1
|
Fan J, Wang P, Wang S, Li R, Yang Y, Jin L, Sun Y, Li D. Advances in macro-bioactive materials enhancing dentin bonding. DISCOVER NANO 2025; 20:40. [PMID: 39961978 PMCID: PMC11832989 DOI: 10.1186/s11671-025-04206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The long-term stability of dentin bonding is equally crucial for minimally invasive aesthetic restoration. Although the dentin bonding meets clinical standards at the initial stage, its long-term efficacy remains suboptimal owing to the impact of physiological factors. Herein, we present a comprehensive analysis of macro-bioactive materials, including nanomaterials and polymer materials, to improve the longevity of dentin bonding and extend the lifespan of adhesive prosthetics through various mechanisms to achieve sustained and stable dentin bonding effects over an extended period. On the one hand, the macro-bioactive materials directly inhibit the enzymatic activity of matrix metalloproteinases (MMPs) or impede the acidogenic abilities of cariogenic microorganisms, thereby enhancing the local pH within the oral cavity. On the other hand, they indirectly prevent the activation of MMPs, thereby safeguarding the structural integrity of the resin-dentin bonding interface and efficiently improve its long-term stability. Moreover, these macro-bioactive materials establish cross-links with collagen fibers, promoting bionic remineralization and protecting the exposed collagen fibers within the hybrid layer from degradation. These processes ultimately enhance the mechanical properties of the resin-dentin bonding interface and efficiently improve its long-term stability.
Collapse
Affiliation(s)
- Junping Fan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Shen Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Rong Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yaoxi Yang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Lei Jin
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingying Sun
- The Affiliated Taian City Central Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Dongfang Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Dascanio R, de Oliveira Ribeiro RA, Coelho CSS, Souza MT, Kury M, Zanotto ED, de Souza Costa CA, Cavalli V. Effectiveness and safety of biosilicate-enhanced bleaching gels on enamel with early erosion lesion. J ESTHET RESTOR DENT 2024; 36:1412-1425. [PMID: 38853343 DOI: 10.1111/jerd.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
AIM This study evaluated the efficacy and cytotoxicity of 35% hydrogen peroxide (HP) gel incorporated with 10% (w/w) biosilicate (BioS) on sound enamel and early-stage enamel erosion lesions. METHODS Discs of enamel/dentin were selected, subjected to erosive cycles (0.3% citric acid, pH 2.6), and treated with (n = 8): HP (35% HP, positive control); HP_BioS [carboxymethyl cellulose (CMC) + HP + BioS]; BioS (CMC + BioS); CMC (negative control). The discs were adapted to artificial pulp chambers with the enamel exposed for bleaching, and the dentin facing toward the culture medium (Dulbecco's modified Eagle's medium [DMEM]). Bleaching was performed in three 30-min sessions at 7-day intervals. After bleaching, the diffusion product (DMEM extract + diffused HP) was pipetted onto MDPC-23 odontoblastic cell line and inoculated. Color parameters (ΔL, Δa, Δb), color change (ΔE00), and changes in whiteness index (ΔWID) were determined before (T0) and after the last bleaching session (T3). Cell viability (MTT, %), H2O2 diffusion (μg/mL), oxidative cell stress (OxS), and cell fluorescence (live/dead assay, in confocal microscopy) were assessed (ANOVA/Tukey; α = 0.05). RESULTS No difference in ΔL, Δa, Δb, ΔE00, and ΔWID were found between HP and HP_BioS (p > 0.05). The incorporation of BioS decreased the HP diffusion into the substrates and mitigated oxidative stress in early-stage eroded enamel (p < 0.05). HP_BioS presented significantly higher cell viability compared with HP under erosion conditions. Live/dead assay indicated that BioS_HP maintained viability with larger clusters of viable cells. CONCLUSION Incorporating BioS into HP maintained bleaching effectiveness, favored cell viability, reduced the oxidative stress, and the cytotoxicity in teeth with early-stage erosion. CLINICAL SIGNIFICANCE BioS formulation showed promising results for reducing cytotoxicity in patients seeking tooth bleaching and presenting undetectable early-stage erosion.
Collapse
Affiliation(s)
- Rafael Dascanio
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Camila Siqueira Silva Coelho
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Matheus Kury
- Dental Research Division, School of Dentistry, Paulista University (UNIP), São Paulo, Brazil
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil
| | | | - Vanessa Cavalli
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Amorim AA, Soares EJ, Pires-de-Souza FDCP. Development and effect of orodispersible film incorporated with Biosilicate for remineralization of dental enamel subjected to cariogenic and erosive challenge. J Biomed Mater Res B Appl Biomater 2024; 112:e35446. [PMID: 38932619 DOI: 10.1002/jbm.b.35446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The objective of this in vitro study was to assess the efficiency of incorporating Biosilicate particles (30 and 50 mg) into an experimental orodispersible film and its efficacy in the remineralization process of bovine dental enamel under cariogenic and erosive challenges. METHODS Ninety-nine intact incisors, devoid of cracks or fractures, yielding 198 samples (6 × 6 × 2 mm) via vestibular sectioning using a low-speed diamond disc under water cooling. After flattening the enamel surface with 600, 1200, and 2000 grit sandpaper, the samples were divided into two groups based on the challenges they underwent: cariogenic (0.1 M lactic acid at pH 5.0) or erosive (0.05 M citric acid solution at pH 2.3). Samples from each challenge were further categorized into 11 groups (n = 9) according to the duration of cariogenic (3, 7, and 14 days) or erosive (3, 7, and 10 days) challenge, along with positive control groups (fragments untreated with challenges and treated with different Biosilicate concentrations) and negative controls (fragments treated with artificial saliva for the same periods established for cariogenic and erosive challenges). Treatments with orodispersible films containing Biosilicate (30 and 50 mg) were administered for 2 min per day for 15 days. RESULTS The highest remineralizing potential was observed in samples treated with Biosilicate after 14 days of cariogenic challenge, irrespective of the concentration tested. For samples subjected to erosive challenge, erosion time did not affect Biosilicate's remineralizing potential. CONCLUSION Biosilicate shows promise in terms of remineralizing potential in enamel subjected to cariogenic challenge due to its ability to form hydroxycarbonapatite in mineralized tissues.
Collapse
Affiliation(s)
- Ayodele Alves Amorim
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo José Soares
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
4
|
Meng Q, Wang Y, He J, Chen L, Meng J, Lyons K, Mei ML. The effect of combined use of resin infiltration with different bioactive calcium phosphate-based approaches on enamel white spot lesions: An in vitro study. J Dent 2024; 143:104909. [PMID: 38428717 DOI: 10.1016/j.jdent.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES This in vitro study aimed to evaluate the effect of resin infiltration combined with casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) or bioactive glass (BAG) on the stability of enamel white spot lesions (WSLs) treatment. MATERIALS AND METHODS Eighty-four enamel blocks were prepared from the buccal surfaces of sound human premolars. All enamel blocks were placed in a demineralisation solution for 3 days to establish the artificial enamel WSLs. Enamel blocks with WSLs were randomly divided into three groups (n = 28 each group): RI/B: one-off resin infiltration followed by twice daily BAG treatment; RI/C: one-off resin infiltration followed by twice daily CPP-ACPF treatment; RI: one-off resin infiltration treatment only (as control) and subjected to pH cycling for 7 days. Surface morphology, elemental analysis, crystal characteristics, surface roughness and microhardness of enamel surfaces were investigated by scanning electron microscopy and energy-dispersive spectrometry observation, X-ray diffraction (XRD), atomic force microscope and Vickers' hardness testing, respectively. RESULTS Mean values of the surface roughness (mean±standard deviation (nm)) were 24.52±5.07, 27.39±5.87 and 34.36±4.55 for groups RI/B, RI/C and RI respectively (p = 0.003). The calcium to phosphate ratios were 1.32±0.16, 1.22±0.26 and 0.69±0.24 for groups RI/B, RI/C and RI respectively (p < 0.001). XRD revealed apatite formation in all three groups. The mean enamel surface microhardness (kg/mm2) of the groups were 353.93±28.49, 339.00±27.32 and 330.38±22.55 for groups RI/B, RI/C and RI respectively (p = 0.216). CONCLUSIONS Resin infiltration combined with CPP-ACPF or BAG remineralisation appears to improve the surface properties of WSLs. CLINICAL SIGNIFICANCE The combination of resin infiltration and CPP-ACPF/BAG remineralisation may be a potential treatment for the management of the WSLs.
