenuate Toll-Like Receptor-Mediated Inflammatory Responses in Monocyte-Derived Macrophage-Like Cells to Mycobacterium tuberculosis by Modulating the PI3K/Akt/mTOR Signaling Pathway. Mediators Inflamm 2018; 2018:3685948. [PMID: 30356420 PMCID: PMC6178170 DOI: 10.1155/2018/3685948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Both alveolar macrophages (AMs) and alveolar epithelial cells (AECs) are main targets of Mycobacterium tuberculosis (M. tuberculosis (Mtb)). Intercellular communications between mucosal AECs and AMs have important implications in cellular responses to exogenous insults. However, molecular mechanisms underpinning interactions responding to Mtb remain largely unknown. In this study, impacts of AECs on Toll-like receptor- (TLR-) mediated inflammatory responses of AMs to Mtb virulent strain H37Rv were interrogated using an air-liquid interface (ALI) coculture model of epithelial A549 cells and U937 monocyte-derived macrophage-like cells. Results showed that Mtb-activated TLR-mediated inflammatory responses in U937 cells were significantly alleviated when A549 cells were coinfected with H37Rv, in comparison with the infection of U937 cells alone. Mechanistically, PI3K/Akt/mTOR signaling was involved in the epithelial cell-modulated Mtb-activated TLR signaling. The epithelial cell-attenuated TLR signaling in U937s could be reversed by PI3K inhibitor LY294002 and mTOR inhibitor rapamycin, but not glycogen synthase kinase 3β inhibitor LiCl, suggesting that the epithelially modulated-TLR signaling in macrophages was in part caused by inhibiting the TLR-triggered PI3K/Akt/mTOR signaling pathway. Together, this study demonstrates that mucosal AEC-derived signals play an important role in modulating inflammatory responses of AMs to Mtb, which thus also offers an insight into cellular communications between AECs and AMs to Mtb infections.
Collapse
|
31
|
Maertzdorf J, Tönnies M, Lozza L, Schommer-Leitner S, Mollenkopf H, Bauer TT, Kaufmann SHE. Mycobacterium tuberculosis Invasion of the Human Lung: First Contact. Front Immunol 2018; 9:1346. [PMID: 29977236 PMCID: PMC6022014 DOI: 10.3389/fimmu.2018.01346] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Early immune responses to Mycobacterium tuberculosis (Mtb) invasion of the human lung play a decisive role in the outcome of infection, leading to either rapid clearance of the pathogen or stable infection. Despite their critical impact on health and disease, these early host-pathogen interactions at the primary site of infection are still poorly understood. In vitro studies cannot fully reflect the complexity of the lung architecture and its impact on host-pathogen interactions, while animal models have their own limitations. In this study, we have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue-resident cell types. As first cell types confronted with pathogens invading the lung, alveolar macrophages, and epithelial cells displayed rapid proinflammatory chemokine and cytokine responses to Mtb infection. Other tissue-resident innate cells like gamma/delta T cells, mucosal associated invariant T cells, and natural killer cells showed partially similar but weaker responses, with a high degree of variability across different donors. Finally, we investigated the responses of tissue-resident innate lymphoid cells to the inflammatory milieu induced by Mtb infection. Our infection model provides a unique approach toward host-pathogen interactions at the natural port of Mtb entry and site of its implantation, i.e., the human lung. Our data provide a first detailed insight into the early responses of different relevant pulmonary cells in the alveolar microenvironment to contact with Mtb. These results can form the basis for the identification of host markers that orchestrate early host defense and provide resistance or susceptibility to stable Mtb infection.
Collapse
Affiliation(s)
| | - Mario Tönnies
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Laura Lozza
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Torsten T Bauer
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | | |
Collapse
|
32
|
Gupta N, Kumar R, Agrawal B. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells. Front Immunol 2018; 9:709. [PMID: 29692778 PMCID: PMC5902499 DOI: 10.3389/fimmu.2018.00709] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.
