1
|
Liu Y, Zhang H, Zhao K, Wei X, Li L, Tang Y, Xiong Y, Xu J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:3092. [PMID: 39520008 PMCID: PMC11548471 DOI: 10.3390/plants13213092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Pitaya (Hylocereus undatus) fruit is an attractive, nutrient-rich tropical fruit with commercial value. However, low-temperature stress severely affects the yield and quality of pitaya. The relevant mechanisms involved in the response of pitaya to low-temperature stress remain unclear. To study whether the SWEET gene family mediates the response of H. undatus to low-temperature stress and the related mechanisms, we performed genome-wide identification of the SWEET gene family in pitaya, and we used 'Baiyulong' tissue-cultured plantlets as material in the present study. We identified 28 members of the SWEET gene family from the H. undatus genome and divided these family members into four groups. Members of this gene family presented some differences in the sequences of introns and exons, but the gene structure, especially the motifs, presented relatively conserved characteristics. The promoter regions of most HuSWEETs have multiple stress- or hormone-related cis-elements. Three duplicated gene pairs were identified, including one tandem duplication gene and two fragment duplication gene pairs. The results revealed that the SWEET genes may regulate the transport and distribution of soluble sugars in plants; indirectly regulate the enzyme activities of CAT, POD, and T-SOD through its expression products; and are involved in the response of pitaya to low-temperature stress and play vital roles in this process. After ABA and MeJA treatment, the expression of HuSWEETs changed significantly, and the cold stress was also alleviated. This study elucidated the molecular mechanism and physiological changes in the SWEET gene in sugar metabolism and distribution of pitaya when it experiences low-temperature stress and provided a theoretical basis for cold-resistant pitaya variety breeding.
Collapse
Affiliation(s)
- Youjie Liu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Xiuqing Wei
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Liang Li
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yajun Tang
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yueming Xiong
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Jiahui Xu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| |
Collapse
|
2
|
Ullah S, Ikram M, Xiao J, Khan A, Din I, Huang J. Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2949. [PMID: 39519868 PMCID: PMC11548232 DOI: 10.3390/plants13212949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Chilling stress, a common abiotic factor, adversely affects the growth and biomass of rice seedlings during the early stages, ultimately reducing the yield. Effective strategies to mitigate these negative impacts are essential for improving rice productivity. The application of nanotechnology in agriculture, particularly nanoparticles (NPs), has shown a promising effect in alleviating chilling stress in plants. This study evaluates the effects of various nanoparticles, ZnO (0, 50, 100, and 200 mg/L), Fe2O3 (0, 50, 75, and 100 mg/L), TiO2 (0, 50, 75, and 100 mg/L), and CeO2 (0, 50, 75, and 100 mg/L) on the chilling resistance with one control (a water spray) under a normal temperature. Four rice cultivars: LLY-7108 and XZX-6 (Low-temperature-tolerant), and LLY-32 and ZJZ-17 (Low-temperature-susceptible) were tested in this experiment. Rice seedlings were subjected to low temperature conditions (12 h light 14 °C/12 h dark, at 10 °C) for five days, followed by seven days of recovery. The results of this study demonstrate that NPs significantly enhanced seedling height fresh/dry weight and root length compared to untreated controls under chilling stress. NP treatment also reduced the reactive oxygen species (ROS), malondialdehyde (MDA), and proline content, while enhancing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, thereby mitigating oxidative damage. The four rice varieties exhibited clear signs of rapid growth recovery and positive physiological changes due to NPs' application. Among the tested cultivars, LLY-7108 showed the most substantial recovery and physiological responses, while ZJZ-17 exhibited the least. The findings of this study indicate that the foliar application of ZnO (100 mg/L), Fe2O3 (50 mg/L), TiO2 (50 mg/L), and CeO2 (75 mg/L) NPs effectively mitigates chilling stress in rice seedlings, likely by enhancing the antioxidant enzymatic activity while reducing the oxidative damage. This study highlights the potential of NPs as effective agents in reducing the adverse effects of chilling stress on rice.