Collapse
Affiliation(s)
- Qingfei Meng
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, China; Department of Stomatology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- College of Stomatology, Bengbu Medical College, Bengbu, China
| | - Jingyu He
- Department of Stomatology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Lijuan Chen
- Department of Stomatology, Xuzhou first People's Hospital, Xuzhou, China.
| | - Jian Meng
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, China; Department of Stomatology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China.
| | - Karl Lyons
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Guo A, Zheng Y, Zhong Y, Mo S, Fang S. Effect of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related influencing factors in animal models: A systematic review. Front Bioeng Biotechnol 2022; 10:986212. [PMID: 36394038 PMCID: PMC9643585 DOI: 10.3389/fbioe.2022.986212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Bone tissue engineering (BTE) provides a promising alternative for transplanting. Due to biocompatibility and biodegradability, chitosan-based scaffolds have been extensively studied. In recent years, many inorganic nanomaterials have been utilized to modify the performance of chitosan-based materials. In order to ascertain the impact of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related key factors, this study presents a systematic comparison of various scaffolds in the calvarial critical-sized defect (CSD) model. A total of four electronic databases were searched without publication date or language restrictions up to April 2022. The Animal Research Reporting of In Vivo Experiments 2.0 guidelines (ARRIVE 2.0) were used to assess the quality of the included studies. Moreover, the risk of bias (RoB) was evaluated via the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. After the screening, 22 studies were selected. None of these studies achieved high quality or had a low RoB. In the available studies, scaffolds reconstructed bone defects in radically different extensions. Several significant factors were identified, including baseline characteristics, physicochemical properties of scaffolds, surgery details, and scanning or reconstruction parameters of micro-computed tomography (micro-CT). Further studies should focus on not only improving the osteogenic performance of the scaffolds but also increasing the credibility of studies through rigorous experimental design and normative reports.
Collapse
Affiliation(s)
| | | | | | - Shuixue Mo
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Shanbao Fang
- College of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Ferreira AC, de Lima Oliveira RF, Amorim AA, Geng-Vivanco R, de Carvalho Panzeri Pires-de-Souza F. Remineralization of caries-affected dentin and color stability of teeth restored after treatment with silver diamine fluoride and bioactive glass-ceramic. Clin Oral Investig 2022; 26:4805-4816. [PMID: 35301597 DOI: 10.1007/s00784-022-04445-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the microhardness of caries-affected dentin and color stability of teeth restored after treatments with silver diamine fluoride (SDF) associated to potassium iodide (KI) and Biosilicate. MATERIAL AND METHODS Different samples from bovine teeth were obtained. For color readings, 80 cavities (6 mm × 6 mm × 2 mm) were prepared, and for microhardness, teeth were flattened into dentine to obtain 40 samples. All samples were submitted to cariogenic challenge and separated in 4 groups, according to the treatment used: 12% SDF + KI; 38% SDF; Biosilicate and control (no treatment). Cavities were restored with resin-modified glass-ionomer cement (RMGIC, Vitremer, 3 M ESPE) or composite resin (CR, Z350, 3 M ESPE). After restoration, the samples were submitted to thermo-mechanical cycling (TMC) for 1,200,000 cycles. Color readings (EasyShade, Vita) were performed after restorations, after TMC, and 30 days after TMC. Knoop microhardness was evaluated on the planned samples before and after cariogenic challenge, after treatments, and after 30 days. Scanning electron microscopy (SEM) evaluated the dentine surface after treatments. Data were analyzed (ANOVA, Bonferroni, p < .05). RESULTS The results showed a higher color alteration for RMGIC than CR. The time of analysis was significant (p < .05) for the 12% SDF + KI and control group. There was no difference (p < .05) in microhardness between groups. However, there was evidence of dentin remineralization after treatments. CONCLUSIONS It was concluded that the samples treated with Biosilicate resulted in a color alteration similar to control. The treatments presented dentin remineralizing potential for microhardness, below the demineralization level, caused by the cariogenic challenge. CLINICAL RELEVANCE Considering the remineralizing potential presented by Biosilicate, this agent is a promising alternative that overcomes the SDF adverse effects such as tooth staining.
Collapse
Affiliation(s)
- Adriana Cavalcanti Ferreira
- Department of Dental Materials and Prosthodontics, Universidade de São Paulo/Faculdade de Odontologia de Ribeirão Preto, Av do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-904, Brazil
| | - Rebeca Franco de Lima Oliveira
- Department of Dental Materials and Prosthodontics, Universidade de São Paulo/Faculdade de Odontologia de Ribeirão Preto, Av do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-904, Brazil
| | - Ayodele Alves Amorim
- Department of Dental Materials and Prosthodontics, Universidade de São Paulo/Faculdade de Odontologia de Ribeirão Preto, Av do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-904, Brazil
| | - Rocio Geng-Vivanco
- Department of Dental Materials and Prosthodontics, Universidade de São Paulo/Faculdade de Odontologia de Ribeirão Preto, Av do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-904, Brazil
| | - Fernanda de Carvalho Panzeri Pires-de-Souza
- Department of Dental Materials and Prosthodontics, Universidade de São Paulo/Faculdade de Odontologia de Ribeirão Preto, Av do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
7
|
Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111875. [PMID: 33579498 DOI: 10.1016/j.msec.2021.111875] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most commonly diagnosed form of bone cancer. It is characterized by a high risk of developing lung metastasis as the disease progresses. Standard treatment includes combination of surgical intervention, chemotherapy and radiotherapy. However, the non-specificity of potent chemotherapeutic agents often leads to major side effects. In this review, we discuss the role of various classes of biomaterials, including both organic as well as inorganic in realizing the local and systemic delivery of therapeutic agents like drugs, radioisotopes and even gene silencing agents to treat osteosarcoma. Biomaterial assisted unconventional therapies such as targeted therapy, nanotherapy, magnetic hyperthermia, gene therapy, photothermal and photodynamic therapies are also being explored. A wide variety of biomaterials including lipids, carbon-based materials, polymers, silica, bioactive glass, hydroxyapatite and metals are designed as delivery systems with the desired loading efficiency, release profile, and on-demand delivery. Among others, liposomal carriers have attracted a great deal of attention due to their capability to encapsulate both hydrophobic and hydrophilic drugs. Polymeric systems have high drug loading efficiency and stability and can even be tailored to achieve desired size and physiochemical properties. Carbon-based systems can also be seen as an upcoming class of therapeutics with great potential in treating different types of cancer. Inorganic materials like silica nanoparticles have high drug payload owing to their mesoporous structure. On the other hand, ceramic materials like bioactive glass and hydroxyapatite not only act as excellent delivery vectors but also participate in osteo-regeneration activity. These multifunctional biomaterials are also being investigated for their theranostic abilities to monitor cancer ablation. This review systematically discusses the vast landscape of biomaterials along with their challenges and respective opportunities for osteosarcoma therapy.
Collapse
Affiliation(s)
- Mural Quadros
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India; Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India.
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar 400 094, India.
| |
Collapse
|
8
|
Abstract
The ideal implant for anophthalmic socket reconstruction has yet to be developed. Biosilicate, a highly bioactive glass-ceramic, has been used in the composition of conical implants, which were initially tested in rabbit orbits with excellent results. However, the use of this material and the conical shape of the implants require further study in the human anophthalmic socket. Thus, we propose the use of a new conical implant composed of Biosilicate for orbital volume augmentation in anophthalmic sockets. This prospective, randomized study included 45 patients receiving conical implants composed of either Biosilicate or polymethylmethacrylate (control). Patients were evaluated clinically before and 7, 30, 60, 120, and 180 days after implantation. Systemic evaluations, laboratory tests, and computed tomography of the orbits were performed preoperatively and 180 days postoperatively. Both groups had good outcomes with no significant infectious or inflammatory processes. Only 1 patient, in the Biosilicate group, had early implant extrusion. Laboratory tests were normal in both groups. Computed tomography scans showed that the implants in both groups were well positioned. The new conical implant composed of Biosilicate was successfully used for anophthalmic socket reconstruction. This implant may provide a good alternative to the only conical implant currently available on the market, which is composed of porous polyethylene.