Collapse
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Steigler P, Daniels NJ, McCulloch TR, Ryder BM, Sandford SK, Kirman JR. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs. Immunol Cell Biol 2018; 96:379-389. [PMID: 29363172 DOI: 10.1111/imcb.12007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines.
Collapse
Affiliation(s)
- Pia Steigler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Naomi J Daniels
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tim R McCulloch
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Brin M Ryder
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sarah K Sandford
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Joanna R Kirman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Torres-Juarez F, Touqui L, Leon-Contreras J, Rivas-Santiago C, Enciso-Moreno JA, Hernández-Pando R, Rivas-Santiago B. RNase 7 but not psoriasin nor sPLA2-IIA associates with Mycobacterium tuberculosis during airway epithelial cell infection. Pathog Dis 2018; 76:4810750. [DOI: 10.1093/femspd/fty005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Flor Torres-Juarez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
- Department of Immunology, School of Medicine, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Lousseine Touqui
- Unité d’histopathologie humaine et modèles animaux, Institut Pasteur, Paris, France
| | - Juan Leon-Contreras
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, México City, Mexico
| | - Cesar Rivas-Santiago
- National Council of Science and Technology (CONACyT), Catedras-CONACyT, México
- Biological Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Jose A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, México City, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
35
|
Mvubu NE, Pillay B, McKinnon LR, Pillay M. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. Cytokine 2017; 104:53-64. [PMID: 29032986 DOI: 10.1016/j.cyto.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023]
Abstract
M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, South Africa.
| |
Collapse
|
36
|
Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators Inflamm 2017; 2017:2810606. [PMID: 28852268 PMCID: PMC5568625 DOI: 10.1155/2017/2810606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb) in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN). In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM) derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM) did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.
Collapse
|
37
|
Mortaz E, Alipoor SD, Movassaghi M, Varahram M, Ghorbani J, Folkerts G, Garssen J, Adcock IM. Water-pipe smoke condensate increases the internalization of Mycobacterium Bovis of type II alveolar epithelial cells (A549). BMC Pulm Med 2017; 17:68. [PMID: 28431548 PMCID: PMC5401461 DOI: 10.1186/s12890-017-0413-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/13/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major global health problem, and there is an association between tobacco smoke and TB. Water pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally because users consider it as safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be a predisposing factor that enhances the incidence of pulmonary disorders. For example, uncontrolled macropinocytosis in alveolar epithelial cells following exposure to water-pipe smoke may predispose subjects to pulmonary infection. Here, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium Bovis BCG by macropinocytosis in the alveolar epithelial cell line A549. METHODS A549 cells were exposed to WPC (4 mg/ml) for 24, 48, 72 and 96 h. Cell viability was studied using the methyl thiazolyldipenyl-tetrazolium bromide (MTT) reduction assay and proliferation by bromodeoxyUridine (BrdU) incorporation. Cells were exposed to FITC-Dextran (1 mg/ml) (as a control) and FITC-BCG (MOI = 10) for 20 min at 37 °C before cells were collected and the uptake of BCG-FITC determined by flow cytometry. Similar experiments were performed at 4 °C as a control. The Rho-associated protein kinase (ROCK) inhibitor Y-27632 (1 μM) was used to assess the mechanism by which WPC enhanced BCG uptake. RESULTS WPC (4 mg/ml) increased the uptake of BCG-FITC after 72 (1.3 ± 0.1 fold, p < 0.05) and 96 (1.4 ± 0.05 fold, p < 0.05) hours. No effect on BCG-FITC uptake was observed at 24 or 48 h. WPC also significantly increased the uptake of FITC-Dextran (2.9 ± 0.3 fold, p < 0.05) after 24 h. WPC significantly decreased cell viability after 24 (84 ± 2%, p < 0.05), 48 (78±, 3%, p < 0.05), 72 (64 ± 2%, p < 0.05) and 96 h (45 ± 2%, p < 0.05). Y-27632 completely attenuated the increased uptake of BCG by WPC. Cell proliferation showed a decreasing trend in a time-dependent manner with WPC exposure. CONCLUSION WPC exposure increased epithelial cell endocytosis activity and death as well as enhancing their capacity for macropinocytosis. Our in vitro data indicates possible harmful effects of WPC on the ability of lung epithelial cells to phagocytose mycobacterium.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Mohammad Varahram