Collapse
Affiliation(s)
- Shafi Ullah
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Muhammad Ikram
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jian Xiao
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Atika Khan
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| | - Ismail Din
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.U.); (J.X.); (A.K.)
| |
Collapse
|
3
|
Noor M, Kaleem M, Akhtar MT, Feng G, Zhang J, Nazir U, Fan J, Yan X. Evaluation of different bermudagrass germplasm at physiological and molecular level under shade along longitudinal and latitudinal gradients. BMC PLANT BIOLOGY 2024; 24:675. [PMID: 39009992 PMCID: PMC11247810 DOI: 10.1186/s12870-024-05384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Responses of turfgrass to shade vary in individual species, and the degree and quality of low light; therefore, the selection of low light tolerant cultivars of turfgrass is important and beneficial for turf management rather than other practices. The stolons of thirteen bermudagrass genotypes were planted with two treatments and three replications of each treatment to establish for one month in the Yangzhou University Jiangsu China greenhouse. The established plants were transferred outside of the greenhouse, and 50% shading was applied to them with a black net. After 30 days of stress treatment, the morpho-physiological and biochemical analyses were performed. The expression of genes such as HEMA, HY5, PIF4, and Cu/ZnSOD was assessed. Cynodon dactylon is a C4, and perennial that grows as lawn grass and is used as forage. Based on different indicator measurements, the most shade-tolerant germplasm was L01 and L06 along the longitudes and L09 and L10 along the latitudes. At the same time, L02 and L08 were more susceptible, respectively. However, germplasm showed greater tolerance in higher latitudes while longitudinal plants showed less stress response. The current study aimed (1) to screen out the most shade-tolerant Cynodon dactylon genotype among 13 along longitudinal and latitudinal gradients in China. (2) to examine morpho-physiological indicators of different bermudagrassgenotypes; (3) to evaluate if and how differences in various indicators of bermudagrass correlated with geographic region. This study will significantly advance the use of Cynodon germplasm in breeding, genomics, management, nomenclature, and phylogeographical study. It will decisively define whether natural selection and migration can drive evolutionary responses for populations to adapt to their new environments effectively.
Collapse
Affiliation(s)
- Maryam Noor
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Tanveer Akhtar
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingxue Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Usman Nazir
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Yuan H, Si H, Ye Y, Ji Q, Wang H, Zhang Y. Arbuscular Mycorrhizal Fungi-Mediated Modulation of Physiological, Biochemical, and Secondary Metabolite Responses in Hemp ( Cannabis sativa L.) under Salt and Drought Stress. J Fungi (Basel) 2024; 10:283. [PMID: 38667954 PMCID: PMC11050865 DOI: 10.3390/jof10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing impact of global climate change has resulted in adversity stresses, like salt and drought, gradually becoming the main factors that limit crop growth. Hemp, which contains numerous medicinal active components and multiple bioactive functions, is widely used in the agricultural, industrial, and medical fields, hence promoting the rapid development of related industries. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with 80% of vascular plants. This symbiosis promotes host plant growth, regulates plant physiology and biochemistry, facilitates secondary metabolite synthesis, and enhances resistance to abiotic stresses. However, the effects of salt stress, drought stress, and AMF interaction in hemp are not well understood. In this study, to investigate this, we performed a study where we cultured hemp that was either inoculated or uninoculated with Funneliformis mosseae and determined changes in effective colonization rate, growth, soluble substances, photosynthesis, fluorescence, ions, and secondary metabolites by cultivating hemp under different concentrations of NaCl (0 mM, 100 mM, and 200 mM) and different soil moisture content (45%, 25%, and 15%). The results showed that salt, drought stress, or salt-drought interaction stress all inhibited colonization rate after stress, plant growth, mainly due to ion toxicity and oxidative damage. Inoculation with F. mosseae effectively alleviated plant growth inhibition under 100 mM NaCl salt stress, drought stress, and salt-drought interaction stress conditions. It also improved osmoregulation, photosynthetic properties, fluorescence properties, and ion homeostasis, and promoted the accumulation of secondary metabolites. However, under 200 mM NaCl salt stress conditions, inoculation with F. mosseae negatively affected plant physiology, biochemistry, and secondary metabolite synthesis, although it did alleviate growth inhibition. The results demonstrate that there are different effects of salt-drought interaction stress versus single stress (salt or drought stress) on plant growth physiology. In addition, we provide new insights about the positive effects of AMF on host plants under such stress conditions and the effects of AMF on plants under high salt stress.