Collapse
|
9
|
Huang X, Xie J, Lan Y, Sun Z, Zhang M, Guo L. The effects of 45S5 bioactive glass and Er:YAG Laser on the microtensile bond strength of fluorosed teeth. Microsc Res Tech 2020; 83:1558-1565. [PMID: 33220004 DOI: 10.1002/jemt.23550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
This vitro study aimed to evaluate the effects of 45S5 bioactive glass (BAG) and Er:YAG laser as desensitization treatments on the microtensile bond strength (MTBS) of fluorosed teeth. The 120 noncarious fluorosis were to obtain superficial dentin, being classified into four groups according to the Thylstrup and Fejerskov Index (TFI). Specimens from each group were randomly divided into five subgroups. After fluorosed teeth hypersensitivity models were established, the following pretreatments were applied on dentine surface: Subgroup 1: deionized water (Control); Subgroup 2: BAG; Subgroup 3: Er:YAG laser; Subgroup 4: BAG + Er:YAG laser, and Subgroup 5: Er:YAG laser + BAG. One sample was randomly selected from each subgroup for scanning electron microscope (SEM). The remaining samples were bonded with composite resin by Adper Single Bond 2 adhesive. Then water bath at 37°C for 24 hr. After 5,000 thermocycling, MTBS was tested and fracture mode was analyzed. The difference of MTBS between BAG group and Control group was found statistically significant (p < .05) in fluorosis. The Er:YAG laser + BAG group showed lowest MTBS values in fluorosis. In conclusion, the pretreatment of BAG might be beneficial to the adhesive of fluorosed teeth. Er:YAG laser desensitization alone or using BAG first and then Er:YAG laser desensitization might not affect the adhesive of fluorosed teeth, while Er:YAG laser desensitization followed by the pretreatment of BAG would be not conducive to the adhesive of fluorosed teeth.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Xie
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yuyan Lan
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengfan Sun
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Meifeng Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Marin CP, Santana GL, Robinson M, Willerth SM, Crovace MC, Zanotto ED. Effect of bioactive Biosilicate ® /F18 glass scaffolds on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 2020; 109:1293-1308. [PMID: 33070474 DOI: 10.1002/jbm.a.37122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the gene expression profile of the human adipose-derived stem cells (hASCs) grown on the Biosilicate® /F18 glass (BioS-2P/F18) scaffolds. hASCs were cultured using the osteogenic medium (control), the scaffolds, and their ionic extract. We observed that ALP activity was higher in hASCs grown on the BioS-2P/F18 scaffolds than in hASCs cultured with the ionic extract or the osteogenic medium on day 14. Moreover, the dissolution product group and the control exhibited deposited calcium, which peaked on day 21. Gene expression profiles of cell cultured using the BioS-2P/F18 scaffolds and their extract were evaluated in vitro using the RT2 Profiler polymerase chain reaction (PCR) microarray on day 21. Mineralizing tissue-associated proteins, differentiation factors, and extracellular matrix enzyme expressions were measured using quantitative PCR. The gene expression of different proteins involved in osteoblast differentiation was significantly up-regulated in hASCs grown on the scaffolds, especially BMP1, BMP2, SPP1, BMPR1B, ITGA1, ITGA2, ITGB1, SMAD1, and SMAD2, showing that both the composition and topographic features of the biomaterial could stimulate osteogenesis. This study demonstrated that gene expression of hASCs grown on the scaffold surface showed significantly increased gene expression related to hASCs cultured with the ionic extract or the osteogenic medium, evidencing that the BioS-2P/F18 scaffolds have a substantial effect on cellular behavior of hASCs.
Collapse
Affiliation(s)
- Claudia P Marin
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Geovana L Santana
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Meghan Robinson
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Murilo C Crovace
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Edgar D Zanotto
- CeRTEV-Center for Research, Technology, and Education in Vitreous Materials, Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMA), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
11
|
Apanasevich V, Papynov E, Plekhova N, Zinoviev S, Kotciurbii E, Stepanyugina A, Korshunova O, Afonin I, Evdokimov I, Shichalin O, Bardin A, Nevozhai V, Polezhaev A. Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO 3/HAp Powder Biocomposite. J Funct Biomater 2020; 11:jfb11040068. [PMID: 32977458 PMCID: PMC7712391 DOI: 10.3390/jfb11040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
The study describes the influence of synthetic CaSiO3/HAp powder biocomposite on the process of regeneration in osseous tissue in the alveolar ridges in terms of the morphological characteristics of the osteoplastic potential. The authors investigated the osteoinduction and osteoconduction “in vivo” processes during bone tissue regeneration in the mandible defect area of an experimental animal (rabbit). The possibility of angiogenesis in the graft as an adaptation factor was studied in the process of bone tissue regeneration. The results of the histological study that included the qualitative parameters of bone tissue regeneration, the morphometric parameters (microarchitectonics) of the bone, the parameters of osteosynthesis (thickness of the osteoid plates), and resorption (volume density of the eroded surface) were presented. The results allowed the authors to characterize the possibility of the practical adaptation for synthetic powder biocomposite as an osteoplastic graft for the rehabilitation of osseous defects in dentistry.
Collapse
Affiliation(s)
- Vladimir Apanasevich
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Evgeniy Papynov
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia;
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
- Correspondence:
| | - Nataliay Plekhova
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Sergey Zinoviev
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Evgeniy Kotciurbii
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Alexandra Stepanyugina
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Oksana Korshunova
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Igor Afonin
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Ivan Evdokimov
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
| | - Oleg Shichalin
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia;
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
| | - Artem Bardin
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Vladimir Nevozhai
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Alexandr Polezhaev
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| |
Collapse
|
12
|
Araújo Lopes JM, Benetti F, Rezende GC, Souza MT, Conti LC, Ervolino E, Jacinto RC, Zanotto ED, Cintra LTA. Biocompatibility, induction of mineralization and antimicrobial activity of experimental intracanal pastes based on glass and glass‐ceramic materials. Int Endod J 2020; 53:1494-1505. [DOI: 10.1111/iej.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- J. M. Araújo Lopes
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - F. Benetti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
- Endodontic Section Department of Restorative Dentistry School of Dentistry Universidade Federal de Minas Gerais Belo HorizonteBrazil
| | - G. C. Rezende
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - M. T. Souza
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. C. Conti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. Ervolino
- Department of Basic Science School of Dentistry São Paulo State University (Unesp) Araçatuba Brazil
| | - R. C. Jacinto
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. T. A. Cintra
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| |
Collapse
|
13
|
Parisi JR, Fernandes KR, Aparecida do Vale GC, de França Santana A, de Almeida Cruz M, Fortulan CA, Zanotto ED, Peitl O, Granito RN, Rennó ACM. Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. J Biomater Appl 2020; 35:205-214. [PMID: 32362163 DOI: 10.1177/0885328220922161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS. A promising strategy to reach this aim is the inclusion of an organic part, such as collagen, in order to mimic bone structure. Thus, the present study investigated the biological effects of marine spongin (SPG)-enriched BS composites on the process of healing, using a critical experimental model of cranial bone defect in rats. Histopathological and immunohistochemistry analyzes were performed after two and six weeks of implantation to investigate the effects of the material on bone repair (supplemental material-graphical abstract). Histological analysis demonstrated that for both BS and BS/SPG, similar findings were observed, with signs of material degradation, the presence of granulation tissue along the defect area and newly formed bone into the area of the defect. Additionally, histomorphometry showed that the control group presented higher values for Ob.S/BS (%) and for N.Ob/T.Ar (mm2) (six weeks post-surgery) compared to BS/SPG and higher values of N.Ob/T.Ar (mm2) compared to BS (two weeks post-surgery). Moreover, BS showed higher values for OV/TV (%) compared to BS/SPG (six weeks post-surgery). Also, VEGF immunohistochemistry was increased for BS (two weeks post-surgery) and for BS/SPG (six weeks) compared to CG. TGFb immunostaining was higher for BS compared to CG. The results of this study demonstrated that the BS and BS/SPG scaffolds were biocompatible and able to support bone formation in a critical bone defect in rats. Moreover, an increased VEGF immunostaining was observed in BS/SPG.
