1
|
Zhu W, Shao P, Ren Y, Liu W, Han X, Zeng K, Dai C, Liu F. Integrating network pharmacology and experimental validation to investigate the mechanism of Gualou Xiebai Banxia decoction against myocardial ischemia. Front Cardiovasc Med 2025; 12:1512791. [PMID: 40329968 PMCID: PMC12052758 DOI: 10.3389/fcvm.2025.1512791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Background Gualou Xiebai Banxia Decoction (GXBD), a traditional Chinese medicine, is used to treat myocardial ischemia (MI). However, the molecular mechanisms underlying its effects remain unclear. This study integrated network pharmacology and experimental validation to investigate the efficacy and potential mechanisms of GXBD in MI treatment. Methods Network pharmacology was used to predict the mechanism of action of GXBD in MI. The predicted results were verified using ECG, echocardiography, HE staining, TTC staining, DHE, JC-1, immunofluorescence, and Western blot analysis in an isoproterenol (ISO)-induced MI rat model. Results Network pharmacology identified 33 active components in GXBD and 139 potential targets against MI, with the PI3K/AKT signaling pathway playing a key role. Compared to the model group, GXBD improved the activities of BNP, CK-MB, and LDH, ameliorated the general condition and cardiac function, and repaired heart damage in MI rats. GXBD decreased MDA and ROS levels, increased SOD and GSH-Px levels, and protected cardiac tissues from oxidative stress. Moreover, GXBD increased ATP content, mitochondrial membrane potential, and the levels of p-PI3K, p-AKT, nuclear NRF2, and MFN2, while decreasing the levels of cytoplasmic NRF2 and DRP1. Conclusion This study suggested that GXBD alleviates myocardial ischemia by ameliorating mitochondrial dysfunction through the PI3K/AKT/NRF2 signaling pathway.
Collapse
Affiliation(s)
- Wanjun Zhu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ping Shao
- Benxi National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines Co., Ltd., Benxi, Liaoning, China
| | - Ying Ren
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenxuan Liu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaorui Han
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kexin Zeng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Feifei Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Grossini E, Venkatesan S, Ola Pour MM. Mitochondrial Dysfunction in Endothelial Cells: A Key Driver of Organ Disorders and Aging. Antioxidants (Basel) 2025; 14:372. [PMID: 40298614 PMCID: PMC12024085 DOI: 10.3390/antiox14040372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Mitochondria are of great importance in cell biology since they are major sites of adenosine triphosphate (ATP) production and are widely involved in different cellular pathways involved in the response to stress. During ATP production, reactive oxygen species (ROS) can be produced. While a small amount of ROS may be important for the regulation of physiological processes, at elevated levels they can turn into harmful agents leading to cellular damage. From a pathological perspective, it could be particularly interesting to focus on mitochondrial function in endothelial cells since they may be involved in the development of aging and in the onset of different diseases, including renal, cardio-metabolic, liver and neurodegenerative ones. However, to date, there are no surveys which address the above issues. To fill this gap, it may be valuable to collect recent findings about the role of mitochondria in the regulation of endothelial function, not only to increase knowledge about it but also for clinical applications. Here, we overview the most recent knowledge about the above issues in the view of characterizing the role of mitochondria in endothelial cells as an innovative potential target for the prevention of aging, as well as the treatment of the above pathological conditions.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | | | | |
Collapse
|
3
|
Faitg J, Davey T, Laws R, Lawless C, Tuppen H, Fitton E, Turnbull D, Vincent AE. Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease. Commun Biol 2025; 8:24. [PMID: 39789156 PMCID: PMC11718190 DOI: 10.1038/s42003-024-07389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies. Therefore, we have developed a method which combines functional assessment of mitochondria through Cytochrome c Oxidase (COX) histochemistry, with a 3D electron microscopy (EM) technique, serial block-face scanning electron microscopy (SBFSEM). Here we apply COX-SBFSEM to muscle samples from patients with single, large-scale mtDNA deletions, a cause of mitochondrial disease. These deletions cause oxidative phosphorylation deficiency, which can be observed through changes in COX activity. One of the main advantages of combining 3D-EM with the COX reaction is the ability to look at how per-mitochondrion oxidative phosphorylation status is spatially distributed within muscle fibres. Here we show a robust spatial pattern in COX-positive and intermediate-fibres and that the spatial pattern is less clear in COX-deficient fibres.
Collapse
Affiliation(s)
- Julie Faitg
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre Research Centre, Translational and Clinical Research, Faculty of Medical Sciences Newcastle University, Newcastle, UK
| | - Helen Tuppen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Eric Fitton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Doug Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre Research Centre, Translational and Clinical Research, Faculty of Medical Sciences Newcastle University, Newcastle, UK.
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research, Faculty of Medical Sciences Newcastle University, Newcastle, UK.
| |
Collapse
|
4
|
Bhowmick T, Biswas S, Mukherjee A. Cellular response during cellular starvation: A battle for cellular survivability. Cell Biochem Funct 2024; 42:e4101. [PMID: 39049191 DOI: 10.1002/cbf.4101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cellular starvation occurs when a cell is deprived of nutrition and oxygen availability. The genesis of this state of deprivation is exclusively contingent upon the inadequacy in the supply of essential components, namely amino acids, glucose, and oxygen. Consequently, the impact of this altered condition manifests in the regulation of cellular respiratory, metabolic, and stress responses. Subsequently, as a reactive outcome, cell death may transpire through mechanisms such as autophagy or apoptosis, particularly under prolonged circumstances. However, the cell combats such situations by evolving altered activity in their metabolic and protein level. Modulated signaling cascades help them to conquer starvation. But as in a prolonged condition, the battle that a cell has to evolve will come into and result in the form of cellular death. Therefore, in cancer therapy, cellular starvation may also act as a possible way out so that the cancer cell can undergo its death pathway in an induced starved condition. This review has collectively depicted the mechanism of cellular starvation. Besides this, the cellular response in this starved condition has also been summarized. Gaining such knowledge of the causation of cell starvation and cellular response during starvation not only generates new insight into the mechanism of cell survivability but also may act as a beneficial role in combating cellular diseases like cancer.