- Mycobacteriology Research Center (MRC) National Research Institute of Tuberculosis and lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jahangir Ghorbani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
38
|
Konowich J, Gopalakrishnan A, Dietzold J, Verma S, Bhatt K, Rafi W, Salgame P. Divergent Functions of TLR2 on Hematopoietic and Nonhematopoietic Cells during Chronic Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:741-748. [PMID: 27920273 DOI: 10.4049/jimmunol.1601651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022]
Abstract
We have reported that TLR2 is crucial for host resistance against chronic Mycobacterium tuberculosis infection; however, which cell types are key players in this response remain unknown. This led us to decipher the relative contribution of TLR2 on nonhematopoietic and hematopoietic cells in resistance against chronic M. tuberculosis infection in mice infected with M. tuberculosis Erdman. Consistent with our previous report, at 8 wk of infection, TLR2 knockout (TLR2KO)→TLR2KO bone marrow chimeric mice exhibited increased bacterial burden, disorganized accumulation of lymphocytes and mononuclear cells, and extensive pulmonary immunopathology compared with wild-type (WT)→WT chimeric mice. Bacterial burden and pulmonary immunopathology of chimeric mice lacking TLR2 in the hematopoietic compartment (TLR2KO→WT) was comparable to TLR2KO mice. In contrast, chimeric mice deficient in TLR2 in the nonhematopoietic compartment (WT→TLR2KO) exhibited a marked attenuation in granulomatous inflammation compared with WT mice. Although the latter mice did not exhibit improved pulmonary bacterial control, significant reductions in bacterial burden in the draining lymph nodes, spleen, and liver were observed. These findings establish that the TLR2-mediated hematopoietic response promotes stable control of pulmonary bacterial burden and granuloma integrity, whereas TLR2 signaling on nonhematopoietic cells may partly facilitate granulomatous inflammation and bacterial dissemination.
Collapse
Affiliation(s)
- Jill Konowich
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Archana Gopalakrishnan
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Jillian Dietzold
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Sheetal Verma
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Kamlesh Bhatt
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | | | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| |
Collapse
|
39
|
Innate Immune Responses after Airway Epithelial Stimulation with Mycobacterium bovis Bacille-Calmette Guérin. PLoS One 2016; 11:e0164431. [PMID: 27723804 PMCID: PMC5056730 DOI: 10.1371/journal.pone.0164431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis bacilli Calmette-Guerin (BCG) is used as a benchmark to compare the immunogenicity of new vaccines against tuberculosis. This live vaccine is administered intradermal, but several new studies show that changing the route to mucosal immunisation represents an improved strategy. We analysed the immunomodulatory functions of BCG on human neutrophils and primary airway epithelial cells (AECs), as the early events of mucosal immune activation are unclear. Neutrophils and the primary epithelial cells were found to express the IL-17A receptor subunit IL-17RA, while the expression of IL-17RE was only observed on epithelial cells. BCG stimulation specifically reduced neutrophil IL-17RA and epithelial IL-17RE expression. BCG induced neutrophil extracellular traps (NETs), but did not have an effect on apoptosis as measured by transcription factor forkhead box O3 (FOXO3). BCG stimulation of AECs induced CXCL8 secretion and neutrophil endothelial passage towards infected epithelia. Infected epithelial cells and neutrophils were not found to be a source of IL-17 cytokines or the interstitial collagenase MMP-1. However, the addition of IFNγ or IL-17A to BCG stimulated primary epithelial cells increased epithelial IL-6 secretion, while the presence of IFNγ reduced neutrophil recruitment. Using our model of mucosal infection we revealed that BCG induces selective mucosal innate immune responses that could lead to induction of vaccine-mediated protection of the lung.
