1
|
Huang H, Duan B, Zheng S, Ye Y, Zhang D, Huang Z, Wang S, Zhang F, Huang P, Huang F, Han L. Integrated network pharmacology and metabolomics analyses of the mechanism underlying the efficacy of Ma-Mu-Ran Antidiarrheal Capsules against dextran sulfate sodium-induced ulcerative colitis. Biomed Chromatogr 2023; 37:e5732. [PMID: 37732359 DOI: 10.1002/bmc.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
The current study utilizes a comprehensive network pharmacology and metabolomics analysis to investigate the mechanism of action of Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) for the treatment of ulcerative colitis (UC). In this study, we established a mouse model of UC using dextran sulfate sodium. Colonic tissues were collected from mice and then subjected to hematoxylin and eosin staining, as well as histopathological analysis, to assess the therapeutic effect of MMRAC. Furthermore, we assessed the mechanisms through which MMRAC combats UC by employing integrated metabolomics and network pharmacology strategies. Lastly, we validated the key targets identified through western blot and molecular docking. An integrated network of metabolomics and network pharmacology was constructed using Cytoscape to identify eight endogenous metabolites involved in the therapeutic action of MMRAC on UC. Further comprehensive analyses were focused on four key targets and their associated core metabolites and pathways. The results of western blot and molecular docking demonstrated that MMRAC could modulate key targets and their expression levels. The cumulative results indicated that MMRAC restored intestinal function in UC, reduced inflammatory responses, and alleviated oxidative stress by influencing the methionine and cysteine metabolic pathways, as well as the urea cycle. In addition, it had an impact on arginine, proline, glutamate, aspartate, and asparagine metabolic pathways and their associated targets.
Collapse
Affiliation(s)
- Hailing Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuang Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shanshan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Chinese Medicine Resources and Compound Chinese Medicine, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Li S, Wen X, Yang X, Wang L, Gao K, Liang X, Xiao H. Glutamine protects intestinal immunity through microbial metabolites rather than microbiota. Int Immunopharmacol 2023; 124:110832. [PMID: 37634449 DOI: 10.1016/j.intimp.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Glutamine has anti-inflammatory properties as well as the ability to maintain the integrity of the intestinal barrier. In our previous study, we found that 1.0% glutamine promoted SIgA (secretory immunoglobulin A) synthesis in the gut via both T cell-dependent and non-dependent processes, as well as via the intestinal microbiota. The purpose of this study was to investigate whether the intestinal microbiota or microbial metabolites regulate SIgA synthesis. In the mouse model, supplementation with 1.0% glutamine had no significant effect on the intestinal microbiota, but KEGG function prediction showed the difference on microbiota metabolites. Therefore, in this study, untargeted metabolomics techniques were used to detect and analyze the metabolic changes of glutamine in intestinal luminal contents. Metabolomics showed that in the positive ion (POS) mode, a total of 1446 metabolic differentials (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were annotated in samples treated with glutamine-supplemented group compared to control group, of which 922 were up-regulated and 524 down-regulated. In the negative ion (NEG) mode, 370 differential metabolites (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were screened, of which 220 were up-regulated and 150 down-regulated. These differential metabolites mainly include bile secretion synthesis, ABC transporters, diterpenoids and other secondary metabolites. KEGG analysis showed that propionic acid metabolism, TCA cycle, endoplasmic reticulum protein processing, nitrogen metabolism and other metabolic pathways were active. The above metabolic pathways and differential metabolites have positive effects on intestinal development and intestinal immunity, and combined with our previous studies, we conclude that glutamine supplementation can may maintain intestinal homeostasis and improving intestinal immunity through intestinal microbial metabolites.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China
| | - Xiaolu Wen
- State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China.