Collapse
Affiliation(s)
- Tithi Bhowmick
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | | | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Launay N, Lopez-Erauskin J, Bianchi P, Guha S, Parameswaran J, Coppa A, Torreni L, Schlüter A, Fourcade S, Paredes-Fuentes AJ, Artuch R, Casasnovas C, Ruiz M, Pujol A. Imbalanced mitochondrial dynamics contributes to the pathogenesis of X-linked adrenoleukodystrophy. Brain 2024; 147:2069-2084. [PMID: 38763511 DOI: 10.1093/brain/awae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 05/21/2024] Open
Abstract
The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Jone Lopez-Erauskin
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Physiology and Immunology, Facultat de Medicina, Institut de Neurociències and Department of Cell Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Nautilus Biotechnology, San Carlos, CA 94070, USA
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrea Coppa
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorenzo Torreni
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona, 08193 Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Rafael Artuch
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Universitat de Barcelona, 08907 Lhospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
6
|
Das P, Chakrabarti O. ISGylation of DRP1 closely balances other post-translational modifications to mediate mitochondrial fission. Cell Death Dis 2024; 15:184. [PMID: 38431611 PMCID: PMC10908869 DOI: 10.1038/s41419-024-06543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Dynamin related protein 1 (DRP1), a pivotal mitochondrial fission protein, is post-translationally modified by multiple mechanisms. Here we identify a new post-translational modification of DRP1 by the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). DRP1 ISGylation is mediated by ISG15 E3 ligase, HERC5; this promotes mitochondrial fission. DeISGylation of DRP1 however leads to hyperfusion. Heterologous expression of SARS-CoV2 PLpro, a deISGylating enzyme, results in similar mitochondrial filamentation, significant decrease in total DRP1 protein levels and efflux of mtDNA. We report that deISGylated DRP1 gets ubiquitylated and degraded by TRIM25, instead of PARKIN and MITOL. While the cytosolic pool of DRP1 is primarily ISGylated, both mitochondrial and cytosolic fractions may be ubiquitylated. It is known that phosphorylation of DRP1 at S616 residue regulates its mitochondrial localisation; we show that ISGylation of phospho-DRP1 (S616) renders fission competence at mitochondria. This is significant because DRP1 ISGylation affects its functionality and mitochondrial dynamics in Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Palamou Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Yegambaram M, Sun X, Flores AG, Lu Q, Soto J, Richards J, Aggarwal S, Wang T, Gu H, Fineman JR, Black SM. Novel Relationship between Mitofusin 2-Mediated Mitochondrial Hyperfusion, Metabolic Remodeling, and Glycolysis in Pulmonary Arterial Endothelial Cells. Int J Mol Sci 2023; 24:17533. [PMID: 38139362 PMCID: PMC10744129 DOI: 10.3390/ijms242417533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alejandro Garcia Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Jaime Richards
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
9
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
10
|
Alka K, Kumar J, Kowluru RA. Impaired mitochondrial dynamics and removal of the damaged mitochondria in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1160155. [PMID: 37415667 PMCID: PMC10320727 DOI: 10.3389/fendo.2023.1160155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Mitochondrial dynamic plays a major role in their quality control, and the damaged mitochondrial components are removed by autophagy. In diabetic retinopathy, mitochondrial fusion enzyme, mitofusin 2 (Mfn2), is downregulated and mitochondrial dynamic is disturbed resulting in depolarized and dysfunctional mitochondria. Our aim was to investigate the mechanism of inhibition of Mfn2, and its role in the removal of the damaged mitochondria, in diabetic retinopathy. Methods Using human retinal endothelial cells, effect of high glucose (20mM) on the GTPase activity of Mfn2 and its acetylation were determined. Role of Mfn2 in the removal of the damaged mitochondria was confirmed by regulating its acetylation, or by Mfn2 overexpression, on autophagosomes- autolysosomes formation and the mitophagy flux. Results High glucose inhibited GTPase activity and increased acetylation of Mfn2. Inhibition of acetylation, or Mfn2 overexpression, attenuated decrease in GTPase activity and mitochondrial fragmentation, and increased the removal of the damaged mitochondria. Similar phenomenon was observed in diabetic mice; overexpression of sirtuin 1 (a deacetylase) ameliorated diabetes-induced inhibition of retinal Mfn2 and facilitated the removal of the damaged mitochondria. Conclusions Acetylation of Mfn2 has dual roles in mitochondrial homeostasis in diabetic retinopathy, it inhibits GTPase activity of Mfn2 and increases mitochondrial fragmentation, and also impairs removal of the damaged mitochondria. Thus, protecting Mfn2 activity should maintain mitochondrial homeostasis and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
| | | | - Renu A. Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
11
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
13
|
Liu X, Guo C, Zhang Q. Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress Chaperones 2023; 28:133-144. [PMID: 36652120 PMCID: PMC10050249 DOI: 10.1007/s12192-023-01321-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chenchen Guo
- Neck, Shoulder, Waist and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
14
|
Zanfardino P, Longo G, Amati A, Morani F, Picardi E, Girolamo F, Pafundi M, Cox SN, Manzari C, Tullo A, Doccini S, Santorelli FM, Petruzzella V. Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts. Hum Mol Genet 2023; 32:333-350. [PMID: 35994048 DOI: 10.1093/hmg/ddac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanna Longo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Francesco Girolamo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariella Pafundi
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
15
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
16
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
17
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
18
|
Bhat SM, Massey N, Shrestha D, Karriker LA, Jelesijević T, Wang C, Charavaryamath C. Transcriptomic and ultrastructural evidence indicate that anti-HMGB1 antibodies rescue organic dust-induced mitochondrial dysfunction. Cell Tissue Res 2022; 388:373-398. [PMID: 35244775 PMCID: PMC10155187 DOI: 10.1007/s00441-022-03602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