Collapse
Affiliation(s)
- Haipeng Yuan
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Hao Si
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Yunshu Ye
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Qiuyan Ji
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Haoyu Wang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Yuhong Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.S.); (Y.Y.); (Q.J.); (H.W.)
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| |
Collapse
|
5
|
Chen BC, Wu XJ, Guo HC, Xiao JP. Effects of appropriate low-temperature treatment on the yield and quality of pigmented potato (Solanum tuberosum L.) tubers. BMC PLANT BIOLOGY 2024; 24:274. [PMID: 38605295 PMCID: PMC11007950 DOI: 10.1186/s12870-024-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.
Collapse
Affiliation(s)
- Bi-Cong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Xiao-Jie Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Hua-Chun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China.
| |
Collapse
|
6
|
Noor M, Fan J, Kaleem M, Akhtar MT, Jin S, Nazir U, Zhang CJ, Yan X. Assessment of the changes in growth, photosynthetic traits and gene expression in Cynodon dactylon against drought stress. BMC PLANT BIOLOGY 2024; 24:235. [PMID: 38561649 PMCID: PMC10986068 DOI: 10.1186/s12870-024-04896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.
Collapse
Affiliation(s)
- Maryam Noor
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Tanveer Akhtar
- College of Horticulture and landscape architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shixuan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Usman Nazir
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chuan-Jie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Wang SM, Wang YS, Cheng H. Comparative Transcriptomics and Metabolomics Analyses of Avicennia marina and Kandelia obovata under Chilling Stress during Seedling Stage. Int J Mol Sci 2023; 24:16989. [PMID: 38069316 PMCID: PMC10707264 DOI: 10.3390/ijms242316989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
One of the most productive ecosystems in the world, mangroves are susceptible to cold stress. However, there is currently insufficient knowledge of the adaptation mechanisms of mangrove plants in response to chilling stress. This study conducted a comparative analysis of transcriptomics and metabolomics to investigate the adaptive responses of Kandelia obovata (chilling-tolerant) and Avicennia marina (chilling-sensitive) to 5 °C. The transcriptomics results revealed that differentially expressed genes (DEGs) were mostly enriched in signal transduction, photosynthesis-related pathways, and phenylpropanoid biosynthesis. The expression pattern of genes involved in photosynthesis-related pathways in A. marina presented a downregulation of most DEGs, which correlated with the decrease in total chlorophyll content. In the susceptible A. marina, all DEGs encoding mitogen-activated protein kinase were upregulated. Phenylpropanoid-related genes were observed to be highly induced in K. obovata. Additionally, several metabolites, such as 4-aminobutyric acid, exhibited higher levels in K. obovata than in A. marina, suggesting that chilling-tolerant varieties regulated more metabolites in response to chilling. The investigation defined the inherent distinctions between K. obovata and A. marina in terms of signal transduction gene expression, as well as phenylpropanoid and flavonoid biosynthesis, during exposure to low temperatures.
