1
|
Xu Z, Yang S, Cui L. Understanding the heterogeneity and dysfunction of HDL in chronic kidney disease: insights from recent reviews. BMC Nephrol 2024; 25:400. [PMID: 39511510 PMCID: PMC11542271 DOI: 10.1186/s12882-024-03808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic kidney disease (CKD) is a complex disease that affects the global population's health, with dyslipidemia being one of its major complications. High density lipoprotein (HDL) is regarded as the "hero" in the bloodstream due to its role in reverse cholesterol transport, which lowers cholesterol levels in the blood and prevents atherosclerosis. However, in the complex internal environment of CKD, even this "hero" may struggle to perform its beneficial functions and could potentially become harmful. This article reviews HDL heterogeneity, HDL subclasses, functional changes in HDL during the progression of CKD, and the application of HDL in CKD treatment. This review aims to deepen understanding of lipid metabolism abnormalities in CKD patients and provide a basis for new therapeutic strategies.
Collapse
Affiliation(s)
- Zhen Xu
- Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Mehdawi A, Mohammad BA, Mosleh I, Khader HA, Habash M, Nassar RI, Awwad S, Hasoun L, Abu-Samak MS. Combined Effect of Omega-3 Fatty Acid and Vitamin D 3 on Oxidized LDL-C and Non-HDL-C Levels in People With Vitamin D Deficiency: A Randomized Controlled Trial. J Cardiovasc Pharmacol 2023; 81:251-258. [PMID: 36630694 DOI: 10.1097/fjc.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
ABSTRACT The present randomized clinical trial (RCT) was conducted on Jordanian participants with vitamin D deficiency (VDD) with no other medical conditions, to evaluate the combined effect of 1,25-dihydroxy vitamin D 3 (Vit.D 3 ) and omega-3 fatty acid (n-3FA) supplements (D+) on oxidized low-density lipoprotein (Ox-LDL) and non-high-density lipoprotein cholesterol (non-HDL-C) levels as common predictors of cardiovascular diseases (CVDs). Participants were randomized into 4 groups as follows: a control group (C) that received no supplementations, a Vit.D 3 group that received 50,000 IU of Vit.D 3 every week, an n-3FA group that received 300 mg of omega-3 fatty acid every day, and a D+ group that received a combination of both supplements, with the same dosage administered by the previous groups but with a 4-6-hour time interval between Vit.D 3 and n-3FA administration to avoid any possible interaction. All supplementations were administered orally for 8 weeks. Forty-seven participants were allocated to each group. Twenty-six in the control group, 37 participants in the Vit.D 3 group, 37 participants in the n-3FA group, and 46 participants in the D+ group completed the study to the end. The D+ supplementations significantly increased non-HDL-C (118.99 ± 60.98 to 155.26 ± 43.36 mg/dL, P << 0.05) but decreased Ox-LDL-C levels (69.29 ± 37.69 to 52.81 ± 17.30 pg/mL, P = 0.03). The stepwise regression showed that the serum LDL-C level was the main independent variable involved in the elevation of non-HDL levels (R 2 = 0.837) observed at the end of the trial in the D+ group. The groups that were supplemented with either Vit.D 3 alone or n-3FA alone had an insignificant decrease in the level of Ox-LDL-C. In conclusion, despite the observed hyperlipidemic effect, the combination treatment is recommended by the research team because the decrease in Ox-LDL may offset the hyperlipidemic effect.
Collapse
Affiliation(s)
- Amani Mehdawi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Beisan A Mohammad
- Department of Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Ibrahim Mosleh
- Department of Medical Laboratory Sciences, University of Jordan, Amman, Jordan
| | - Heba A Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University,, Zarqa, Jordan
| | - Maha Habash
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan; and
| | - Razan I Nassar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Shady Awwad
- Department of Pharmaceutical Chemistry & Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| |
Collapse
|
3
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|
4
|
HDL and Endothelial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:27-47. [DOI: 10.1007/978-981-19-1592-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Plasma proteome of brain-dead organ donors predicts heart transplant outcome. J Heart Lung Transplant 2021; 41:311-324. [DOI: 10.1016/j.healun.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
|
6
|
Fois SS, Canu S, Fois AG. The Role of Oxidative Stress in Sarcoidosis. Int J Mol Sci 2021; 22:ijms222111712. [PMID: 34769145 PMCID: PMC8584035 DOI: 10.3390/ijms222111712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sarcoidosis is a rare, systemic inflammatory disease whose diagnosis and management can pose a challenge for clinicians and specialists. Scientific knowledge on the molecular pathways that drive its development is still lacking, with no standardized therapies available and insufficient strategies to predict patient outcome. In recent years, oxidative stress has been highlighted as an important factor in the pathogenesis of sarcoidosis, involving several enzymes and molecules in the mechanism of the disease. This review presents current data on the role of oxidative stress in sarcoidosis and its interaction with inflammation, as well as the application of antioxidative therapy in the disease.