Exposure to organic dust (OD) in agriculture is known to cause respiratory symptoms including loss of lung function. OD exposure activates multiple signaling pathways since it contains a variety of microbial products and particulate matter. Previously, we have shown how OD exposure leads to the secretion of HMGB1 and HMGB1-RAGE signaling, and how this can be a possible therapeutic target to reduce inflammation. Cellular mitochondria are indispensable for homeostasis and are emerging targets to curtail inflammation. Recently, we have also observed that OD exposure induces mitochondrial dysfunction characterized by loss of structural integrity and deficits in bioenergetics. However, the role of HMGB1 in OD-induced mitochondrial dysfunction in human bronchial epithelial (NHBE) cells remains elusive. Therefore, we aimed to study whether decreased levels of intracellular HMGB1 or antibody-mediated neutralization of secreted HMGB1 would rescue mitochondrial dysfunction. Single and repeated ODE exposure showed an elongated mitochondrial network and cristolysis whereas HMGB1 neutralization or the lack thereof promotes mitochondrial biogenesis evidenced by increased mitochondrial fragmentation, increased DRP1 expression, decreased MFN2 expression, and increased PGC1α expression. Repeated 5-day ODE exposure significantly downregulated transcripts encoding mitochondrial respiration and metabolism (ATP synthase, NADUF, and UQCR) as well as glucose uptake. This was reversed by the antibody-mediated neutralization of HMGB1. Our results support our hypothesis that, in NHBE cells, neutralization of ODE-induced HMGB1 secretion rescues OD-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Tomislav Jelesijević
- Department of Comparative Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
19
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
20
|
Guadarrama Bello D, Moraille P, Boughari S, Badia A, Nanci A. Adhesion response of filopodia to an AFM lateral detachment force and functional changes after centrifugation of cells grown on nanoporous titanium. Mater Today Bio 2022; 14:100250. [PMID: 35449800 PMCID: PMC9018134 DOI: 10.1016/j.mtbio.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Patricia Moraille
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, C.P 6128 Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - Serine Boughari
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, C.P 6128 Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Corresponding author. Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada.
| |
Collapse
|
21
|
Mitochondrial Fragmentation in a High Homocysteine Environment in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:antiox11020365. [PMID: 35204246 PMCID: PMC8868328 DOI: 10.3390/antiox11020365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic patients routinely have elevated homocysteine levels, and due to increase in oxidative stress, hyperhomocysteinemia is associated with increased mitochondrial damage. Mitochondrial homeostasis is directly related to the balance between their fission and fusion, and in diabetes this balance is disturbed. The aim of this study was to investigate the role of homocysteine in mitochondrial fission in diabetic retinopathy. Human retinal endothelial cells, either untransfected or transfected with siRNA of a fission protein (dynamin-related protein 1, Drp1) and incubated in the presence of 100 μM homocysteine, were analyzed for mitochondrial fragmentation by live-cell microscopy and GTPase activity of Drp1. Protective nucleoids and mtDNA damage were evaluated by SYBR DNA stain and by transcripts of mtDNA-encoded ND6 and cytochrome b. The role of nitrosylation of Drp1 in homocysteine-mediated exacerbation of mitochondrial fragmentation was determined by supplementing incubation medium with nitric-oxide inhibitor. Homocysteine exacerbated glucose-induced Drp1 activation and its nitrosylation, mitochondrial fragmentation and cell apoptosis, and further decreased nucleoids and mtDNA transcription. Drp1-siRNA or nitric-oxide inhibitor prevented glucose- and homocysteine-induced mitochondrial fission, damage and cell apoptosis. Thus, elevated homocysteine in a hyperglycemic environment increases Drp1 activity via increasing its nitrosylation, and this further fragments the mitochondria and increases apoptosis, ultimately leading to the development of diabetic retinopathy.
Collapse
|
22
|
Mohammad G, Kowluru RA. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. J Diabetes Res 2022; 2022:3555889. [PMID: 35399705 PMCID: PMC8989559 DOI: 10.1155/2022/3555889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a central role in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. Mitochondria have a regulated fusion fission process, which is essential for their homeostasis. One of the major fission proteins, dynamin-related protein 1 (Drp1), is recruited to the mitochondria by fission protein 1 (Fis1) to initiate fragmentation. Our aim is to investigate the role of Drp1 in the altered mitochondrial dynamics in the continued progression of diabetic retinopathy. Methods. Drp1 activation, mitochondrial transport, and Drp1-Fis1 interactions were analyzed in retinal endothelial cells incubated in 20 mM glucose (HG), followed by 5 mM glucose (NG), for four days each (HG-NG group). The results were confirmed in retinal microvessels from streptozotocin-induced diabetic rats with poor glycemia (>350 mg/dl blood glucose, PC group), followed by normal glycemia (~100 mg/dl), for four months each (PC-GC group). Results. GTPase activity of Drp1, Fis1-Drp1 interactions, mitochondrial levels of Drp1, and fragmentation of the mitochondria were elevated in HG group. Mitochondrial Division Inhibitor 1 (Mdiv) or Drp1-siRNA attenuated Drp1 activation, mitochondrial fragmentation, and DNA damage. In HG-NG group, NG failed to ameliorate Drp1 activation and Drp1-Fis1 interactions, and the mitochondria remained fragmented. However, Mdiv supplementation in normal glucose, which had followed four days of high glucose (HG-NG/Mdiv group), inhibited Drp1 activation, mitochondrial fragmentation, and increase in ROS and prevented mitochondrial damage. Retinal microvessels from the rats in PC and PC-GC groups had similar Drp1 activation. Conclusion. Thus, Drp1 plays a major role in mitochondrial homeostasis in diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. Supplementation of normal glycemia with a Drp1 inhibitor could retard development and further progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Ramonett A, Kwak EA, Ahmed T, Flores PC, Ortiz HR, Lee YS, Vanderah TW, Largent-Milnes T, Kashatus DF, Langlais PR, Mythreye K, Lee NY. Regulation of mitochondrial fission by GIPC-mediated Drp1 retrograde transport. Mol Biol Cell 2021; 33:ar4. [PMID: 34705526 PMCID: PMC8886816 DOI: 10.1091/mbc.e21-06-0286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GAIP/RGS19-interacting protein (GIPC) mediates the actin-based retrograde transport of Drp1 toward the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.