Collapse
Affiliation(s)
- Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | | | - Alan de França Santana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Carlos Alberto Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering São Carlos, SP, Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Oscar Peitl
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | |
Collapse
|
14
|
Manz AS, Attin T, Sener B, Sahrmann P. Dentin tubule obturation of a bioglass-based dentin desensitizer under repeated exposure to lactid acid and brushing. BMC Oral Health 2019; 19:274. [PMID: 31805922 PMCID: PMC6896668 DOI: 10.1186/s12903-019-0962-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023] Open
Abstract
Background Dentin hypersensitivity is a frequent finding especially in periodontitis patients. Conventional treatment aims for obstruction of dentin tubules by disabling liquid and osmotic fluctuation to and from the pulpal chamber. A novel bioglass-based desensitizer was shown to obstruct tubules and to resist periodic exposure to lactic acid. Whether this obstruction is resistant to brushing had not been tested so far. Accordingly, the present study aimed to assess dentin tubule obstruction after repeated acid exposure and brushing. Methods Sixty dentin discs were cleaned with 17% EDTA, mounted into a pulp fluid simulator and randomly divided into 3 groups: No surface treatment in Group A, Seal&Protect® in group B and DentinoCer in group C. Discs were exposed to 0.1 M non-saturated lactic acid thrice and standardized brushing twice a day for 12 days. At baseline and after 2, 4 and 12 d samples were removed from the setting and prepared for top-view SEM analysis to assess tubule obstruction using the Olley score. Discs were then vertically cut and the section surface morphologically assessed using backscatter imaging. For both vertical and sectional surfaces EDX analysis was used to characterize the surface composition in the tubular and inter-tubular area. Results Group A showed clean tubular lumina at all time points. From day 2 onwards dentin showed exposed collagen fibers. Group 2 initially showed a complete surface coverage that flattened out during treatment without ever exposing tubules. At baseline, samples of Group C displayed a complete homogeneous coverage. From day 2 on tubules entrances with obstructed lumen became visible. While on day 4 and 12 the dentin surface exposed collagen fibers the lumina remained closed. EDX analysis of the vertical and horizontal views showed that P and Ca were predominant elements in both the inter- and tubular dentin while Si peaks were found in the tubule plugs. Conclusion While group B displayed a packed layer on the surface during the whole investigation time group C samples lost their superficial layer within 48 h. Tubule plugs containing considerable Si proportions indicated previous presence of DentinoCer, while high Ca and P proportions suggest obturation by dentin-like material.
Collapse
Affiliation(s)
- Andrea S Manz
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Beatrice Sener
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland.
| |
Collapse
|
15
|
Munerato MS, Biguetti CC, Parra da Silva RB, Rodrigues da Silva AC, Zucon Bacelar AC, Lima da Silva J, Rondina Couto MC, Húngaro Duarte MA, Santiago-Junior JF, Bossini PS, Matsumoto MA. Inflammatory response and macrophage polarization using different physicochemical biomaterials for oral and maxillofacial reconstruction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110229. [PMID: 31761241 DOI: 10.1016/j.msec.2019.110229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Knowledge about the action of immune system in the recognition of biomaterials has been extremely helpful when it comes about understanding host response and biomaterials' fate in human body. This study aimed to investigate inflammatory response and macrophage polarization during bone healing process of rat's calvaria critical defects using different bone materials in order to evaluate their influence on bone repair and on the quality of the newly formed bone tissue. Eighty male albinus Wistar rats underwent surgical procedure for the confectioning of a 5-mm diameter bone defect in their right parietal bone, and divided in four groups (n = 20 each), according the biomaterial: AG - Control, particulate intramembranous autogenous bone graft, HA/TCP - particulate biphasic calcium phosphate with HA/TCP (60/40), DBB - particulate deproteinized bovine bone, VC - particulate bioactive vitroceramic. After 3, 7, 21, and 45 days, the specimens were removed and prepared for microcomputed tomography (microCT), light and polarized microscopy, immunohistochemical analysis, and histomorphometry. No significant differences were detected considering percentage of leukocytes among the groups and periods, as well as in relation to immunolabeling for inflammatory (M1) and reparative (M2) macrophages. However, immunolabeling for bone marker indicated a delayed osteoblast differentiation in VC group, resulting in a decrease in mineralized bone matrix parameters in this group, revealed by microCT. In addition, AG and HA/TCP presented a satisfactory bone collagenous content. Despite the distinct origins and physicochemical properties of the tested biomaterials, they presented similar immune-inflammatory responses in the present experimental model, influencing bone-related proteins and bone quality, which must be considered according to their use.
Collapse
Affiliation(s)
- Marcelo Salles Munerato
- Department of Health Sciences, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, 17011-160, Bauru, SP, Brazil
| | - Claudia Cristina Biguetti
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050, Araçatuba, SP, Brazil
| | - Raquel Barroso Parra da Silva
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050, Araçatuba, SP, Brazil
| | - Ana Claudia Rodrigues da Silva
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050, Araçatuba, SP, Brazil
| | - Ana Carolina Zucon Bacelar
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050, Araçatuba, SP, Brazil
| | - Jordan Lima da Silva
- Department of Health Sciences, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, 17011-160, Bauru, SP, Brazil
| | - Maira Cristina Rondina Couto
- Department of Health Sciences, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, 17011-160, Bauru, SP, Brazil
| | - Marco Antônio Húngaro Duarte
- Department of Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo - FOB/USP, Al. Octávio Pinheiro Brisola, 9-75, 17012-901, Bauru, SP, Brazil
| | - Joel Ferreira Santiago-Junior
- Department of Health Sciences, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, 17011-160, Bauru, SP, Brazil
| | - Paulo Sérgio Bossini
- Research and Education Center for Phototherapy in Health Science (Nupen), Rua Pedro Fernandes Alonso, 766, Jardim Alvorada, 13562-380, São Carlos, SP, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050, Araçatuba, SP, Brazil.
| |
Collapse
|
16
|
Wang F, Wang X, Ma K, Zhang C, Chang J, Fu X. Akermanite bioceramic enhances wound healing with accelerated reepithelialization by promoting proliferation, migration, and stemness of epidermal cells. Wound Repair Regen 2019; 28:16-25. [PMID: 31270882 DOI: 10.1111/wrr.12742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/05/2019] [Indexed: 01/26/2023]
Abstract
Reepithelialization is an important step of wound healing, which is mainly completed by proliferation and migration of epidermal cells. Akermanite is a Ca-, Mg-, and Si-containing bioceramic. This study evaluated the effects of Akermanite on wound healing and investigated the mechanisms. Using scald burn mice models, we demonstrated that local Akermanite treatment significantly accelerated wound healing by increasing reepithelialization and the stemness of epidermal cells. Epidermal cells were cultured in medium containing Akermanite extracts to explore the cellular mechanism of reepithelialization. Akermanite promoted the cell proliferation and migration, maintaining more cells in the S and G2 /M phases of the cell cycle. An additional study showed that Akermanite enhanced the expressions of integrinβ1, Lgr4, Lgr5, and Lgr6, which are specific molecular markers of epidermal stem cells, accompanied by the activation of the Wnt/β-catenin pathway. These results suggested that Akermanite accelerated reepithelialization by increasing the proliferation, migration, and stemness of epidermal cells in a manner related to the Wnt/β-catenin pathway, which might contribute, at least partially, to accelerated wound healing by Akermanite therapy.
Collapse
Affiliation(s)
- Fangfang Wang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, China
| | - Xiaoya Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, China
| | - Jiang Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, China
| |
Collapse
|
17
|
Fernandes KR, Parisi JR, Magri AMP, Kido HW, Gabbai-Armelin PR, Fortulan CA, Zanotto ED, Peitl O, Granito RN, Renno ACM. Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:64. [PMID: 31127392 DOI: 10.1007/s10856-019-6266-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.