Collapse
Affiliation(s)
- Sara Solveig Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
- Correspondence:
| | - Sara Canu
- Respiratory Diseases Operative Unit, University Hospital of Sassari, 07100 Sassari, Italy;
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
| |
Collapse
|
7
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
9
|
Meneses MJ, Silvestre R, Sousa-Lima I, Macedo MP. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20164049. [PMID: 31430977 PMCID: PMC6720961 DOI: 10.3390/ijms20164049] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by an overall state of inflammation and oxidative stress, which highlight the importance of a functional antioxidant system and normal activity of some endogenous enzymes, namely paraoxonase-1 (PON1). PON1 is an antioxidant and anti-inflammatory glycoprotein from the paraoxonases family. It is mainly expressed in the liver and secreted to the bloodstream, where it binds to HDL. Although it was first discovered due to its ability to hydrolyze paraoxon, it is now known to have an antiatherogenic role. Recent studies have shown that PON1 plays a protective role in other diseases that are associated with inflammation and oxidative stress, such as Type 1 and Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. The aim of this review is to elucidate the physiological role of PON1, as well as the impact of altered PON1 levels in metabolic disorders.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Regina Silvestre
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Sousa-Lima
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal
| | - Maria Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal.
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal.
- Medical Sciences Department and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 2019; 848:39-48. [PMID: 30689995 DOI: 10.1016/j.ejphar.2019.01.043] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.
Collapse
Affiliation(s)
- Milena Veskovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suncica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embriology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Dragutinovic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Vucevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgacevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tatjana Radosavljevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
11
|
Kalinin RE, Suchkov IA, Korotkova NV, Mzhavanadze ND. The research of the molecular mechanisms of endothelial dysfunction in vitro. GENES & CELLS 2019; 14:22-32. [DOI: 10.23868/201903003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Endothelial dysfunction is universally regarded as one of the key elements in the pathogenesis of most of cardiovascular diseases including ischemic heart disease, atherosclerosis, arterial hypertension, myocardial infarction, stroke, dilated cardiomyopathy, as well as diabetes mellitus, inflammatory, oncological, and autoimmune diseases. Localization of endothelial cells in tunica intima of the vessels limits in vivo analysis of the intracellular proteins and other molecules, which regulate cellular functional activity. A possible solution to this problem may be setting experimental conditions for physiological and pathological functioning of endothelial cells. In vitro modeling of endothelial dysfunction may be a useful tool for the development of methods to improve the endothelial function and evaluate the effects of medicinal products. The objective of this literature review is to summarize main trends in studying endothelial dysfunction in vitro using different endothelial cell cultures.