Collapse
Affiliation(s)
- Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Hannah R Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Paul R Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.,Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA.,Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
24
|
Kim IS, Silwal P, Jo EK. Mitofusin 2, a key coordinator between mitochondrial dynamics and innate immunity. Virulence 2021; 12:2273-2284. [PMID: 34482801 PMCID: PMC8425681 DOI: 10.1080/21505594.2021.1965829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial dynamics and mitochondrial morphology plays a pivotal role in the maintenance of mitochondrial homeostasis in response to pathogenic attacks or stress stimuli. In addition to their role in metabolism and energy production, mitochondria participate in diverse biological functions, including innate immune responses driven by macrophages in response to infections or inflammatory stimuli. Mitofusin-2 (MFN2), a mitochondria-shaping protein regulating mitochondrial fusion and fission, plays a crucial role in linking mitochondrial function and innate immune responses. In this article, we review the role of MFN2 in the regulation of innate immune responses during viral and bacterial infections. We also summarize the current knowledge on the role of MFN2 in coordinating inflammatory, atherogenic, and fibrotic responses. MFN2-mediated crosstalk between mitochondrial dynamics and innate immune responses may determine the outcomes of pathogenic infections.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
25
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
26
|
Annesley SJ, Fisher PR. Lymphoblastoid Cell Lines as Models to Study Mitochondrial Function in Neurological Disorders. Int J Mol Sci 2021; 22:4536. [PMID: 33926115 PMCID: PMC8123577 DOI: 10.3390/ijms22094536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are collectively a major cause of death and disability worldwide. Whilst the underlying disease mechanisms remain elusive, altered mitochondrial function has been clearly implicated and is a key area of study in these disorders. Studying mitochondrial function in these disorders is difficult due to the inaccessibility of brain tissue, which is the key tissue affected in these diseases. To overcome this issue, numerous cell models have been used, each providing unique benefits and limitations. Here, we focussed on the use of lymphoblastoid cell lines (LCLs) to study mitochondrial function in neurological disorders. LCLs have long been used as tools for genomic analyses, but here we described their use in functional studies specifically in regard to mitochondrial function. These models have enabled characterisation of the underlying mitochondrial defect, identification of altered signalling pathways and proteins, differences in mitochondrial function between subsets of particular disorders and identification of biomarkers of the disease. The examples provided here suggest that these cells will be useful for development of diagnostic tests (which in most cases do not exist), identification of drug targets and testing of pharmacological agents, and are a worthwhile model for studying mitochondrial function in neurological disorders.
Collapse
Affiliation(s)
- Sarah Jane Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia;
| | | |
Collapse
|
27
|
Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol 2021; 134:105951. [PMID: 33610749 DOI: 10.1016/j.biocel.2021.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are highly dynamic organelles, which undergo frequent structural and metabolic changes to fulfil cellular demands. To facilitate these processes several proteins are required to regulate mitochondrial shape and interorganellar communication. These proteins include the classical mitochondrial fusion (MFN1, MFN2, and OPA1) and fission proteins (DRP1, MFF, FIS1, etc.) as well as several other proteins that are directly or indirectly involved in these processes (e.g. YME1L, OMA1, INF2, GDAP1, MIC13, etc.). During the last two decades, inherited genetic defects in mitochondrial fusion and fission proteins have emerged as an important class of neurodegenerative human diseases with variable onset ranging from infancy to adulthood. So far, no causal treatment strategies are available for these disorders. In this review, we provide an overview about the current knowledge on mitochondrial dynamics under physiological conditions. Moreover, we describe human diseases, which are associated with genetic defects in these pathways.
Collapse
Affiliation(s)
- Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Roszczyc-Owsiejczuk K, Zabielski P. Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:635175. [PMID: 33815291 PMCID: PMC8013882 DOI: 10.3389/fendo.2021.635175] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Piotr Zabielski,
| |
Collapse
|
29
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020; 8:584800. [PMID: 33392184 PMCID: PMC7773778 DOI: 10.3389/fcell.2020.584800] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the powerhouse organelles of cells; they participate in ATP generation, calcium homeostasis, oxidative stress response, and apoptosis. Thus, maintenance of mitochondrial function is critical for cellular functions. As highly dynamic organelles, the function of mitochondria is dynamically regulated by their fusion and fission in many cell types, which regulate mitochondrial morphology, number, distribution, metabolism, and biogenesis in cells. Mature rod-shaped cardiomyocytes contain thousands of end-to-end contacted spheroid mitochondria. The movement of mitochondria in these cells is limited, which hinders the impetus for research into mitochondrial dynamics in adult cardiomyocytes. In this review, we discuss the most recent progress in mitochondrial dynamics in mature (adult) cardiomyocytes and the relationship thereof with heart diseases.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Sanyal T, Paul M, Bhattacharjee S, Bhattacharjee P. Epigenetic alteration of mitochondrial biogenesis regulatory genes in arsenic exposed individuals (with and without skin lesions) and in skin cancer tissues: A case control study. CHEMOSPHERE 2020; 258:127305. [PMID: 32563914 DOI: 10.1016/j.chemosphere.2020.127305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 05/22/2023]
Abstract
Chronic arsenic toxicity has become a global concern due to its adverse pathophysiological outcome and carcinogenic potential. It is already established that arsenic induced reactive oxygen species alters mitochondrial functionality. Major regulatory genes for mitochondrial biogenesis, i.e., PGC1α, Tfam, NRF1and NRF2 are located in the nucleus. As a result, mitochondria-nucleus crosstalk is crucial for proper mitochondrial function. This previous hypothesis led us to investigateinvolvement of epigenetic alteration behindenhanced mitochondrial biogenesis in chronic arsenic exposure. An extensive case-control study was conducted with 390 study participants (unexposed, exposed without skin lesion, exposed with skin lesion and exposed skin tumour) from highly arsenic exposed areas ofWest Bengal, India. Methylation specific PCRrevealed significant promoter hypomethylation oftwo key biogenesis regulatory genes, PGC1αandTfam in arsenic exposed individuals and also in skin tumour tissues. Linear regression analysis indicated significant negative correlation between urinary arsenic concentration and promoter methylation status. Increased expression of biogenesis regulatory genes wasobtained by quantitative real-time PCR analysis. Moreover, altered mitochondrial fusion-fission regulatory gene expression was also observed in skin tumour tissues. miR663, having tumour suppressor gene like function was known to be epigenetically regulated through mitochondrial retrograde signal. Promoter hypermethylation with significantly decreased expression of miR663 was found in skin cancer tissues compared to non-cancerous control tissue. In conclusion, results indicated crucial role of epigenetic alteration in arsenic induced mitochondrial biogenesis and arsenical skin carcinogenesis for the first time. However, further mechanistic studies are necessary for detailed understanding of mitochondria-nucleus crosstalk in arsenic perturbation.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, 700019, India; Department of Environmental Science, University of Calcutta, Kolkata, 700019, India
| | - Manabi Paul
- Department of Environmental Science, University of Calcutta, Kolkata, 700019, India
| | | | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata, 700019, India.