| |
Collapse
|
3
|
Wen Y, Emontzpohl C, Xu L, Atkins CL, Jeong JM, Yang Y, Kim K, Wu C, Akira S, Ju C. Interleukin-33 facilitates liver regeneration through serotonin-involved gut-liver axis. Hepatology 2023; 77:1580-1592. [PMID: 36129070 PMCID: PMC10758291 DOI: 10.1002/hep.32744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Insufficient liver regeneration causes post-hepatectomy liver failure and small-for-size syndrome. Identifying therapeutic targets to enhance hepatic regenerative capacity remains urgent. Recently, increased IL-33 was observed in patients undergoing liver resection and in mice after partial hepatectomy (PHx). The present study aims to investigate the role of IL-33 in liver regeneration after PHx and to elucidate its underlying mechanisms. APPROACH AND RESULTS We performed PHx in IL-33 -/- , suppression of tumorigenicity 2 (ST2) -/- , and wild-type control mice, and found deficiency of IL-33 or its receptor ST2 delayed liver regeneration. The insufficient liver regeneration could be normalized in IL-33 -/- but not ST2 -/- mice by recombinant murine IL-33 administration. Furthermore, we observed an increased level of serotonin in portal blood from wild-type mice, but not IL-33 -/- or ST2 -/- mice, after PHx. ST2 deficiency specifically in enterochromaffin cells recapitulated the phenotype of delayed liver regeneration observed in ST2 -/- mice. Moreover, the impeded liver regeneration in IL-33 -/- and ST2 -/- mice was restored to normal levels by the treatment with (±)-2,5-dimethoxy-4-iodoamphetamine, which is an agonist of the 5-hydroxytrytamine receptor (HTR)2A. Notably, in vitro experiments demonstrated that serotonin/HTR2A-induced hepatocyte proliferation is dependent on p70S6K activation. CONCLUSIONS Our study identified that IL-33 is pro-regenerative in a noninjurious model of liver resection. The underlying mechanism involved IL-33/ST2-induced increase of serotonin release from enterochromaffin cells to portal blood and subsequent HTR2A/p70S6K activation in hepatocytes by serotonin. The findings implicate the potential of targeting the IL-33/ST2/serotonin pathway to reduce the risk of post-hepatectomy liver failure and small-for-size syndrome.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | | | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Kangho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res 2021; 14:6025-6041. [PMID: 34819742 PMCID: PMC8608412 DOI: 10.2147/jir.s300989] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) system contains many different types of immune cells, making it a key immune organ system in the human body. In the last decade, our knowledge has substantially expanded regarding our understanding of the gut microbiome and its complex interaction with the gut immune system. Short chain fatty acids (SCFA), and specifically butyrate, play an important role in mediating the effects of the gut microbiome on local and systemic immunity. Gut microbial alterations and depletion of luminal butyrate have been well documented in the literature for a number of systemic and GI inflammatory disorders. Although a substantial knowledge gap exists requiring the need for further investigations to determine cause and effect, there is heightened interest in developing immunomodulatory therapies by means of reprogramming of gut microbiome or by supplementing its beneficial metabolites, such as butyrate. In the current review, we discuss the role of endogenous butyrate in the inflammatory response and maintaining immune homeostasis within the intestine. We also present the experimental models and human studies which explore therapeutic potential of butyrate supplementation in inflammatory conditions associated with butyrate depletion.
Collapse
Affiliation(s)
- Mohamed Tausif Siddiqui
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gail A M Cresci
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
5
|
T H17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunol 2017; 10:1431-1442. [PMID: 28198366 DOI: 10.1038/mi.2017.5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2017] [Indexed: 02/04/2023]
Abstract
TH17 cells are major drivers of inflammation and involved in several autoimmune diseases. Tissue inflammation is a beneficial host response to infection, but it can also contribute to autoimmunity. The crosstalk between a tissue and the immune system during an inflammatory response is key for preserving tissue integrity and restoring physiological processes. However, how the inflamed tissue regulates the magnitude of an immune response by controlling pro-inflammatory T cells is not well characterized so far. Here we show that TH17 cells accumulating in the small intestine upon inflammation express the IL-33 receptor (ST2) and intestinal epithelial cells (IEC) are the main source of the alarmin interleukin-33 (IL-33). We show that pro-inflammatory TH17 cells acquire a regulatory phenotype with immunosuppressive properties in response to IL-33. Absence of ST2 signaling promotes the secretion of pro-inflammatory cytokines by TH17 cells and dampens the secretion of IL-10. Our results provide new insights into the mechanisms by which IEC, via IL-33/ST2 axis, may control pro-inflammatory TH17 cells in the small intestine to sustain homeostasis.