Collapse
|
12
|
Deidda M, Piras C, Binaghi G, Congia D, Pani A, Boi A, Sanna F, Rossi A, Loi B, Cadeddu Dessalvi C, Atzori L, Porcu M, Mercuro G. Metabolomic fingerprint of coronary blood in STEMI patients depends on the ischemic time and inflammatory state. Sci Rep 2019; 9:312. [PMID: 30670713 PMCID: PMC6342950 DOI: 10.1038/s41598-018-36415-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
In this study we investigated whether the metabolomic analysis could identify a specific fingerprint of coronary blood collected during primary PCI in STEMI patients. Fifteen samples was subjected to metabolomic analysis. Subsequently, the study population was divided into two groups according to the peripheral blood neutrophil-to-lymphocyte ratio (NLR), a marker of the systemic inflammatory response. Regression analysis was then applied separately to the two NLR groups. A partial least square (PLS) regression identified the most significant involved metabolites and the PLS-class analysis revealed a significant correlation between the metabolic profile and the total ischemic time only in patients with an NLR > 5.77.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulio Binaghi
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Damiana Congia
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Alessandro Pani
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Alberto Boi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | | | - Angelica Rossi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | - Bruno Loi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | | | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maurizio Porcu
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Yu Z, Ou Q, Chen F, Bi J, Li W, Ma J, Wang R, Huang X. Evaluation of the prognostic value of paraoxonase 1 in the recurrence and metastasis of hepatocellular carcinoma and establishment of a liver-specific predictive model of survival. J Transl Med 2018; 16:327. [PMID: 30477582 PMCID: PMC6258254 DOI: 10.1186/s12967-018-1707-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma is a malignant tumor with a highly invasive and metastatic phenotype, and the detection of potential indicators associated with its recurrence and metastasis after surgical resection is critical for patient survival. Methods Transcriptome data for large cohorts (n = 1432) from multicenter sources were comprehensively analyzed to explore such potential signatures. The prognostic value of the selected indicators was investigated and discussed, and a comparison with conventional clinicopathological features was performed. A survival predictive nomogram for 5-year survival was established with the selected indicator using the Cox proportional hazards regression. To validate the indicator at the protein level, we performed immunohistochemical staining with paraffin-embedded slides of hepatocellular carcinoma samples (n = 67 patients) from our hospital. Finally, a gene set enrichment analysis (GSEA) was performed to detect the underlying biological processes and internal mechanisms. Results The liver-specific protein paraoxonase 1 (PON1) was found to be the most relevant indicator of tumor recurrence, invasiveness, and metastasis in the present study, and the downregulation of PON1 might reveal poor survival for patients with hepatocellular carcinoma. The C-index of the PON1-related nomogram was 0.714, thus indicating a more effective predictive performance than the 7th American Joint Committee on Cancer (AJCC) tumor stage (0.534), AJCC T stage (0.565), or alpha-fetoprotein (0.488). The GSEA revealed that PON1 was associated with several hepatocellular carcinoma-related pathways, including the cell cycle, DNA replication, gap junction and p53 downstream pathways. Conclusions The downregulation of paraoxonase 1 may suggest worse outcomes and a higher recurrence rate. Thus, paraoxonase 1 might represent an indicator for predicting the survival of patients with hepatocellular carcinoma. Electronic supplementary material The online version of this article (10.1186/s12967-018-1707-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Yu
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qifeng Ou
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fan Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiong Bi
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wen Li
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rongchang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xiaohui Huang
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Tajbakhsh A, Rezaee M, Rivandi M, Forouzanfar F, Afzaljavan F, Pasdar A. Paraoxonase 1 (PON1) and stroke; the dilemma of genetic variation. Clin Biochem 2017; 50:1298-1305. [DOI: 10.1016/j.clinbiochem.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
|
15
|
Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem 2017; 440:167-187. [PMID: 28828539 DOI: 10.1007/s11010-017-3165-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, the leading cause of death in the developed and developing countries, is prevalent in diabetes mellitus with 68% cardiovascular disease (CVD)-related mortality. Epidemiological studies suggested inverse correlation between HDL and CVD occurrence. Therefore, low HDL concentration observed in diabetic patients compared to non-diabetic individuals was thought to be one of the primary causes of increased risks of CVD. Efforts to raise HDL level via CETP inhibitors, Torcetrapib and Dalcetrapib, turned out to be disappointing in outcome studies despite substantial increases in HDL-C, suggesting that factors beyond HDL concentration may be responsible for the increased risks of CVD. Therefore, recent studies have focused more on HDL function than on HDL levels. The metabolic environment in diabetes mellitus condition such as hyperglycemia-induced advanced glycation end products, oxidative stress, and inflammation promote HDL dysfunction leading to greater risks of CVD. This review discusses dysfunctional HDL as one of the mechanisms of increased CVD risks in diabetes mellitus through adversely affecting components that support HDL function in cholesterol efflux and LDL oxidation. The dampening of reverse cholesterol transport, a key process that removes cholesterol from lipid-laden macrophages in the arterial wall, leads to increased risks of CVD in diabetic patients. Therapeutic approaches to keep diabetes under control may benefit patients from developing CVD.