Collapse
|
40
|
Liu Y, Chen S, Pan B, Guan Z, Yang Z, Duan L, Cai H. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages. Acta Biochim Biophys Sin (Shanghai) 2016; 48:909-922. [PMID: 27563010 DOI: 10.1093/abbs/gmw078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Bowen Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Linfei Duan
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong Cai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Bettencourt P, Pires D, Anes E. Immunomodulating microRNAs of mycobacterial infections. Tuberculosis (Edinb) 2015; 97:1-7. [PMID: 26980489 DOI: 10.1016/j.tube.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines.
Collapse
Affiliation(s)
- Paulo Bettencourt
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - David Pires
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa Anes
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
42
|
Hielpos MS, Ferrero MC, Fernández AG, Bonetto J, Giambartolomei GH, Fossati CA, Baldi PC. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection. PLoS One 2015; 10:e0140408. [PMID: 26448160 PMCID: PMC4598116 DOI: 10.1371/journal.pone.0140408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023] Open
Abstract
Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.
Collapse
Affiliation(s)
- M Soledad Hielpos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G Fernández
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Bonetto
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", Buenos Aires, Argentina
| | - Carlos A Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C Baldi
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Scordo JM, Knoell DL, Torrelles JB. Alveolar Epithelial Cells in Mycobacterium tuberculosis Infection: Active Players or Innocent Bystanders? J Innate Immun 2015; 8:3-14. [PMID: 26384325 DOI: 10.1159/000439275] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is a disease that kills one person every 18 s. TB remains a global threat due to the emergence of drug-resistant Mycobacterium tuberculosis (M.tb) strains and the lack of an efficient vaccine. The ability of M.tb to persist in latency, evade recognition following seroconversion, and establish resistance in vulnerable populations warrants closer examination. Past and current research has primarily focused on examination of the role of alveolar macrophages and dendritic cells during M.tb infection, which are critical in the establishment of the host response during infection. However, emerging evidence indicates that the alveolar epithelium is a harbor for M.tb and critical during progression to active disease. Here we evaluate the relatively unexplored role of the alveolar epithelium as a reservoir and also its capacity to secrete soluble mediators upon M.tb exposure, which influence the extent of infection. We further discuss how the M.tb-alveolar epithelium interaction instigates cell-to-cell crosstalk that regulates the immune balance between a proinflammatory and an immunoregulatory state, thereby prohibiting or allowing the establishment of infection. We propose that consideration of alveolar epithelia provides a more comprehensive understanding of the lung environment in vivo in the context of host defense against M.tb.
Collapse
Affiliation(s)
- Julia M Scordo
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
44
|
Barros BCSC, Maza PK, Alcantara C, Suzuki E. Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes Infect 2015; 18:68-77. [PMID: 26369712 DOI: 10.1016/j.micinf.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
Paracoccidioides brasiliensis is one of the etiological agents of paracoccidioidomycosis, a human systemic mycosis, highly prevalent in Latin America. In the present work, we demonstrate that P. brasiliensis yeasts promote IL-6 and IL-8 secretion by the human lung epithelial cell line A549 in an integrin-dependent manner. In fact, small interfering RNA directed to α3 and α5 integrins decreased IL-6 and IL-8 levels in P. brasiliensis-infected A549 cell cultures. This fungus also led to an increase in the expression of α3 and α5 integrins in this epithelial cell line. In addition, P. brasiliensis yeasts promoted α3 and α5 integrins clustering into A549 cell membrane rafts. Furthermore, epithelial cell membrane raft disruption with nystatin decreased IL-6 and IL-8 levels in P. brasiliensis-A549 cell cultures. Therefore, by increasing host α3 and α5 integrins levels and clustering these receptors into membrane rafts, P. brasiliensis yeasts may modulate host inflammation.