| |
Collapse
|
32
|
Ponte S, Carvalho L, Gagliardi M, Campos I, Oliveira PJ, Jacinto A. Drp1-mediated mitochondrial fission regulates calcium and F-actin dynamics during wound healing. Biol Open 2020; 9:bio048629. [PMID: 32184231 PMCID: PMC7225088 DOI: 10.1242/bio.048629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the Drosophila embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to reduced reactive oxygen species (ROS) production and F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium, ROS and F-actin during epithelial repair.
Collapse
Affiliation(s)
- Susana Ponte
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Lara Carvalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Gagliardi
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Campos
- Animal Platforms, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
33
|
Xue W, Wang X, Tang H, Sun F, Zhu H, Huang D, Dong L. Vitexin attenuates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction induced by mitochondrial dynamics imbalance. Biomed Pharmacother 2020; 124:109849. [PMID: 31972356 DOI: 10.1016/j.biopha.2020.109849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022] Open
Abstract
Vitexin (VT) is a main bioactive flavonoid compound derived from the dried leaf of hawthorn (Crataegus pinnatifida), a widely used Chinese traditional folk medicine. Recent studies have shown that vitexin presents cardioprotective effects in vivo and in vitro. Mitochondrial dysfunction is a salient feature of myocardial ischemia/reperfusion (I/R) injury (MIRI), but the potential mechanism is still unclear. This study investigated the cardioprotective effect of vitexin against MIRI and its possible mechanism. Isolated SD rat hearts were subjected to MIRI in a Langendorff perfusion system, and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. Ex vivo experiments showed improved left ventricular function and reduced infarct size in the vitexin group. Transmission electron microscopy showed that I/R caused outer mitochondrial membrane rupture, cristae disappearance and vacuolation, while vitexin reduced mitochondrial damage and ultimately reduced cardiomyocyte apoptosis. In vitro, vitexin protected H9c2 cells from H/R-induced mitochondrial dysfunction, significantly reducing ROS levels; improving mitochondrial activity, mitochondrial membrane potential and ATP content; markedly increasing MFN2 expression and reducing the recruitment of Drp1 in mitochondria. These results suggest a new protective mechanism of vitexin for ischemic heart disease treatment.
Collapse
Affiliation(s)
- Wei Xue
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong Tang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fanfan Sun
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
34
|
Delmotte P, Sieck GC. Endoplasmic Reticulum Stress and Mitochondrial Function in Airway Smooth Muscle. Front Cell Dev Biol 2020; 7:374. [PMID: 32010691 PMCID: PMC6974519 DOI: 10.3389/fcell.2019.00374] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway diseases such as asthma affect more than 300 million people world-wide. Inflammation triggers pathophysiology via such as tumor necrosis factor α (TNFα) and interleukins (e.g., IL-13). Hypercontraction of airway smooth muscle (ASM) and ASM cell proliferation are major contributors to the exaggerated airway narrowing that occurs during agonist stimulation. An emergent theme in this context is the role of inflammation-induced endoplasmic reticulum (ER) stress and altered mitochondrial function including an increase in the formation of reactive oxygen species (ROS). This may establish a vicious cycle as excess ROS generation leads to further ER stress. Yet, it is unclear whether inflammation-induced ROS is the major mechanism leading to ER stress or the consequence of ER stress. In various diseases, inflammation leads to an increase in mitochondrial fission (fragmentation), associated with reduced levels of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2). Mitochondrial fragmentation may be a homeostatic response since it is generally coupled with mitochondrial biogenesis and mitochondrial volume density thereby reducing demand on individual mitochondrion. ER stress is triggered by the accumulation of unfolded proteins, which induces a homeostatic response to alter protein balance via effects on protein synthesis and degradation. In addition, the ER stress response promotes protein folding via increased expression of molecular chaperone proteins. Reduced Mfn2 and altered mitochondrial dynamics may not only be downstream to ER stress but also upstream such that a reduction in Mfn2 triggers further ER stress. In this review, we summarize the current understanding of the link between inflammation-induced ER stress and mitochondrial function and the role played in the pathophysiology of inflammatory airway diseases.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
36
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin Sci (Lond) 2019; 133:497-513. [PMID: 30705107 DOI: 10.1042/cs20190014] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023]
Abstract
An uncontrolled balance of mitochondrial dynamics has been shown to contribute to cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although inhibition of mitochondrial fission could ameliorate cardiac dysfunction, modulation of mitochondrial fusion by giving a fusion promoter at different time-points during cardiac I/R injury has never been investigated. We hypothesized that giving of a mitochondrial fusion promoter at different time-points exerts cardioprotection with different levels of efficacy in rats with cardiac I/R injury. Forty male Wistar rats were subjected to a 30-min ischemia by coronary occlusion, followed by a 120-min reperfusion. The rats were then randomly divided into control and three treated groups: pre-ischemia, during-ischemia, and onset of reperfusion. A pharmacological mitochondrial fusion promoter-M1 (2 mg/kg) was used for intervention. Reduced mitochondrial fusion protein was observed after cardiac I/R injury. M1 administered prior to ischemia exerted the highest level of cardioprotection by improving both cardiac mitochondrial function and dynamics regulation, attenuating incidence of arrhythmia, reducing infarct size and cardiac apoptosis, which led to the preservation of cardiac function and decreased mortality. M1 given during ischemia and on the onset of reperfusion also exerted cardioprotection, but with a lower efficacy than when given at the pre-ischemia time-point. Attenuating a reduction in mitochondrial fusion proteins during myocardial ischemia and at the onset of reperfusion exerted cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, thus reducing infarct size and improving cardiac function. These findings indicate that it could be a promising intervention with the potential to afford cardioprotection in the clinical setting of acute myocardial infarction.