Collapse
|
16
|
Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin Rheumatol 2017. [DOI: 10.1007/s10067-017-3732-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
White CR, Datta G, Giordano S. High-Density Lipoprotein Regulation of Mitochondrial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:407-429. [PMID: 28551800 DOI: 10.1007/978-3-319-55330-6_22] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoproteins play a key role in regulating plasma and tissue levels of cholesterol. Apolipoprotein B (apoB)-containing lipoproteins, including chylomicrons, very-low density lipoprotein (VLDL) and low-density lipoprotein (LDL), serve as carriers of triglycerides and cholesterol and deliver these metabolites to peripheral tissues. In contrast, high-density lipoprotein (HDL) mediates Reverse Cholesterol Transport (RCT), a process by which excess cholesterol is removed from the periphery and taken up by hepatocytes where it is metabolized and excreted. Anti-atherogenic properties of HDL have been largely ascribed to apoA-I, the major protein component of the lipoprotein particle. The inflammatory response associated with atherosclerosis and ischemia-reperfusion (I-R) injury has been linked to the development of mitochondrial dysfunction. Under these conditions, an increase in reactive oxygen species (ROS) formation induces damage to mitochondrial structural elements, leading to a reduction in ATP synthesis and initiation of the apoptotic program. Recent studies suggest that HDL-associated apoA-I and lysosphingolipids attenuate mitochondrial injury by multiple mechanisms, including the suppression of ROS formation and induction of autophagy. Other apolipoproteins, however, present in lower abundance in HDL particles may exert opposing effects on mitochondrial function. This chapter examines the role of HDL-associated apolipoproteins and lipids in the regulation of mitochondrial function and bioenergetics.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geeta Datta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Sahebkar A, Hernández-Aguilera A, Abelló D, Sancho E, Camps J, Joven J. Systematic review and meta-analysis deciphering the impact of fibrates on paraoxonase-1 status. Metabolism 2016; 65:609-622. [PMID: 27085770 DOI: 10.1016/j.metabol.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A significant residual cardiovascular risk is consistently observed in patients treated with statins. A combined treatment with fibrates reduces cardiovascular events in very high-risk patients. Because this is apparently unconnected to an improvement in lipid-related outcomes we hypothesized that the cardioprotective effects of fibrates might be associated with an improvement in paraoxonase-1 (PON1) status. METHOD The search for existing evidence, using the Medline, Scopus and Cochrane databases, was systematic and followed the PRISMA statement without restrictions on publication date. We excluded non-clinical and observational studies and we extracted data on baseline and post-treatment values of serum PON1 activity and other measurements of PON1 status. RESULTS Nine studies (including 12 treatment arms) in patients with hyperlipidemia, diabetes or metabolic syndrome treated with fibrates, alone or in combination with statins, were included to synthesize results. A meta-analysis of the data using a random-effects model revealed a significant increase in serum PON1 activity following fibrate therapy (WMD: 15.64U/L, 95% CI: 6.94, 24.34, p<0.001), an effect that was robust and not sensitive to any particular study. Subgroup analysis indicated differences in the effect size among types of fibrates and that PON1 alterations were associated with high-density lipoprotein cholesterol changes following fibrate therapy. CONCLUSIONS Results indicate a significant PON1-enhancing effect of fibrates. Whether this effect is associated with a clinical benefit, although likely, remains to be further investigated.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - David Abelló
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Elena Sancho
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
20
|
Mackness M, Mackness B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015; 567:12-21. [PMID: 25965560 DOI: 10.1016/j.gene.2015.04.088] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
Abstract
Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, are believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity.
Collapse
Affiliation(s)
- Mike Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain.
| | - Bharti Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain
| |
Collapse
|
21
|
Camps J, Joven J. Chemokine ligand 2 and paraoxonase-1 in non-alcoholic fatty liver disease: The search for alternative causative factors. World J Gastroenterol 2015; 21:2875-2882. [PMID: 25780284 PMCID: PMC4356906 DOI: 10.3748/wjg.v21.i10.2875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
The incidence and prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly increasing. Despite this is apparently associated with the growing increase in obesity, insulin resistance and obesity-related metabolic disturbances their presence is not a necessary or sufficient condition to explain the accumulation of fat in the liver. Conversely, NAFLD is a predictor of other metabolic risks. NAFLD is currently the most frequent chronic liver disease but should not be considered benign or anecdotic because a considerable proportion of patients with NAFLD progress to cirrhosis and end-stage liver disease. Consequently, the search for alternative molecular mechanisms with therapeutic implications in NAFLD and associated disorders deserves a careful consideration. Mitochondria are possible targets as these organelles generate energy from nutrient oxidation. Some findings, generated in patients with extreme obesity and in murine models, support the notion that NAFLD could be a mitochondrial disease. This is plausible because mitochondrial dysfunction affects the accumulation of lipids in hepatocytes and promotes lipid peroxidation, the production of reactive oxygen species, the release of cytokines causing inflammation and cell death. Here we discuss basic research and mechanistic studies targeting the role of chemokine ligand 2 in liver inflammation and that of the paraoxonases in the oxidative stress. Their combination and association with mitochondrial dysfunction may uncover mechanisms underlying the progression of NAFLD and may help to identify novel therapeutic targets.