Collapse
Affiliation(s)
- Bianca C S C Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Cristiane Alcantara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6(o) andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
45
|
Flores Saiffe Farías A, Jaime Herrera López E, Moreno Vázquez CJ, Li W, Prado Montes de Oca E. Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS. Comput Biol Chem 2015; 59 Pt A:117-25. [PMID: 26447748 DOI: 10.1016/j.compbiolchem.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) within gene promoter region or enhancers can modify the transcription rate of genes related to complex diseases. These SNPs can be called regulatory SNPs (rSNPs). Data compiled from recent projects, such as the 1000 Genomes Project and ENCODE, has revealed essential information used to perform in silico prediction of the molecular and biological repercussions of SNPs within TFBS. However, most of these studies are very limited, as they only analyze SNPs in coding regions or when applied to promoters, and do not integrate essential biological data like TFBSs, expression profiles, pathway analysis, homotypic redundancy (number of TFBSs for the same TF in a region), chromatin accessibility and others, which could lead to a more accurate prediction. Our aim was to integrate different data in a biologically coherent method to analyze the proximal promoter regions of two antimicrobial peptide genes, DEFB1 and CAMP, that are associated with tuberculosis (TB) and HIV/AIDS. We predicted SNPs within the promoter regions that are more likely to interact with transcription factors (TFs). We also assessed the impact of homotypic redundancy using a novel approach called the homotypic redundancy weight factor (HWF). Our results identified 10 SNPs, which putatively modify the binding affinity of 24 TFs previously identified as related to TB and HIV/AIDS expression profiles (e.g. KLF5, CEBPA and NFKB1 for TB; FOXP2, BRCA1, CEBPB, CREB1, EBF1 and ZNF354C for HIV/AIDS; and RUNX2, HIF1A, JUN/AP-1, NR4A2, EGR1 for both diseases). Validating with the OregAnno database and cell-specific functional/non functional SNPs from additional 13 genes, our algorithm performed 53% sensitivity and 84.6% specificity to detect functional rSNPs using the DNAseI-HUP database. We are proposing our algorithm as a novel in silico method to detect true functional rSNPs in antimicrobial peptide genes. With further improvement, this novel method could be applied to other promoters in order to design probes and to discover new drug targets for complex diseases.
Collapse
Affiliation(s)
- Adolfo Flores Saiffe Farías
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Enrique Jaime Herrera López
- Industrial Biotechnology, CIATEJ AC, Zapopan Unit, CONACYT, Camino Arenero 1227, Col. El Bajío del Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Cristopher Jorge Moreno Vázquez
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr. Manhasset, NY 11030, USA.
| | - Ernesto Prado Montes de Oca
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico; Molecular Biology Laboratory, Biosafety Area, Medical and Pharmaceutical Biotechnology, Guadalajara Unit, CIATEJ AC, CONACYT, Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
46
|
Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol 2015; 17:1277-85. [PMID: 26135005 PMCID: PMC4832344 DOI: 10.1111/cmi.12480] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/15/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection can be cleared by the innate immune system before the initiation of an adaptive immune response. This innate protection requires a variety of robust cell autonomous responses from many different host immune cell types. However, Mtb has evolved strategies to circumvent some of these defences. In this mini-review, we discuss these host-pathogen interactions with a focus on studies performed in human cells and/or supported by human genetics studies (such as genome-wide association studies).