Collapse
Affiliation(s)
- K R Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - J R Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - A M P Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - H W Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, São Carlos, SP, Brazil
| | - E D Zanotto
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - O Peitl
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
18
|
Effect of Methods of Biosilicate Microparticle Application on Dentin Adhesion. Dent J (Basel) 2019; 7:dj7020035. [PMID: 30939735 PMCID: PMC6630706 DOI: 10.3390/dj7020035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022] Open
Abstract
Restorative procedures associated with bioglasses have shown to be a strategy to satisfy the contemporary concept of minimally invasive dentistry. Thus, the aim of this study was to evaluate bond strength to dentin treated by two different methods of biosilicate microparticle application. Dentin surfaces from 30 sound human molars were exposed and randomly assigned into three groups (n = 10) according to the surface treatment: (1) blasting with biosilicate microparticles (distance = 1 cm/pressure = 5 bar/time = 1 min); (2) 10% biosilicate microparticles paste; and (3) control (no treatment). After, dentin surfaces were restored with self-etch adhesive (Adper Easy Bond) and nanofilled composite (Filtek Z350). Specimens were sectioned perpendicularly to the adhesive interface to obtain sticks (cross-section area = 1 mm²), which were submitted to microtensile test (0.5 mm/min; 50 kgf). Data were analyzed by ANOVA and Tukey's test (α = 5%). Dentin/adhesive interfaces were morphologically analyzed by scanning electron microscopy (SEM). Data analysis showed that biosilicate-treated groups reached similar results (p > 0.05) and both of them demonstrated higher values (p < 0.05) than control group. SEM micrographs revealed hybridization with clear resin tags and no separation between resin-dentin adhesive interfaces. Within the limitations of this study, surface treatment with biosilicate positively influenced the adhesion to dentin and does not alter the morphology of the adhesive interface.
Collapse
|
19
|
Thompson FC, Matsumoto MA, Biguetti CC, Rennó ACM, de Andrade Holgado L, Santiago Junior JF, Munerato MS, Saraiva PP. Distinct healing pattern of maxillary sinus augmentation using the vitroceramic Biosilicate®: Study in rabbits. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:726-734. [PMID: 30889746 DOI: 10.1016/j.msec.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/20/2018] [Accepted: 02/02/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To follow healing process of augmented maxillary sinus in rabbits analyzing the histological pattern of bone tissue formation, along with the osteogenic activity and vascularization using a bioactive vitroceramic in comparison to deproteinized bovine bone associated or not with autogenous bone graft. DESIGN Forty five male adult New Zealand rabbits, 5 months of age, mean weight of 4 Kg, underwent bilateral sinus augmentation surgeries to be divided in five groups: G - (Control) particulate autogenous bone graft (AG), BO - deproteinized bovine bone, BO+G - deproteinized bovine bone + AG, BSi -vitroceramic, and BSi + G - vitroceramic +AG. After 15, 45 and 90 days, all animals were euthanized for specimen's removal to be analyzed under light microscopy, histomorphometry, and immunohistochemistry for Runx2 and VEGF labeling. RESULTS G, BO and BO+G groups healed uneventfully, allowing the formation of mature remodeling bone at day 90, regarding the association of AG with the biomaterial. On the other hand, BSi and BSi + G groups showed an important cellular reaction and granulation/fibrous tissue formation from the first to the last period of observation. Runx-2 and VEGF immunolabeling were coherent with this result. However, histomorphometry did not reveal significant differences considering new bone formation. CONCLUSIONS Reconstructed maxillary sinuses using Biosilicate® permitted satisfactory new bone formation in comparison to the deproteinized bovine bone and AG. However, the presence of granulation/fibrous tissue and inflammatory cells associated to the degrading biomaterial indicate that further studies should be careful performed considering the immunological aspect of this new biomaterial.
Collapse
Affiliation(s)
- Francis Cazzeli Thompson
- Oral Biology Post-graduation Program, Sagrado Coração University - USC, Rua Irmã Arminda 10-50 - Bauru -, SP 17011-160, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Rua José Bonifácio 1193, 16015-050 Araçatuba, SP, Brazil.
| | - Claudia Cristina Biguetti
- Faculty of Medicine of Jau - Universidade do Oeste Paulista - UNOESTE, Jaú - Brazil, R. Ângelo Martins, 498 - Jardim Estadio, Jaú - SP, 17203-480, Brazil
| | - Ana Claudia Muniz Rennó
- Department of Bioscience, Federal University of Sao Paulo, Campus Baixada Santista - UNIFESP, Avenida Ana Costa, 95, Santos, SP 11060-001, Brazil
| | - Leandro de Andrade Holgado
- Oral Biology Post-graduation Program, Sagrado Coração University - USC, Rua Irmã Arminda 10-50 - Bauru -, SP 17011-160, Brazil
| | - Joel Ferreira Santiago Junior
- Oral Biology Post-graduation Program, Sagrado Coração University - USC, Rua Irmã Arminda 10-50 - Bauru -, SP 17011-160, Brazil.
| | - Marcelo Salles Munerato
- Oral Biology Post-graduation Program, Sagrado Coração University - USC, Rua Irmã Arminda 10-50 - Bauru -, SP 17011-160, Brazil
| | - Patrícia Pinto Saraiva
- Faculty of Medicine of Jau - Universidade do Oeste Paulista - UNOESTE, Jaú - Brazil, R. Ângelo Martins, 498 - Jardim Estadio, Jaú - SP, 17203-480, Brazil
| |
Collapse
|
20
|
Gritsch L, Conoscenti G, La Carrubba V, Nooeaid P, Boccaccini AR. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1083-1101. [DOI: 10.1016/j.msec.2018.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023]
|
21
|
Monte F, Cebe T, Ripperger D, Ighani F, Kojouharov HV, Chen BM, Kim HKW, Aswath PB, Varanasi VG. Ionic silicon improves endothelial cells' survival under toxic oxidative stress by overexpressing angiogenic markers and antioxidant enzymes. J Tissue Eng Regen Med 2018; 12:2203-2220. [PMID: 30062712 PMCID: PMC6508967 DOI: 10.1002/term.2744] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.
Collapse
Affiliation(s)
- Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
| | - Tugba Cebe
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | | | - Fareed Ighani
- Texas A&M University College of Dentistry, Dallas, Texas
| | | | - Benito M. Chen
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas
| | - Harry K. W. Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pranesh B. Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Venu G. Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Department of College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
22
|
Razavi M, Fathi M, Savabi O, Tayebi L, Vashaee D. Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:159. [PMID: 30350229 DOI: 10.1007/s10856-018-6170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Magnesium (Mg) alloys as a new group of biodegradable metal implants are being extensively investigated as a promising selection for biomaterials applications due to their apt mechanical and biological performance. However, as a foremost drawback of Mg alloys, the high degradation in body fluid prevents its clinical applications. In this work, a bioceramic composite coating is developed composed of diopside, bredigite, and fluoridated hydroxyapatite on the AZ91 Mg alloy in order to moderate the degradation rate, while improving its bioactivity, cell compatibility, and mechanical integrity. Microstructural studies were performed using a transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, and energy dispersive spectroscopy (EDS). The degradation properties of samples were carried out under two steps, including electrochemical corrosion test and immersion test in simulated body fluid (SBF). Additionally, compression test was performed to evaluate the mechanical integrity of the specimens. L-929 fibroblast cells were cultured on the samples to determine the cell compatibility of the samples, including the cell viability and attachment. The degradation results suggest that the composite coating decreases the degradation and improves the bioactivity of AZ91 Mg alloy substrate. No considerable deterioration in the compression strength was observed for the coated samples compared to the uncoated sample after 4 weeks immersion. Cytotoxicity test indicated that the coatings improve the cell compatibility of AZ91 alloy for L-929 cells.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadhossein Fathi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Savabi
- Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
23
|
Soares PBF, Moura CCG, Chinaglia CR, Zanotto ED, Zanetta-Barbosa D, Stavropoulos A. Effect of titanium surface functionalization with bioactive glass on osseointegration: An experimental study in dogs. Clin Oral Implants Res 2018; 29:1120-1125. [PMID: 30264907 DOI: 10.1111/clr.13375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of surface functionalization with bioactive glass BSF18 on the osseointegration of sandblasted and dual acid-etched surface (AE) implants. METHODS AND MATERIALS Forty Morse taper implants with an AE surface as controls (C) or with an AE surface functionalized with BSF18 (BF) were placed in the mandibles of 10 beagles. Implants were analyzed after 2 and 4 weeks of healing. Implant stability quotient (ISQ) values were registered immediately after installation and prior to sacrifice. Samples were analyzed for bone-to-implant contact (BIC) and bone density (BD). The characterization of BF implants included surface roughness analysis with atomic force microscopy and contact angle (CA) analysis to evaluate wettability. Data were analyzed using two-way ANOVA followed by Tukey's test (p < 0.05). RESULTS Surface roughness was not affected by BF treatment. CA was lower in the BF group compared to the C group. No significant difference was observed in ISQ values between surfaces (p = 0,231), irrespective of time. Significantly higher ISQ values were observed for both implants after 4 weeks when compared with baseline (p = 0.04). Significantly higher BIC (p = 0.011) and BD (p = 0.025) values were observed for the BF compared to the C group at 2 weeks. Significantly higher BIC (p = 0.030) and BD (p = 0.015) values for the C group were observed at 4 weeks compared to 2 weeks. No significant difference was observed in the BF group between 2 and 4 weeks. CONCLUSIONS Implant functionalization with BSF18 improved the wettability of the implant surface; enhancing BIC and BD at 2 weeks.