Collapse
Affiliation(s)
- Shu-Min Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
8
|
Kolupaev YE, Yemets AI, Yastreb TO, Blume YB. The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1128439. [PMID: 36824204 PMCID: PMC9941552 DOI: 10.3389/fpls.2023.1128439] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide and hydrogen sulfide, as important signaling molecules (gasotransmitters), are involved in many functions of plant organism, including adaptation to stress factors of various natures. As redox-active molecules, NO and H2S are involved in redox regulation of functional activity of many proteins. They are also involved in maintaining cell redox homeostasis due to their ability to interact directly and indirectly (functionally) with ROS, thiols, and other molecules. The review considers the involvement of nitric oxide and hydrogen sulfide in plant responses to low and high temperatures. Particular attention is paid to the role of gasotransmitters interaction with other signaling mediators (in particular, with Ca2+ ions and ROS) in the formation of adaptive responses to extreme temperatures. Pathways of stress-induced enhancement of NO and H2S synthesis in plants are considered. Mechanisms of the NO and H2S effect on the activity of some proteins of the signaling system, as well as on the state of antioxidant and osmoprotective systems during adaptation to stress temperatures, were analyzed. Possibilities of practical use of nitric oxide and hydrogen sulfide donors as inductors of plant adaptive responses are discussed.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla I. Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav B. Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
9
|
Amin B, Atif MJ, Meng H, Ghani MI, Ali M, Wang X, Ding Y, Li X, Cheng Z. Biochemical and Physiological Responses of Cucumis sativus Cultivars to Different Combinations of Low-Temperature and High Humidity. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:390-406. [PMID: 0 DOI: 10.1007/s00344-021-10556-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/20/2021] [Indexed: 05/20/2023]
|
10
|
Wang K, He J, Gao Y, Han K, Liu J, Wang Y. Exogenous melatonin improved the growth and development of naked oat seedlings under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88109-88118. [PMID: 35821327 DOI: 10.1007/s11356-022-21798-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution has become a global problem, which affect more and more crop yields. Melatonin (MT) is widely used in plant stress resistance to alleviate the toxicity caused by heavy metals and other stresses. In this paper, the effects of exogenous 50 μM and 100 μM MT on the growth and development of naked oat seedlings under cadmium stress (25 mg L-1) were studied. The results showed that different concentrations of MT could promote the growth of naked oat seedlings under 25-mg L-1 cadmium stress. The application of exogenous melatonin could significantly increase the plant height, fresh weight, dry weight, chlorophyll, and proline contents of naked oats. MT could also reduce the contents of hydrogen peroxide, superoxide anion, and malondialdehyde in the cells of naked oat seedlings, and increase the activities of SOD, POD, and CAT. In addition, exogenous melatonin could affect the gene expression of LOX, POX, and Asmap1 in MAPK family and NAC and WRKY1 in TFS family in naked oat seedlings, thus promoting the growth and development of naked oat seedlings. In conclusion, this study is the first to demonstrate that MT is able to alleviate the negative effects to treat naked oat seedlings with cadmium stress. Therefore, melatonin has the potential to be applied in crops threatened by heavy metals.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jinjin He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yu Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Kai Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jiaqi Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
11
|
Figueroa N, Gómez R. Bolstered plant tolerance to low temperatures by overexpressing NAC transcription factors: identification of critical variables by meta-analysis. PLANTA 2022; 256:92. [PMID: 36181642 DOI: 10.1007/s00425-022-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The potential biotechnological application of NAC overexpression has been challenged by meta-analysis, establishing a correlation between the magnitudes of several physiological and biochemical parameters and the enhanced tolerance to cold. Overexpression of various NAC (NAM/ATAF/CUC) transcription factors in different plant systems was shown to confer enhanced tolerance to low temperatures by inducing both common and distinctive stress response pathways. However, lack of consensus on the type of parameters evaluated, their magnitudes, and direction of the responses complicates drawing general conclusions on the effects of NAC expression in plant physiology. We report herein a meta-analysis summarizing the most critical response variables used to study the effect of overexpressing NAC regulators on cold stress tolerance. We found that NAC overexpression affected all of the outcome parameters in stressed plants, and one response in control conditions. Transformed plants displayed an increase of at least 40% in positive responses, while negative outcomes were reduced by at least 30%. The most reported parameters included survival, electrolyte leakage, and malondialdehyde contents, whereas the most sensitive to the treatments were the Fv/Fm parameter, survival, and the activity of catalases. We also explored how different experimental arrangements affected the magnitudes of the responses. NAC-mediated improvements were best observed after severe stress episodes and during brief treatments (ranging from 5 to 24 h), especially in terms of antioxidant activities, accumulation of free proline, and parameters related to membrane integrity. Use of heterologous expression also favored several indicators of plant fitness. Our findings should help both basic and applied research on the influence of NAC expression on enhanced tolerance to cold.