Collapse
|
38
|
Nan J, Nan C, Ye J, Qian L, Geng Y, Xing D, Rahman MSU, Huang M. EGCG protects cardiomyocytes against hypoxia-reperfusion injury through inhibition of OMA1 activation. J Cell Sci 2019; 132:jcs.220871. [PMID: 30518622 DOI: 10.1242/jcs.220871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important for energy production and cardiomyocyte homeostasis. OMA1, a metalloendopeptidase, initiates the proteolytic process of the fusion-allowing protein OPA1, to deteriorate mitochondrial structure and function. In this study, mouse embryonic fibroblasts (MEFs) and neonatal mouse cardiomyocytes (NMCMs) subjected to hypoxia-reperfusion injury (HRI) and/or H2O2 were used to mimic oxidative stress in the heart following ischemia-reperfusion injury (IRI). In vitro experiments demonstrated that HRI or stimulation with H2O2 induced self-cleavage of OMA1 and the subsequent conversion of OPA1 from its long form to its short form, leading to mitochondrial fragmentation, cytochrome c release and apoptosis. By using Molecular Operating Environment (MOE) software to simulate the binding interaction of 2295 phytochemicals against OMA1, epigallocatechin gallate (EGCG) and betanin were selected as candidates of OMA1 inhibitor. We found that EGCG directly interacted with OMA1 and potently inhibited self-cleavage of OMA1, leading to attenuated OPA1 cleavage. This study, therefore, suggests to use OMA1 inhibition induced by EGCG to treat cardiac IRI.
Collapse
Affiliation(s)
- Jinliang Nan
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Cunjin Nan
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Ye
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Qian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ya Geng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dawei Xing
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Muhammad Saif Ur Rahman
- Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mingyuan Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
39
|
Vincent AE, White K, Davey T, Philips J, Ogden RT, Lawless C, Warren C, Hall MG, Ng YS, Falkous G, Holden T, Deehan D, Taylor RW, Turnbull DM, Picard M. Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network. Cell Rep 2019; 26:996-1009.e4. [PMID: 30655224 PMCID: PMC6513570 DOI: 10.1016/j.celrep.2019.01.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical defects of mitochondrial function are a major
cause of human disease, but their link to mitochondrial morphology in
situ has not been defined. Here, we develop a quantitative
three-dimensional approach to map mitochondrial network organization in human
muscle at electron microscopy resolution. We establish morphological differences
between human and mouse and among patients with mitochondrial DNA (mtDNA)
diseases compared to healthy controls. We also define the ultrastructure and
prevalence of mitochondrial nanotunnels, which exist as either free-ended or
connecting membrane protrusions across non-adjacent mitochondria. A multivariate
model integrating mitochondrial volume, morphological complexity, and branching
anisotropy computed across individual mitochondria and mitochondrial populations
identifies increased proportion of simple mitochondria and nanotunnels as a
discriminant signature of mitochondrial stress. Overall, these data define the
nature of the mitochondrial network in human muscle, quantify human-mouse
differences, and suggest potential morphological markers of mitochondrial
dysfunction in human tissues. Vincent et al. use 3D electron microscopy to provide a quantitative
morphometric assessment of human skeletal muscle mitochondria. They find that
healthy human muscle mitochondria differ from mouse mitochondria and show that
primary mtDNA defects are associated with a distinct morphological signature
including increased abundance of mitochondrial nanotunnels.
Collapse
Affiliation(s)
- Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- EM Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Philips
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - R Todd Ogden
- Institute of Child Health, University College London, London, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Matt G Hall
- National Physical Laboratory, Teddington, UK; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Holden
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - David Deehan
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology and Columbia Translational Neuroscience Initiative, H. Houston Merritt Center, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Aging Center, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Mitochondrial Neuroglobin Is Necessary for Protection Induced by Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells in Astrocytic Cells Subjected to Scratch and Metabolic Injury. Mol Neurobiol 2018; 56:5167-5187. [PMID: 30536184 DOI: 10.1007/s12035-018-1442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Collapse
|
41
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
42
|
Chimeh U, Zimmerman MA, Gilyazova N, Li PA. B355252, A Novel Small Molecule, Confers Neuroprotection Against Cobalt Chloride Toxicity In Mouse Hippocampal Cells Through Altering Mitochondrial Dynamics And Limiting Autophagy Induction. Int J Med Sci 2018; 15:1384-1396. [PMID: 30275767 PMCID: PMC6158673 DOI: 10.7150/ijms.24702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Cerebral hypoxia as often occurs in cases of stroke, hemorrhage, or other traumatic brain injuries, is one of the leading causes of death worldwide and a main driver of disabilities in the elderly. Using a chemical mimetic of hypoxia, cobalt chloride (CoCl2), we tested the ability of a novel small molecule, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B355252), to alleviate CoCl2-induced damage in mouse hippocampal HT22 cells. A dose-dependent decrease in cell viability was observed during CoCl2 treatment along with increases in mitochondrial membrane potential and generation of reactive oxygen species (ROS). B355252 conferred protection against these changes. We further found that mitochondrial dynamics, the balance between mitochondrial fusion and fission, were perturbed by CoCl2 treatment. Mitochondrial fusion, which was assessed by measuring the expression of proteins optic atrophy protein 1 (OPA1) and mitofusin 2 (Mfn2), declined due to CoCl2 exposure, but B355252 addition was able to elevate Mfn2 expression while OPA1 expression was unchanged. Mitochondrial fission, measured by phosphorylated dynamin-related protein 1 (p-DRP1) and fission protein 1 (FIS1) expression, also decreased following CoCl2 exposure, and was stabilized by B355252 addition. Finally, autophagy was assessed by measuring the conversion of cytosolic microtubule-associated protein 1A/1B-light chain three-I (LC3-I) to autophagosome-bound microtubule-associated protein 1A/1B-light chain three-II (LC3-II) and was found to be increased by CoCl2. B355252 addition significantly reduced autophagy induction. Taken together, our results indicate B355252 has therapeutic potential to reduce the damaging effects caused by CoCl2 and should be further evaluated for applications in cerebral ischemia therapy.