Collapse
|
6
|
Xu J, Guardado J, Hoffman R, Xu H, Namas R, Vodovotz Y, Xu L, Ramadan M, Brown J, Turnquist HR, Billiar TR. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model. PLoS Med 2017; 14:e1002365. [PMID: 28742815 PMCID: PMC5526517 DOI: 10.1371/journal.pmed.1002365] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The immunosuppression and immune dysregulation that follows severe injury includes type 2 immune responses manifested by elevations in interleukin (IL) 4, IL5, and IL13 early after injury. We hypothesized that IL33, an alarmin released early after tissue injury and a known regulator of type 2 immunity, contributes to the early type 2 immune responses after systemic injury. METHODS AND FINDINGS Blunt trauma patients admitted to the trauma intensive care unit of a level I trauma center were enrolled in an observational study that included frequent blood sampling. Dynamic changes in IL33 and soluble suppression of tumorigenicity 2 (sST2) levels were measured in the plasma and correlated with levels of the type 2 cytokines and nosocomial infection. Based on the observations in humans, mechanistic experiments were designed in a mouse model of resuscitated hemorrhagic shock and tissue trauma (HS/T). These experiments utilized wild-type C57BL/6 mice, IL33-/- mice, B6.C3(Cg)-Rorasg/sg mice deficient in group 2 innate lymphoid cells (ILC2), and C57BL/6 wild-type mice treated with anti-IL5 antibody. Severely injured human blunt trauma patients (n = 472, average injury severity score [ISS] = 20.2) exhibited elevations in plasma IL33 levels upon admission and over time that correlated positively with increases in IL4, IL5, and IL13 (P < 0.0001). sST2 levels also increased after injury but in a delayed manner compared with IL33. The increases in IL33 and sST2 were significantly greater in patients that developed nosocomial infection and organ dysfunction than similarly injured patients that did not (P < 0.05). Mechanistic studies were carried out in a mouse model of HS/T that recapitulated the early increase in IL33 and delayed increase in sST2 in the plasma (P < 0.005). These studies identified a pathway where IL33 induces ILC2 activation in the lung within hours of HS/T. ILC2 IL5 up-regulation induces further IL5 expression by CXCR2+ lung neutrophils, culminating in early lung injury. The major limitations of this study are the descriptive nature of the human study component and the impact of the potential differences between human and mouse immune responses to polytrauma. Also, the studies performed did not permit us to make conclusions about the impact of IL33 on pulmonary function. CONCLUSIONS These results suggest that IL33 may initiate early detrimental type 2 immune responses after trauma through ILC2 regulation of neutrophil IL5 production. This IL33-ILC2-IL5-neutrophil axis defines a novel regulatory role for ILC2 in acute lung injury that could be targeted in trauma patients prone to early lung dysfunction.
Collapse
Affiliation(s)
- Jing Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jesse Guardado
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hui Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Mostafa Ramadan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua Brown
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (TRB); (HRT)
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (TRB); (HRT)
| |
Collapse
|
7
|
Verheijden KAT, Akbari P, Willemsen LEM, Kraneveld AD, Folkerts G, Garssen J, Fink-Gremmels J, Braber S. Inflammation-induced expression of the alarmin interleukin 33 can be suppressed by galacto-oligosaccharides. Int Arch Allergy Immunol 2015; 167:127-36. [PMID: 26304032 DOI: 10.1159/000437327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The alarmin interleukin 33 (IL-33) and its receptor ST2 play an important role in mucosal barrier tissues, and seem to be crucial for Th2-cell mediated host defense. Galacto-oligosaccharides (GOS), used in infant formulas, exhibit gut and immune modulatory effects. To enhance our understanding of the immunomodulatory capacity of GOS, this study investigated the impact of dietary GOS intervention on IL-33 and ST2 expression related to intestinal barrier dysfunction and asthma. METHODS B6C3F1 and BALB/c mice were fed a control diet with or without 1% GOS. To simulate intestinal barrier dysfunction, B6C3F1 mice received a gavage with the mycotoxin deoxynivalenol (DON). To mimic asthma-like inflammatory airway responses, BALB/c mice were sensitized on day 0 and challenged on days 7-11 with house-dust mite (HDM) allergen. Samples from the intestines and lungs were collected for IL-33 and ST2 analysis by qRT-PCR, immunoblotting and immunohistochemistry. RESULTS Dietary GOS counteracted the DON-induced IL-33 mRNA expression and changed the IL-33 distribution pattern in the mouse small intestine. The IL-33 mRNA expression was positively correlated to the intestinal permeability. A strong positive correlation was also observed between IL-33 mRNA expression in the lung and the number of bronchoalveolar fluid cells. Reduced levels of IL-33 protein, altered IL-33 distribution and reduced ST2 mRNA expression were observed in the lungs of HDM-allergic mice after GOS intervention. CONCLUSIONS Dietary GOS mitigated IL-33 at the mucosal surfaces in a murine model for intestinal barrier dysfunction and HDM-induced asthma. This promising effect may open up new avenues to use GOS not only as a prebiotic in infant nutrition, but also as a functional ingredient that targets inflammatory processes and allergies associated with IL-33 expression.