Collapse
Affiliation(s)
| | | | - Clever Ricardo Chinaglia
- Department of Materials Engineering (DEMa), Federal University of São Carlos, São Carlos, Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa), Federal University of São Carlos, São Carlos, Brazil
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
24
|
Clinical, double blind, randomized controlled trial of experimental adhesive protocols in caries-affected dentin. Clin Oral Investig 2018; 23:1855-1864. [PMID: 30218228 DOI: 10.1007/s00784-018-2615-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To evaluate the clinical performance of posterior resin composite restorations regarding experimental and regular adhesive protocols in caries affected-dentin (CAD). MATERIAL AND METHODS A total of 92 class I and class II cavities with carious lesions were selected and randomly assigned to the following groups: (1) bioactive glass-ceramic powder/two-step etch and rinse system, (2) control/two-step etch and rinse system, (3) bioactive glass-ceramic powder/two-step self-etching system, and (4) control/two-step self-etching system. Two operators carried out the adhesive protocols and restored the cavities with a nano-hybrid resin composite. Participants were followed up at 1 week and 6, 12, and 18 months for clinical evaluation performed by two blinded examiners and calibrated according to FDI criteria. Data were analyzed using Kruskal-Wallis and Dunn tests with a confidence of 95%. RESULTS The clinical performance of resin composite restoration was not affected by the experimental use of an adhesive protocol including a bioactive glass-ceramic powder for 18 months post-procedure. However, there was a significant difference between group 2 and group 4 (p < 0.05) for marginal adaptation (18 months). Group 2 was significantly different from group 3 (p < 0.05) for fracture of material/retention (18 months) and marginal adaptation (1 week); group 2 showed a better performance. CONCLUSION Adhesive protocols can alter the clinical performance of posterior restorations in terms of marginal adaptation and the fracture of material/retention in CAD. CLINICAL SIGNIFICANCE Adhesive protocols may influence the success of resin composite restorations in CAD; this is important because failure can lead to caries, re-incidence, and/or clinical re-work.
Collapse
|
25
|
de Morais RC, Silveira RE, Chinelatti M, Geraldeli S, de Carvalho Panzeri Pires-de-Souza F. Bond strength of adhesive systems to sound and demineralized dentin treated with bioactive glass ceramic suspension. Clin Oral Investig 2017; 22:1923-1931. [PMID: 29185144 DOI: 10.1007/s00784-017-2283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of a Biosilicate®, associated with dentin adhesive system, on microtensile bond strength (μTBS) to sound and demineralized dentin. MATERIALS AND METHODS Eighty sound-extracted molars had their middle occlusal dentin exposed. In forty teeth, dentin was artificially demineralized (pH cycling). Sound and demineralized dentin teeth were separated into four groups (n = 10), according to the substrate treatment before restoration: Group 1-total-etching adhesive Adper TM Single bond 2 (ASB) + Biosilicate®, Group 2-ASB (without Biosilicate®), Group 3-AdheSE self-etching adhesive system (AdSE) + Biosilicate®, and Group 4-AdSE (without Biosilicate®). Each tooth was restored with a hybrid composite and stored in water at 37 °C for 6 months. After water aging, teeth were cut in sticks (≈ 1 mm2 cross-sectional area) and all samples were submitted to μTBS test. The fracture modes of the samples were analyzed by stereomicroscopy. The representatively fractured samples were observed by scanning electron microscopy. Representative samples of each group were analyzed on energy dispersive X-ray spectrometry (EDX). The μTBS and Ca-P ratio values were analyzed by 2-way ANOVA, Bonferroni, and Tukey test, respectively, p < .05. RESULTS ASB + Biosilicate® presented the highest μTBS values (p < .05), and lowest μTBS values (p < .05) were found in AdSE Group. There was no statistical difference (p < .05) on μTBS when substrates were compared, except for Group 2. The fracture pattern analysis showed prevalence of adhesive fractures in all groups. CONCLUSION Biosilicate® enhanced bond strength of self-etching and etch-and-rinse adhesives to sound and demineralized dentin. CLINICAL RELEVANCE Bioactive glass ceramic suspension could be recommended to be used to improve the dentin bond strengths of the total-etching and self-etching adhesives after acid-etching and priming.
Collapse
Affiliation(s)
- Renata Costa de Morais
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo (FORP-USP), Av. do Café s/n, Bairro Monte Alegre, CEP, Ribeirão Preto, SP, 14040-904, Brazil
| | - Renata Espíndola Silveira
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo (FORP-USP), Av. do Café s/n, Bairro Monte Alegre, CEP, Ribeirão Preto, SP, 14040-904, Brazil
| | - Michelle Chinelatti
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo (FORP-USP), Av. do Café s/n, Bairro Monte Alegre, CEP, Ribeirão Preto, SP, 14040-904, Brazil
| | - Saulo Geraldeli
- Department of Restorative Dental Sciences, Division of Operative Dentistry, University of Florida, Gainesville, FL, 32611, USA
| | - Fernanda de Carvalho Panzeri Pires-de-Souza
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo (FORP-USP), Av. do Café s/n, Bairro Monte Alegre, CEP, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
26
|
Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds. MATERIALS 2017; 10:ma10121341. [PMID: 29168763 PMCID: PMC5744276 DOI: 10.3390/ma10121341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Three-dimensional 45S5 bioactive glass (BG)-based scaffolds are being investigated for bone regeneration. Besides structural properties, controlled time-dependent alteration of scaffold morphology is crucial to achieve optimal scaffold characteristics for successful bone repair. There is no in vitro evidence concerning the dependence between structural characteristics and dissolution behavior of 45S5 BG-based scaffolds of different morphology. In this study, the dissolution behavior of scaffolds fabricated by the foam replica method using polyurethane foam (Group A) and maritime sponge Spongia Agaricina (Group B) as sacrificial templates was analyzed by micro-computed-tomography (µCT). The scaffolds were immersed in Dulbecco’s Modified Eagle Medium for 56 days under static cell culture conditions and underwent µCT-analysis initially, and after 7, 14, and 56 days. Group A showed high porosity (91%) and trabecular structure formed by macro-pores (average diameter 692 µm ± 72 µm). Group-B-scaffolds were less porous (51%), revealing an optimal pore size distribution within the window of 110–500 µm pore size diameter, combined with superior mechanical stability. Both groups showed similar structural alteration upon immersion. Surface area and scaffold volume increased whilst density decreased, reflecting initial dissolution followed by hydroxycarbonate-apatite-layer-formation on the scaffold surfaces. In vitro- and/or in vivo-testing of cell-seeded BG-scaffolds used in this study should be performed to evaluate the BG-scaffolds’ time-dependent osteogenic properties in relation to the measured in vitro structural changes.