Collapse
Affiliation(s)
| | | | | | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC USA
| |
Collapse
|
43
|
Structural basis for membrane tethering by a bacterial dynamin-like pair. Nat Commun 2018; 9:3345. [PMID: 30131557 PMCID: PMC6104087 DOI: 10.1038/s41467-018-05523-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023] Open
Abstract
Dynamin-like proteins (DLPs) are large GTPases that restructure membrane. DLPs such as the mitofusins form heterotypic oligomers between isoform pairs that bridge and fuse opposing membranes. In bacteria, heterotypic oligomerisation may also be important for membrane remodelling as most DLP genes are paired within operons. How DLPs tether opposing membranes is unknown. Here we show the crystal structure of a DLP heterotypic pair from the pathogen Campylobacter jejuni. A 2:2 stoichiometric tetramer is observed where heterodimers, conjoined by a random coil linker, assemble back-to-back to form a tripartite DLP chain with extreme flexibility. In vitro, tetramerisation triggers GTPase activity and induces lipid binding. Liposomes are readily tethered and form tubes at high tetramer concentration. Our results provide a direct mechanism for the long-range binding and bridging of opposing membranes by a bacterial DLP pair. They also provide broad mechanistic and structural insights that are relevant to other heterotypic DLP complexes. Dynamin-like proteins (DLPs) such as the mitofusins form homotypic and heterotypic oligomers that bridge and fuse opposing membranes. Here, Liu, Noel and Low present the crystal structure of a bacterial DLP heterotypic pair, providing insights into the mechanism behind long-range binding of opposing membranes.
Collapse
|
44
|
Mitochondrial DNA replication: clinical syndromes. Essays Biochem 2018; 62:297-308. [PMID: 29950321 DOI: 10.1042/ebc20170101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2018] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
Each nucleated cell contains several hundreds of mitochondria, which are unique organelles in being under dual genome control. The mitochondria contain their own DNA, the mtDNA, but most of mitochondrial proteins are encoded by nuclear genes, including all the proteins required for replication, transcription, and repair of mtDNA. MtDNA replication is a continuous process that requires coordinated action of several enzymes that are part of the mtDNA replisome. It also requires constant supply of deoxyribonucleotide triphosphates(dNTPs) and interaction with other mitochondria for mixing and unifying the mitochondrial compartment. MtDNA maintenance defects are a growing list of disorders caused by defects in nuclear genes involved in different aspects of mtDNA replication. As a result of defects in these genes, mtDNA depletion and/or multiple mtDNA deletions develop in affected tissues resulting in variable manifestations that range from adult-onset mild disease to lethal presentation early in life.
Collapse
|
45
|
Li H, Jones EM, Li H, Yang L, Sun Z, Yuan Z, Chen R, Dong F, Sui R. Clinical and genetic features of eight Chinese autosomal-dominant optic atrophy pedigrees with six novel OPA1 pathogenic variants. Ophthalmic Genet 2018; 39:569-576. [PMID: 29952689 DOI: 10.1080/13816810.2018.1466337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Autosomal-dominant optic atrophy (ADOA) is one of the most common types of inherited optic atrophy. We identify OPA1 pathogenic variants and assess the clinical features of a cohort of Chinese ADOA patients Materials and Methods: Detailed clinical evaluations were performed and genomic DNA was extracted from peripheral blood for all the participants. Sanger sequencing was used to analyze all exons and exon/intron junctions of OPA1 for eight pedigrees. Target exome capture plus next-generation sequencing (NGS) were applied for one atypical family with photophobia. Reverse transcription polymerase chain reaction was carried out to further characterize the mRNA change of selected splicing alteration. RESULTS All 17 patients had impaired vision and optic-disk pallor; however, the clinical severity varied markedly. Two patients complicated with hearing loss. Six novel and two reported pathogenic variants in OPA1 (GenBank Accession No. NM_130837.2) were identified including four nonsynonymous variants (c.2400T > G, c.1468T > C, c.1567A > G and c.1466T > C), two splicing variants (c.2984-1_2986delGAGA and c.2983 + 5G > A), one small deletion (c.2960_2968delGCGTTCAAC), and one small insertion (c.3009_3010insA). RNA analysis revealed the splicing variant c.2984-1_2986delGAGA caused small deletion of mRNA (r.2983_2988del). CONCLUSIONS ADOA patients presented variable clinical manifestations. Novel OPA1 pathogenic variants are the main genetic defect for Chinese ADOA cases. NGS may be a useful molecular testing tool for atypical ADOA.
Collapse
Affiliation(s)
- Huajin Li
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Evan M Jones
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Hui Li
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Lizhu Yang
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Zixi Sun
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Zhisheng Yuan
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Rui Chen
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Fangtian Dong
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Ruifang Sui
- a Department of Ophthalmology , Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
46
|
Kiseleva OI, Lisitsa AV, Poverennaya EV. Proteoforms: Methods of Analysis and Clinical Prospects. Mol Biol 2018. [DOI: 10.1134/s0026893318030068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Human herpesvirus type 1 and type 2 disrupt mitochondrial dynamics in human keratinocytes. Arch Virol 2018; 163:2663-2673. [PMID: 29872950 PMCID: PMC6132932 DOI: 10.1007/s00705-018-3890-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 01/29/2023]
Abstract
Mitochondrial movement and distribution throughout the cytoplasm is crucial for maintaining cell homeostasis. Mitochondria are dynamic organelles but can be functionally disrupted during infection. Here, we show that the ubiquitous human pathogens HHV-1 and HHV-2 induce changes in the mitochondrial morphology and distribution in the early and late phases of productive infection in human keratinocytes (HaCaT cells). We observed a decrease in the mitochondrial potential at 2 h postinfection and a decrease in cell vitality at 24 h postinfection. Moreover, we found that mitochondria migrated to the perinuclear area, where HHV-1 and HHV-2 antigens were also observed, mainly in the early stages of infection. Positive results of real-time PCR showed a high level of HHV-1 and HHV-2 DNA in HaCaT cells and culture medium. Our data demonstrate that HHV-1 and HHV-2 cause mitochondrial dysfunction in human keratinocytes.