Collapse
Affiliation(s)
- Thomas R Lerner
- Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - Sophie Borel
- Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
47
|
Zeng JC, Xiang WY, Lin DZ, Zhang JA, Liu GB, Kong B, Gao YC, Lu YB, Wu XJ, Yi LL, Zhong JX, Xu JF. Elevated HMGB1-related interleukin-6 is associated with dynamic responses of monocytes in patients with active pulmonary tuberculosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1341-1353. [PMID: 25973018 PMCID: PMC4396284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
There were limited studies assessing the role of HMGB1 in TB infection. In this prospective study, we aimed to assess the levels of HMGB1 in plasma or sputum from active pulmonary tuberculosis (APTB) patients positive for Mtb culture test, and to evaluate its relationship with inflammatory cytokines and innate immune cells. A total of 36 sputum Mtb culture positive APTB patients and 32 healthy volunteers (HV) were included. Differentiated THP-1 cells were treated for 6, 12 and 24 hrs with BCG at a multiplicity of infection of 10. The absolute values and percentages of white blood cells (WBC), neutrophils, lymphocytes, and monocytes were detected by an automatic blood analyzer. Levels of HMGB1, IL-6, IL-10 and TNF-α in plasma, sputum, or cell culture supernatant were measured by ELISA. The blood levels of HMGB1, IL-6, IL-10 and TNF-α, the absolute values of WBC, monocytes and neutrophils, and the percentage of monocytes were significant higher in APTB patients than those in HV groups (P < 0.05). The sputum levels of HMGB1, IL-10, and TNF-α were also significantly higher in APTB patients than those in HV groups (P < 0.05). Meanwhile, plasma level of HMGB1, IL-6, and IL-10 in APTB patients were positively correlated with those in sputum (P < 0.05), respectively. IL-6 was positively correlated with HMGB1 both in plasma and sputum of APTB patients (P < 0.05). HMGB1 and IL-6 is positively correlated with the absolute number of monocytes in APTB patients (P < 0.05). BCG induced HMGB1, IL-6, IL-10 and TNF-α production effectively in PMA-treated THP-1 cells. HMGB1 may be used as an attractive biomarker for APTB diagnosis and prognosis and may reflect the inflammatory status of monocytes in patients with APTB.
Collapse
Affiliation(s)
- Jin-Cheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics1 Xincheng Road, Dongguan 523808, People’s Republic of China
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Wen-Yu Xiang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Dong-Zi Lin
- Dongguan 6 People’s HospitalDongguan 523008, People’s Republic of China
| | - Jun-Ai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Gan-Bin Liu
- Dongguan 6 People’s HospitalDongguan 523008, People’s Republic of China
| | - Bin Kong
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Yu-Chi Gao
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Yuan-Bin Lu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| | - Xian-Jing Wu
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical CollegeZhanjiang 524001, People’s Republic of China
| | - Lai-Long Yi
- Dongguan 6 People’s HospitalDongguan 523008, People’s Republic of China
| | - Ji-Xin Zhong
- Division of Cardiovascular Medicine, University of Maryland School of MedicineMaryland 21201, USA
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics1 Xincheng Road, Dongguan 523808, People’s Republic of China
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeNo. 1 Xincheng Road, Dongguan 523808, People’s Republic of China
| |
Collapse
|
48
|
Dorhoi A, Kaufmann SH. Perspectives on host adaptation in response to Mycobacterium tuberculosis: Modulation of inflammation. Semin Immunol 2014; 26:533-42. [DOI: 10.1016/j.smim.2014.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
|
49
|
Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis. Mol Cancer 2014; 13:210. [PMID: 25208737 PMCID: PMC4174669 DOI: 10.1186/1476-4598-13-210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guérin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-α in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain- and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-α treatment. Results Here, we show that BCG inhibits TNF-α-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-α-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53-/- and MDA-MB-231 cells. Conclusion Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-210) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Verrall AJ, Netea MG, Alisjahbana B, Hill PC, van Crevel R. Early clearance of Mycobacterium tuberculosis: a new frontier in prevention. Immunology 2014; 141:506-13. [PMID: 24754048 DOI: 10.1111/imm.12223] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early clearance (EC) is the successful eradication of inhaled Mycobacterium tuberculosis before an adaptive immune response develops. Evidence for EC comes from case contact studies that consistently show that a proportion of heavily exposed individuals do not develop M. tuberculosis infection. Further support for the existence of this phenotype comes from genetic loci associated with tuberculin reactivity. In this review we discuss aspects of the innate response that may underpin EC and hypotheses that can be tested through field laboratory link studies in M. tuberculosis case contacts. Specifically, we consider mechanisms whereby alveolar macrophages recognize and kill intracellular M. tuberculosis, and how other cell types, such as neutrophils, natural killer T cells, mucosa-associated invariant T cells and cd T cells may assist. How EC may be impaired by HIV infection or vitamin D deficiency is also explored. As EC is a form of protective immunity, further study may advance the development of vaccines and immunotherapies to prevent M. tuberculosis infection.
Collapse
|