Collapse
Affiliation(s)
- Kim A T Verheijden
- Division of Veterinary Pharmacy, Pharmacology and Toxicology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A 2015; 112:10762-7. [PMID: 26243875 DOI: 10.1073/pnas.1509070112] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barrier surfaces of the skin, lung, and intestine are constantly exposed to environmental stimuli that can result in inflammation and tissue damage. Interleukin (IL)-33-dependent group 2 innate lymphoid cells (ILC2s) are enriched at barrier surfaces and have been implicated in promoting inflammation; however, the mechanisms underlying the tissue-protective roles of IL-33 or ILC2s at surfaces such as the intestine remain poorly defined. Here we demonstrate that, following activation with IL-33, expression of the growth factor amphiregulin (AREG) is a dominant functional signature of gut-associated ILC2s. In the context of a murine model of intestinal damage and inflammation, the frequency and number of AREG-expressing ILC2s increases following intestinal injury and genetic disruption of the endogenous AREG-epidermal growth factor receptor (EGFR) pathway exacerbated disease. Administration of exogenous AREG limited intestinal inflammation and decreased disease severity in both lymphocyte-sufficient and lymphocyte-deficient mice, revealing a previously unrecognized innate immune mechanism of intestinal tissue protection. Furthermore, treatment with IL-33 or transfer of ILC2s ameliorated intestinal disease severity in an AREG-dependent manner. Collectively, these data reveal a critical feedback loop in which cytokine cues from damaged epithelia activate innate immune cells to express growth factors essential for ILC-dependent restoration of epithelial barrier function and maintenance of tissue homeostasis.
Collapse
|
9
|
Shahi H, Reiisi S, Bahreini R, Bagheri N, Salimzadeh L, Shirzad H. Association Between Helicobacter pylori cagA, babA2 Virulence Factors and Gastric Mucosal Interleukin-33 mRNA Expression and Clinical Outcomes in Dyspeptic Patients. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:227-34. [PMID: 27014647 PMCID: PMC4769600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Helicobacter pylori (H. pylori) infection has been reported in more than half of the world human population. It is associated with gastric inflammation and noticeable infiltration of the immune cells to the stomach mucosa by several cytokines secretion. IL-1β, IL-18 have been shown to contribute to H. pylori induced gastritis, but the details of inflammation and association of virulence factors remain unclear. IL-1 cytokine family has a new additional cytokine, Interleukin-33 (IL-33), which is contemplated to have an important role for host defense against microorganisms. H. pylori virulence factors important in gastritis risk are the cag pathogenicity island (cag-PAI) and babA. This study evaluated IL-33 mucosal mRNA expression levels in infected and uninfected patients and its relationship with bacterial virulence factors cagA, babA2 and type of gastritis. Total RNA was extracted from gastric biopsies of 79 H. pylori-infected patients and 51 H. pylori-negative patients. Mucosal IL-33 mRNA expression levels in gastric biopsies were assessed using real-time PCR. Existence of virulence factors were detected by PCR. IL-33 mRNA expression was significantly higher in biopsies of H. pylori-infected patients compared to H. pylori-uninfected patients (P<0.0001). Also there was a direct relationship between virulence factor bab-A2 and enhancement in IL-33 mRNA expression. Furthermore, IL-33 mRNA expression level was significantly lower in chronic gastritis patients compared with patients with active gastritis (P<0.001). IL-33 may play a crucial role in the inflammatory response and induction of the chronic gastritis and severity of inflammatory changes in the gastric mucosa.
Collapse
Affiliation(s)
- Heshmat Shahi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Somayeh Reiisi
- Department of Genetic, Faculty of basic science, Shahrekoed University, Shahrekord, Iran.
| | - Rasol Bahreini
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Loghman Salimzadeh
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Corresponding author: . Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran. E-mail:
| |
Collapse
|
10
|
Chen SJ, Liu XW, Liu JP, Yang XY, Lu FG. Ulcerative colitis as a polymicrobial infection characterized by sustained broken mucus barrier. World J Gastroenterol 2014; 20:9468-9475. [PMID: 25071341 PMCID: PMC4110578 DOI: 10.3748/wjg.v20.i28.9468] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/24/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
To reduce medication for patients with ulcerative colitis (UC), we need to establish the etiology of UC. The intestinal microbiota of patients with inflammatory bowel disease (IBD) has been shown to differ from that of healthy controls and abundant data indicate that it changes in both composition and localization. Small intestinal bacterial overgrowth is significantly higher in IBD patients compared with controls. Probiotics have been investigated for their capacity to reduce the severity of UC. The luminal surfaces of the gastrointestinal tract are covered by a mucus layer. This normally acts as a barrier that does not allow bacteria to reach the epithelial cells and thus limits the direct contact between the host and the bacteria. The mucus layer in the colon comprises an inner layer that is firmly adherent to the intestinal mucosa, and an outer layer that can be washed off with minimal rinsing. Some bacteria can dissolve the protective inner mucus layer. Defects in renewal and formation of the inner mucus layer allow bacteria to reach the epithelium and have implications for the causes of colitis. In this review, important elements of UC pathology are thought to be the intestinal bacteria, gut mucus, and the mucosa-associated immune system.
Collapse
|
11
|
Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, Chen S, Li T, Yin Y, Hou Y, Wu G. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids 2014; 46:2403-13. [PMID: 25023447 DOI: 10.1007/s00726-014-1793-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/21/2014] [Indexed: 01/08/2023]
Abstract
This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|