Collapse
|
48
|
Meng J. Distinct functions of dynamin isoforms in tumorigenesis and their potential as therapeutic targets in cancer. Oncotarget 2018; 8:41701-41716. [PMID: 28402939 PMCID: PMC5522257 DOI: 10.18632/oncotarget.16678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Dynamins and their related proteins participate in the regulation of neurotransmission, antigen presentation, receptor internalization, growth factor signalling, nutrient uptake, and pathogen infection. Recently, emerging findings have shown dynamin proteins can also contribute to the genesis of cancer. This up-to-date review herein focuses on the functionality of dynamin in cancer development. Dynamin 1 and 2 both enhance cancer cell proliferation, tumor invasion and metastasis, whereas dynamin 3 has tumor suppression role. Antisense RNAs encoded on the DNA strand opposite a dynamin gene regulate the function of dynamin, and manipulate oncogenes and tumor suppressor genes. Certain dynamin-related proteins are also upregulated in distinct cancer conditions, resulting in apoptotic resistance, cell migration and poor prognosis. Altogether, dynamins are potential biomarkers as well as representing promising novel therapeutic targets for cancer treatment. This study also summarizes the current available dynamin-targeted therapeutics and suggests the potential strategy based on signalling pathways involved, providing important information to aid the future development of novel cancer therapeutics by targeting these dynamin family members.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin, Ireland.,International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
49
|
Ciarlo L, Vona R, Manganelli V, Gambardella L, Raggi C, Marconi M, Malorni W, Sorice M, Garofalo T, Matarrese P. Recruitment of mitofusin 2 into "lipid rafts" drives mitochondria fusion induced by Mdivi-1. Oncotarget 2018; 9:18869-18884. [PMID: 29721168 PMCID: PMC5922362 DOI: 10.18632/oncotarget.24792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 02/27/2018] [Indexed: 02/04/2023] Open
Abstract
The regulation of the mitochondrial dynamics and the balance between fusion and fission processes are crucial for the health and fate of the cell. Mitochondrial fusion and fission machinery is controlled by key proteins such as mitofusins, OPA-1 and several further molecules. In the present work we investigated the implication of lipid rafts in mitochondrial fusion induced by Mdivi-1. Our results underscore the possible implication of lipid "rafts" in mitochondrial morphogenetic changes and their homeostasis.
Collapse
Affiliation(s)
- Laura Ciarlo
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.,Center of Metabolomics, Rome, Italy
| |
Collapse
|
50
|
Ge L, Wei LH, Du CQ, Song GH, Xue YZ, Shi HS, Yang M, Yin XX, Li RT, Wang XE, Wang Z, Song WG. Hydrogen-rich saline attenuates spinal cord hemisection-induced testicular injury in rats. Oncotarget 2018; 8:42314-42331. [PMID: 28404953 PMCID: PMC5522069 DOI: 10.18632/oncotarget.15876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
To study how hydrogen-rich saline (HS) promotes the recovery of testicular biological function in a hemi-sectioned spinal cord injury (hSCI) rat model, a right hemisection was performed at the T11–T12 of the spinal cord in Wistar rats. Animals were divided into four groups: normal group; vehicle group: sham-operated rats administered saline; hSCI group: subjected to hSCI and administered saline; HRST group: subjected to hSCI and administered HS. Hind limb neurological function, testis index, testicular morphology, mean seminiferous tubular diameter (MSTD) and seminiferous epithelial thickness (MSET), the expression of heme oxygenase-1 (HO-1), mitofusin-2 (MFN-2), and high-mobility group box 1 (HMGB-1), cell ultrastructure, and apoptosis of spermatogenic cells were studied. The results indicated that hSCI significantly decreased the hind limb neurological function, testis index, MSTD, and MSET, and induced severe testicular morphological injury. The MFN-2 level was decreased, and HO-1 and HMGB-1 were overexpressed in testicular tissues. In addition, hSCI accelerated the apoptosis of spermatogenic cells and the ultrastructural damage of cells in the hypophysis and testis. After HS administration, all these parameters were considerably improved, and the characteristics of hSCI testes were similar to those of normal control testes. Taken together, HS administration can promote the recovery of testicular biological function by anti-oxidative, anti-inflammatory, and anti-apoptotic action. More importantly, HS can inhibit the hSCI-induced ultrastructural changes in gonadotrophs, ameliorate the abnormal regulation of the hypothalamic-pituitary-testis axis, and thereby promote the recovery of testicular injury. HS administration also inhibited the hSCI-induced ultrastructural changes in testicular spermatogenic cells, Sertoli cells and interstitial cells.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, Taishan Medical University, Tai-an City, PR China
| | - Li-Hua Wei
- Department of Histology and Embryology, Taishan Medical University, Tai-an City, PR China
| | - Chang-Qing Du
- Department of Histology and Embryology, Taishan Medical University, Tai-an City, PR China
| | - Guo-Hua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City, PR China
| | - Ya-Zhuo Xue
- Department of Basic Nursing Teaching, Taishan Medical University, Tai-an City, PR China
| | - Hao-Shen Shi
- Department of Clinical Medicine, Taishan Medical University, Tai-an City, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City, PR China
| | - Run-Ting Li
- Department of Clinical Medicine, Taishan Medical University, Tai-an City, PR China
| | - Xue-Er Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Wen-Gang Song
- Department of Medical Immunology, Taishan Medical University, Tai-an City, PR China
| |
Collapse
|