Collapse
Affiliation(s)
- Nicolás Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina.
| | - Rodrigo Gómez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), 2123, Zavalla, Santa Fe, Argentina
| |
Collapse
|
12
|
Qu Y, Bao G, Pan X, Bao L, Guo J, Xi J, Zhang X, Yang Y, Zhao H, Li G. Response characteristics of highland barley ( Hordeum vulgare) seedlings to the stress of salinity and artemisinin under freeze–thaw environment. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:958-969. [PMID: 35908798 DOI: 10.1071/fp21359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
In Qinghai-Tibet Plateau, crops are commonly subjected to freeze-thaw and salt stress factors simultaneously, and allelopathy is common, which affects the growth of highland barley (Hordeum vulgare L.), the largest food crop in Tibet. In order to explore the effects of artemisinin, salt and freeze-thaw (FAS) stress on physiological characteristics of highland barley seedlings, hydroponic experiment was carried out with the addition of 20mg/L artemisinin and 150mMNaCl as well as the simulation of freeze-thaw environment. The results suggested that under combined stress, the soluble protein content in combined stresses of artemisinin, FAS increased by 97.8%, the variation of relative conductivity in FAS group was lower than that in combined salt and freeze-thaw stress (FS), the relative water content decreased significantly (P <0.05), the malondialdehyde (MDA), H2 O2 and soluble sugar content in FAS group accumulated but less than those in FS group, and the superoxide dismutase (SOD) activity in combined artemisinin and freeze-thaw stress (FA) and FAS groups decreased. In addition, after freeze-thaw treatment, photosynthesis was weakened, and internal CO2 conentration (C i ) in FAS group significantly decreased (P <0.05). This study proved that appropriate amount of artemisinin can alleviate the damage of salt and freeze-thaw stress on barley seedlings.
Collapse
Affiliation(s)
- Yan Qu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Changchun 130012, China; and Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130012, China; and College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Changchun 130012, China; and Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130012, China; and College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xinyu Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Changchun 130012, China; and Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130012, China; and College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Lan Bao
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China
| | - Jiancai Guo
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Changchun 130012, China; and Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun 130012, China; and College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xin Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yinan Yang
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Hongwei Zhao
- The Administration of Jingyu Water Conservation, Jinyu 135200, China
| | - Guomei Li
- Yushu Forestry and Grassland Comprehensive Service Center, Yushu 815000, China
| |
Collapse
|
13
|
Petruccelli R, Bartolini G, Ganino T, Zelasco S, Lombardo L, Perri E, Durante M, Bernardi R. Cold Stress, Freezing Adaptation, Varietal Susceptibility of Olea europaea L.: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1367. [PMID: 35631792 PMCID: PMC9144808 DOI: 10.3390/plants11101367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive tree is quite sensitive to low temperatures, and air temperature is the most critical environmental factor limiting olive tree growth and production. In this present review, we explored the detrimental effects caused of low temperatures on olive cultivars, and analyzed the most frequently experimental procedures used to evaluate cold stress. Then, current findings freezing stress physiology and gene are summarized in olive tree, with an emphasis on adaptive mechanisms for cold tolerance. This review might clear the way for new research on adaptive mechanisms for cold acclimation and for improvement of olive growing management.
Collapse
Affiliation(s)
- Raffaella Petruccelli
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Giorgio Bartolini
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Tommaso Ganino
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Samanta Zelasco
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Luca Lombardo
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Enzo Perri
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Mauro Durante
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| | - Rodolfo Bernardi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| |
Collapse
|
14
|
Effects of Liquid Phase Nano Titanium Dioxide (TiO 2) on Seed Germination and Seedling Growth of Camphor Tree. NANOMATERIALS 2022; 12:nano12071047. [PMID: 35407165 PMCID: PMC9000683 DOI: 10.3390/nano12071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
It is of great significance to popularize and apply nanotechnology in forest plantations for the high-quality development of such areas. Camphor trees have good ecological and environmental benefits and are economic, which makes them worthy of widespread popularization and promotion. In this paper, we successfully synthesized bulk and rod-like TiO2 powder and used it to study the influence of camphor seed germination and seedling growth. The germination rate, germination potential, germination index activity index of camphorwood seed during germination were measured by TiO2 solution with different morphology. Meanwhile, the fresh weight, root length and seedling height of seedlings, as well as the activities of CAT, SOD and POD and MDA content in the seedlings were measured in detail. The difference in the promoting effect between bulk and rod TiO2 powder was compared. The possible reasons are also explained. The results showed that bulk and rod-like TiO2 solution improved the activities of SOD, POD and CAT, and increased the resilience of camphor seedlings. Moreover, the rod-like TiO2 solution has a stronger osmotic effect on seed, and has a better effect on promoting seed germination and seedling growth. The study on the influence of nano-TiO2 concentration also further showed that the treatment of nano-TiO2 solution with appropriate concentration could effectively promote seed germination and seedling growth, and enhance its adoptability to adversity; but excessive concentration will bring some side effects, which was not conducive to seed germination and seedling growth. In general, the results of this study provide a theoretical basis and technical guidance for the practical application of nanotechnology in camphor seedling and afforestation production.