Collapse
|
22
|
Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: A transcriptomic and metabolomic study. Food Chem Toxicol 2015; 77:22-33. [DOI: 10.1016/j.fct.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/21/2022]
|
23
|
Gugliucci A, Menini T. Paraoxonase 1 and HDL maturation. Clin Chim Acta 2014; 439:5-13. [PMID: 25261854 DOI: 10.1016/j.cca.2014.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023]
Abstract
Understanding the kinetics and function of paraoxonase 1 (PON1) is becoming an important issue in atherosclerosis. Low PON1 activity has been consistently linked with an increased risk of major cardiovascular events in the setting of secondary prevention of coronary artery disease. Recent studies have shown that there is a specific interaction of myeloperoxidase (MPO)-apoAI-PON1 on HDL surface that seems to be germane to atherogenesis. MPO specifically inhibits PON1 and PON1 mitigates MPO effects. Surprisingly, very little is known about the routes by which PON1 gets integrated into HDL or its fate during HDL remodeling in the intravascular space. We have developed a method that assesses PON1 activity in the individual HDL subclasses with the aid of which we have shown that PON1 is present across the HDL particle range and preferentially in HDL3, confirming data from ultracentrifugation (UC) studies. Upon HDL maturation ex vivo PON1 is activated and it shows a flux to both smaller and larger HDL particles as well as to VLDL and sdLDL. At the same time apoE, AI and AII are shifted across particle sizes. PON1 activation and flux across HDL particles are blocked by CETP and LCAT inhibitors. In a group of particles with such a complex biology as HDL, knowledge of the interaction between apo-lipoproteins, lipids and enzymes is key for an increased understanding of the yet multiple unknown features of its function. Solving the HDL paradox will necessitate the development of techniques to explore HDL function that are practical and well adapted to clinical studies and eventually become useful in patient monitoring. The confluence of proteomic, functional studies, HDL subclasses, PON1 assays and zymogram will yield data to draw a more elaborate and comprehensive picture of the function of HDL. It must be noted that all these studies are static and conducted in the fasting state. The crucial phase will be achieved when human kinetic studies (both in the fasting and post-prandial states) on HDL-PON1, apoA-I and lipid fate in the circulation are carried out.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California College of Osteopathic Medicine, Vallejo, CA, USA.
| | - Teresita Menini
- Glycation, Oxidation and Disease Laboratory, Touro University California College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
24
|
Arunima S, Rajamohan T. Effect of virgin coconut oil enriched diet on the antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats - a comparative study. Food Funct 2014; 4:1402-9. [PMID: 23892389 DOI: 10.1039/c3fo60085h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Virgin coconut oil (VCO) extracted by wet processing is popular among the scientific field and society nowadays. The present study was carried out to examine the comparative effect of VCO with copra oil (CO), olive oil (OO) and sunflower oil (SFO) on endogenous antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with the synthetic diet. Results revealed that dietary VCO improved the antioxidant status compared to other three oil fed groups (P < 0.05), which is evident from the increased activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase in tissues. Concentration of reduced glutathione was also found to be increased significantly in liver (532.97 mM per 100 g liver), heart (15.77 mM per 100 g heart) and kidney (1.58 mM per 100 g kidney) of VCO fed rats compared to those fed with CO, OO and SFO (P < 0.05). In addition, the activity of paraoxonase 1 was significantly increased in VCO fed rats compared to other oil fed groups (P < 0.05). Furthermore, VCO administration prevented the oxidative stress, which is indicated by the decreased formation of lipid peroxidation and protein oxidation products like malondialdehyde, hydroperoxides, conjugated dienes and protein carbonyls in serum and tissues compared to other oil fed rats (P < 0.05). Wet processing of VCO retains higher amounts of biologically active unsaponifiable components like polyphenols (84 mg per 100 g oil) and tocopherols (33.12 μg per 100 g oil) etc. compared to other oils (P < 0.05). From these observations, it is concluded that VCO has a beneficial role in improving antioxidant status and hence preventing lipid and protein oxidation.