Collapse
|
27
|
Woldetsadik AD, Sharma SK, Khapli S, Jagannathan R, Magzoub M. Hierarchically Porous Calcium Carbonate Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2457-2469. [PMID: 33445303 DOI: 10.1021/acsbiomaterials.7b00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchically porous CaCO3 scaffolds comprised of micro- (diameter = 2.0 ± 0.3 μm) and nano-sized (diameter = 50.4 ± 14.4 nm) pores were fabricated on silicon substrates using a supercritical CO2-based process. Differentiated human THP-1 monocytes exposed to the CaCO3 scaffolds produced negligible levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α), confirming the lack of immunogenicity of the scaffolds. Extracellular matrix (ECM) proteins, vitronectin and fibronectin, displayed enhanced adsorption to the scaffolds compared to the silicon controls. ECM protein-coated CaCO3 scaffolds promoted adhesion, growth, and proliferation of osteoblast MC3T3 cells. MC3T3 cells grown on the CaCO3 scaffolds produced substantially higher levels of transforming growth factor-beta and vascular endothelial growth factor A, which regulate osteoblast differentiation, and exhibited markedly increased alkaline phosphatase activity, a marker of early osteoblast differentiation, compared to controls. Moreover, the CaCO3 scaffolds stimulated matrix mineralization (calcium deposition), an end point of advanced osteoblast differentiation and an important biomarker for bone tissue formation. Taken together, these results demonstrate the significant potential of the hierarchically porous CaCO3 scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Abiy D Woldetsadik
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sudhir K Sharma
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sachin Khapli
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Fernandes K, Magri A, Kido H, Parisi J, Assis L, Fernandes K, Mesquita-Ferrari R, Martins V, Plepis A, Zanotto E, Peitl O, Renno A. Biosilicate/PLGA osteogenic effects modulated by laser therapy: In vitro and in vivo studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:258-265. [DOI: 10.1016/j.jphotobiol.2017.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/24/2022]
|
29
|
Kolerman R, Nissan J, Rahmanov M, Vered H, Cohen O, Tal H. Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: A split mouth histomorphometric study. Clin Implant Dent Relat Res 2017; 19:812-820. [PMID: 28752693 DOI: 10.1111/cid.12518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several grafting materials have been used in sinus augmentation procedures including autogenous bone, demineralized freeze-dried bone, hydroxyapatite, β-tricalcium phosphate, anorganic deproteinized bovine bone, and combination of these and others. Yet, the issue of the optimal graft material for sinus floor augmentation is controversial. PURPOSE This prospective, randomized split-mouth study was undertaken to histomorphometrically compare a biphasic calcium phosphate (BCP) alloplastic bone substitute and a human bone mineral allograft (freeze-dried bone allograft, FDBA) in patients undergoing bilateral maxillary lateral sinus floor augmentation. MATERIAL AND METHODS Apico-coronal core biopsies were harvested at 9 months from 26 bilateral sites in 13 treated patients. Specimens were processed for histological and histomorphometrical analyses. RESULTS Newly formed bone (NB) was evident in all specimens with values of 27.5% and 24.0% at the FDBA and BCP sites, respectively (P = .331). The residual graft particle values were 12.5% and 25.4% (P = .001), and the connective tissue values were 60.0% and 50.6%, respectively. The osteoconductive value was 52.6% for the FDBA and 26.7% for the alloplast (P = .001). The values for the measured residual graft particles, connective tissue, and osteoconductivity, but not for NB, showed highly significant differences between the two groups. All sections in the alloplast material showed evidence of a light chronic inflammatory infiltrate, mainly comprising lymphocytes and multinucleated giant cells. CONCLUSIONS Both graft materials are suitable for sinus floor augmentation, with the allograft material being more osteoconductive.
Collapse
Affiliation(s)
- Roni Kolerman
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joseph Nissan
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Rahmanov
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hana Vered
- Department of Oral Pathology, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Cohen
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Haim Tal
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
30
|
Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1332640] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faezeh Hajiali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Tajbakhsh
- College of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS, Mesquita-Ferrari RA, Martins VC, Plepis AM, Zanotto ED, Peitl O, Ribeiro D, van den Beucken JJ, Renno ACM. Characterization and biological evaluation of the introduction of PLGA into biosilicate®. J Biomed Mater Res B Appl Biomater 2016; 105:1063-1074. [DOI: 10.1002/jbm.b.33654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. R. Fernandes
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - A. M. P. Magri
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - H. W. Kido
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - F. Ueno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - L. Assis
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - K. P. S. Fernandes
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - R. A. Mesquita-Ferrari
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - V. C. Martins
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - A. M. Plepis
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - O. Peitl
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - D. Ribeiro
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | | | - A. C. M. Renno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| |
Collapse
|
32
|
Vivan RR, Mecca CE, Biguetti CC, Rennó ACM, Okamoto R, Cavenago BC, Duarte MH, Matsumoto MA. Experimental maxillary sinus augmentation using a highly bioactive glass ceramic. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:41. [PMID: 26712707 DOI: 10.1007/s10856-015-5652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Physicochemical characteristics of a biomaterial directly influence its biological behavior and fate. However, anatomical and physiological particularities of the recipient site also seem to contribute with this process. The present study aimed to evaluate bone healing of maxillary sinus augmentation using a novel bioactive glass ceramic in comparison with a bovine hydroxyapatite. Bilateral sinus augmentation was performed in adult male rabbits, divided into 4 groups according to the biomaterial used: BO-particulate bovine HA Bio-Oss(®) (BO), BO+G-particulate bovine HA + particulate autogenous bone graft (G), BS-particulate glass ceramic (180-212 μm) Biosilicate(®) (BS), and BS+G-particulate glass ceramic + G. After 45 and 90 days, animals were euthanized and the specimens prepared to be analyzed under light and polarized microscopy, immunohistochemistry, scanning electron microscopy (SEM), and micro-computed tomography (μCT). Results revealed different degradation pattern between both biomaterials, despite the association with bone graft. BS caused a more intense chronic inflammation with foreign body reaction, which led to a difficulty in bone formation. Besides this evidence, SEM and μCT confirmed direct contact between newly formed bone and biomaterial, along with osteopontin and osteocalcin immunolabeling. Bone matrix mineralization was late in BS group but became similar to BO at day 90. These results clearly indicate that further studies about Biosilicate(®) are necessary to identify the factors that resulted in an unfavorable healing response when used in maxillary sinus augmentation.
Collapse
Affiliation(s)
- Rodrigo Ricci Vivan
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo - FOB/USP, Al. Octávio Pinheiro Brisola, 9-75, Bauru, SP, 17012-901, Brazil
| | - Carlos Eduardo Mecca
- Oral Biology Master's Program, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, Baur, SP, 17011-160, Brazil
| | - Claudia Cristina Biguetti
- Oral Biology Doctoral's Program, Bauru School of Dentistry, University of São Paulo - FOB/USP, Al. Octávio Pinheiro Brisola, 9-75, Bauru, SP, 17012-901, Brazil
| | - Ana Claudia Muniz Rennó
- Department of Bioscience, Federal University of Sao Paulo, Campus Baixada Santista - UNIFESP, Avenida Ana Costa, 95, Santos, SP, 11060-001, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University, FOA/UNESP, Rua José Bonifácio 1193, Araçatuba, SP, 16015-050, Brazil
- CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brasília, Brazil
| | - Bruno Cavalini Cavenago
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo - FOB/USP, Al. Octávio Pinheiro Brisola, 9-75, Bauru, SP, 17012-901, Brazil
| | - Marco Húngaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo - FOB/USP, Al. Octávio Pinheiro Brisola, 9-75, Bauru, SP, 17012-901, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University, FOA/UNESP, Rua José Bonifácio 1193, Araçatuba, SP, 16015-050, Brazil.
- Oral Biology Doctoral's Program, Sagrado Coração University, USC, Bauru, Brazil.
| |
Collapse
|
33
|
Bone Anabolic Effects of Soluble Si: In Vitro Studies with Human Mesenchymal Stem Cells and CD14+ Osteoclast Precursors. Stem Cells Int 2015; 2016:5653275. [PMID: 26798359 PMCID: PMC4699026 DOI: 10.1155/2016/5653275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023] Open
Abstract
Silicon (Si) is indispensable for many cellular processes including bone tissue metabolism. In this work, the effects of Si on human osteogenesis and osteoclastogenesis were characterized. Human mesenchymal stem cells (hMSC) and CD14+ stem cells, as osteoblast and osteoclast precursors, were treated with a wide range of Si concentrations, covering the physiological plasma levels. Si promoted a dose-dependent increase in hMSC proliferation, differentiation, and function, at levels similar to the normal basal plasma levels. Additionally, a decrease in the expression of the osteoclastogenic activators M-CSF and RANKL was observed. Also, Si elicited a decrease in osteoclastogenesis, which became significant at higher concentrations, as those observed after meals. Among the intracellular mechanisms studied, an upregulation of MEK and PKC signalling pathways was observed in both cell types. In conclusion, Si appears to have a direct positive effect on human osteogenesis, at basal plasma levels. On the other hand, it also seemed to be an inhibitor of osteoclastogenesis, but at higher concentrations, though yet in the physiological range. Further, an indirect effect of Si on osteoclastogenesis may also occur, through a downregulation of M-CSF and RANKL expression by osteoblasts. Thus, Si may be an important player in bone anabolic regenerative approaches.
Collapse
|
34
|
de Carvalho Panzeri Pires-de-Souza F, Silveira RE, Abuna G, Chinelatti MA, Alandia-Román CC, Sinhoreti MAC. Morphology of sealant/enamel interface after surface treatment with bioactive glass. Microsc Res Tech 2015; 78:1062-8. [DOI: 10.1002/jemt.22585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/07/2015] [Accepted: 09/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
| | - Renata Espíndola Silveira
- Department of Dental Materials and Prosthodontics; Ribeirão Preto School of Dentistry, University of São Paulo; Av. Do Café S/N Ribeirão Preto São Paulo 14040-904 Brazil
| | - Gabriel Abuna
- Department of Restorative Dentistry; Piracicaba School of Dentistry, State University of Campinas; Av. Limeira, 901, CEP: 13414-903, Caixa Postal 52 Piracicaba São Paulo Brazil
| | - Michelle Alexandra Chinelatti
- Department of Dental Materials and Prosthodontics; Ribeirão Preto School of Dentistry, University of São Paulo; Av. Do Café S/N Ribeirão Preto São Paulo 14040-904 Brazil
| | - Carla Cecilia Alandia-Román
- Department of Dental Materials and Prosthodontics; Ribeirão Preto School of Dentistry, University of São Paulo; Av. Do Café S/N Ribeirão Preto São Paulo 14040-904 Brazil
| | - Mario Alexandre Coelho Sinhoreti
- Department of Restorative Dentistry; Piracicaba School of Dentistry, State University of Campinas; Av. Limeira, 901, CEP: 13414-903, Caixa Postal 52 Piracicaba São Paulo Brazil
| |
Collapse
|
35
|
Effect of 830-nm laser phototherapy on olfactory neuronal ensheathing cells grown in vitro on novel bioscaffolds. J Appl Biomater Funct Mater 2015; 13:e234-40. [PMID: 26045220 DOI: 10.5301/jabfm.5000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to analyze olfactory ensheathing cell (OEC) proliferation and growth on Biosilicate and collagen bioscaffolds, and to determine whether the application of laser phototherapy would result in increased OEC proliferation on the scaffolds. The use of bioscaffolds is considered a promising strategy in a number of clinical applications where tissue healing is suboptimal. As in vitro OEC growth is a slow process, laser phototherapy could be useful to stimulate proliferation on bioscaffolds. METHODS OEC cells were seeded on the Biosilicate and collagen scaffolds. Seeded scaffolds were irradiated with a single exposure of 830-nm laser. Nonirradiated seeded scaffolds acted as negative controls. Cell proliferation was assessed 7 days after irradiation. RESULTS OECs were successfully grown on discs composed of a glass-ceramic and collagen composite. Laser irradiation produced a 32.7% decrease and a 13.2% increase in OEC proliferation on glass-ceramic discs and on collagen scaffolds, respectively, compared with controls. Laser phototherapy resulted in a reduction in cell growth on the Biosilicate scaffolds and an increase in cell proliferation on collagen scaffolds. CONCLUSIONS These results were probably due to the nature of the materials. Future research combining laser phototherapy and glass-ceramic scaffolds should take into account possible interactions of the laser with matrix compounds.
Collapse
|
36
|
Sukhorukova IV, Sheveyko AN, Kiryukhantsev-Korneev PV, Levashov EA, Shtansky DV. In vitro bioactivity study of TiCaPCO(N) and Ag-doped TiCaPCO(N) films in simulated body fluid. J Biomed Mater Res B Appl Biomater 2015; 105:193-203. [PMID: 26461975 DOI: 10.1002/jbm.b.33534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 01/04/2023]
Abstract
Bioactivity of multicomponent TiCaPCO(N) and Ag-doped TiCaPCO(N) films was evaluated in vitro using simulated body fluid (SBF) and compared with that of bioactive glass Biogran. The first group of films was fabricated by magnetron sputtering of composite TiС0.5 -Ti3 POx -CaO target produced via the self-propagating high-temperature synthesis (SHS) method (TiCaPCON films), after which their surface was implanted with Ag+ ions to obtain Ag-doped TiCaPCON films. The second group of films was fabricated by pulsed electrospark deposition (PED) using SHS-produced composite TiС0.5 -Ti3 POx -CaO and TiС0.5 -Ti3 POx -CaO-Ag electrodes. After immersion in SBF, the structure and chemistry of surface were well characterized using a combination of various microanalytical techniques, such as scanning electron microscopy, X-ray diffractometry (both in conventional and grazing incidence mode), Fourier transform infrared spectroscopy, Raman spectroscopy, and glow discharge optical emission spectroscopy. The results showed that the surfaces of the TiCaPCO(N) and Ag-doped TiCaPCO(N) films were bioactive in vitro and induced the formation of an apatite layer during exposure in SBF. In the case of the magnetron-sputtered films, the apatite layer was formed over 14 days, while 28 days were needed to form CaP phase on the surface of PED-modified samples. Various factors (film structure, surface roughness, surface functional groups, surface charge, and composition, supersaturation, and near-surface local supersaturation of SBF) affecting the kinetics of bone-like apatite formation on a bioactive surface are discussed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 193-203, 2017.
Collapse
Affiliation(s)
- I V Sukhorukova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | - A N Sheveyko
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | | | - E A Levashov
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| | - D V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow, 119049, Russia
| |
Collapse
|
37
|
A clinical, randomized, controlled study on the use of desensitizing agents during tooth bleaching. J Dent 2015; 43:1099-1105. [DOI: 10.1016/j.jdent.2015.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
|
38
|
Pintado-Palomino K, Tirapelli C. The effect of home-use and in-office bleaching treatments combined with experimental desensitizing agents on enamel and dentin. Eur J Dent 2015; 9:66-73. [PMID: 25713487 PMCID: PMC4319303 DOI: 10.4103/1305-7456.149645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate in vitro the effect of formulations containing Biosilicate to treat enamel and dentin bovine samples exposed to dental bleaching agents. MATERIALS AND METHODS On enamel and dentin bleached with commercial gels containing 16% carbamide peroxide (CP) (14 days/4 h) or 35% hydrogen peroxide (single session/45 min), desensitizing dentifrices (Sensodyne(®); experimental dentifrice of Biosilicate(®); Odontis RX(®); Sorriso(®)) were applied along 14 days and desensitizing pastes (Biosilicate(®)/water 1:1; Dessensebilize NanoP(®); Bioglass type 45S5/water 1:1) were applied on days 1, 3, 7, 10 and 14. Distilled water was the control. Microhardness (MH) and roughness measurements were the variables measured on the samples before and after the treatments. Student's t-test analyzed differences before and after the treatments. Two-way analysis of variance and post-hoc Tukey test analyzed differences among the factors desensitizing, bleaching agents and substrate. RESULTS Tukey test showed no differences in roughness for both bleaching treatments and among the desensitizing agents (P > 0.05). Differences in MH appeared on enamel treated with in-home bleaching when control group (lower values) was compared with Sensodyne, Biosilicate dentifrice, Biosilicate paste, and Bioglass paste (higher values). Comparisons between desensitizing agents on dentin treated with both bleaching gels showed no statistical differences. CONCLUSIONS The effect of formulations containing Biosilicate (Biosilicate dentifrice and paste) was significant in the MH of enamel bleached with 16% CP.
Collapse
Affiliation(s)
- Karen Pintado-Palomino
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Tirapelli
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
Kido HW, Tim CR, Bossini PS, Parizotto NA, de Castro CA, Crovace MC, Rodrigues ACM, Zanotto ED, Peitl Filho O, de Freitas Anibal F, Rennó ACM. Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:74. [PMID: 25631271 DOI: 10.1007/s10856-015-5411-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair.
Collapse
Affiliation(s)
- Hueliton Wilian Kido
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|