Collapse
Affiliation(s)
- S Arunima
- Department of Biochemistry, University of Kerala, Thiruvananthapuram-695581, India
| | | |
Collapse
|
25
|
Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 2014; 181:1-33. [PMID: 24704586 DOI: 10.1016/j.chemphyslip.2014.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States.
| | - Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States
| |
Collapse
|
26
|
Devarajan A, Shih D, Reddy ST. Inflammation, infection, cancer and all that…the role of paraoxonases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:33-41. [PMID: 25038992 DOI: 10.1007/978-3-319-07320-0_5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The paraoxonase (PON) gene family consists of three members, PON1, PON2 and PON3. All PON proteins possess antioxidant properties and lipo-lactonase activities, and are implicated in the pathogenesis of several inflammatory diseases including atherosclerosis, Alzheimer's, Parkinson's, diabetes and cancer. Despite the role of PON proteins in critical cellular functions and associated pathologies, the physiological substrates and molecular mechanisms by which PON proteins function as anti-inflammatory proteins remain largely unknown. PON1 is found exclusively extracellular and associated solely with high-density lipoprotein (HDL) particles in the circulation, and, in part, confers the anti-oxidant and anti-inflammatory properties associated with HDL. Recent studies demonstrated that the intracellular PON proteins; PON2 and PON3 (i) are associated with mitochondria and mitochondria-associated membranes, (ii) modulate mitochondria-dependent superoxide production, and (iii) prevent apoptosis. Overexpression of PON2 and PON3 genes protected (i) mitochondria from antimycin or oligomycin mediated mitochondrial dysfunction and (ii) ER stress and ER stress mediated mitochondrial dysfunction. These studies illustrate that the anti-inflammatory effects of PON2 and PON3 may, in part, be mediated by their role in mitochondrial and associated organelle function. Since oxidative stress as a result of mitochondrial dysfunction is implicated in the development of inflammatory diseases including atherosclerosis and cancer, these recent studies on PON2 and PON3 proteins may provide a mechanism for the scores of epidemiological studies that show a link between PON genes and numerous inflammatory diseases. Understanding such mechanisms will provide novel routes of intervention in the treatment of diseases associated with pro-inflammatory oxidative stress.
Collapse
Affiliation(s)
- Asokan Devarajan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 90095, Los Angeles, CA, USA,
| | | | | |
Collapse
|
27
|
Implication of low HDL-c levels in patients with average LDL-c levels: a focus on oxidized LDL, large HDL subpopulation, and adiponectin. Mediators Inflamm 2013; 2013:612038. [PMID: 24282340 PMCID: PMC3824339 DOI: 10.1155/2013/612038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023] Open
Abstract
To evaluate the impact of low levels of high density lipoprotein cholesterol (HDL-c) on patients with LDL-c average levels, focusing on oxidative, lipidic, and inflammatory profiles. Patients with cardiovascular risk factors (n = 169) and control subjects (n = 73) were divided into 2 subgroups, one of normal HDL-c and the other of low HDL-c levels. The following data was analyzed: BP, BMI, waist circumference and serum glucose Total-c, TGs, LDL-c, oxidized LDL, total HDL-c and subpopulations (small, intermediate, and large), paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF-α, adiponectin, VEGF, and iCAM1. In the control subgroup with low HDL-c levels, significantly higher values of BP and TGs and lower values of PON1 activity and adiponectin were found, versus control normal HDL-c subgroup. However, differences in patients' subgroups were clearly more pronounced. Indeed, low HDL-c subgroup presented increased HbA1c, TGs, non-HDL-c, Ox-LDL, hsCRP, VEGF, and small HDL-c and reduced adiponectin and large HDL. In addition, Ox-LDL, large-HDL-c, and adiponectin presented interesting correlations with classical and nonclassical markers, mainly in the normal HDL-c patients' subgroup. In conclusion, despite LDL-c average levels, low HDL-c concentrations seem to be associated with a poor cardiometabolic profile in a population with cardiovascular risk factors, which is better evidenced by traditional and nontraditional CV biomarkers, including Ox-LDL, large HDL-c, and adiponectin.
Collapse
|