Collapse
|
15
|
Physiological and Biochemical Responses of Kandelia obovata to Upwelling Stress. WATER 2022. [DOI: 10.3390/w14060899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mangroves growing in intertidal areas are faced with various stresses caused by coastal human activities and oceanic and atmospheric sources. Although the study of the physiological and biochemical characteristics of mangroves has been developing over the past four decades, the effect of upwelling on mangroves in plants stress resistance has seldom been investigated. Here, changes in the physiological and biochemical characteristics of the leaves of Kandelia obovata seedlings in response to upwelling were investigated (air temperature: 25 °C; water temperature: control 25 °C, 13 °C, and 5 °C; salinity: 10‰). The results revealed that upwelling treatment caused an increase in chlorophyll content but a decrease in photosynthetic fluorescence parameters. Hydrogen peroxide (H2O2) production and malondialdehyde activity (MDA) increased with the decrease in upwelling temperature. The proline content increased under upwelling stress, whereas the soluble sugar content decreased. Further, the activities of antioxidant enzymes, such as superoxide dismutase activity (SOD) and peroxidase activity (POD), showed an increasing trend during the treatment, while catalase activity (CAT) decreased. It was evidenced that upwelling stress triggered the physiological and biochemical responses of Kandelia obovata seedlings. This effect became more intense as the upwelling temperature decreased, and all these indicators showed different responses to upwelling stress. Through synthesizing more energy and regulating enzyme activity and osmotic pressure, the leaves of K. obovata formed a resistance mechanism to short-term upwelling.
Collapse
|
16
|
Gajić D, Lukajić B, Hasanagić D, Škondrić S, Davidović-Plavšić B, Kukavica B. Antioxidative enzymes in root and leaf of Rumex obtusifolius L. grown on ash amended soil. KRAGUJEVAC JOURNAL OF SCIENCE 2022. [DOI: 10.5937/kgjsci2244143g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Antioxidant enzymes are one of the most important links in the plant defense system to various types of environmental stress, so their response to a particular type of stress may indicate the sensitivity or tolerance of the plant species. Our paper studied the difference in antioxidative enzyme [catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and Class III peroxidases (POD, EC 1.11.1.7)], isoenzyme pattern and activities between Rumex obtusifolius L. (Polygonaceae) plants grown on ash amended and uncontaminated soil. Modified SDS-PAGE electrophoresis revealed the presence of a new POD isoform in leaf samples growing on ash-amended soil, although the activity of POD in the leaves did not change significantly compared to control plants. On the other hand, in the roots of ash-growing plants POD activity decreased by 90%. Single CAT isoform was detected in both leaf samples, and results indicate 47% higher CAT activity in leaves of ash growing plants. Native electrophoresis detected two SOD isoforms in leaves and roots from the control plant. SOD isoforms were inhibited in the roots of plants grown on ash. The paper indicates the possible role of CAT, SOD and POD in the adaptive response of R. obtusifolius plants on ash amended soil.
Collapse
|
17
|
Ngaffo Mekontso F, Duan W, Cisse EHM, Chen T, Xu X. Alleviation of Postharvest Chilling Injury of Carambola Fruit by γ-aminobutyric Acid: Physiological, Biochemical, and Structural Characterization. Front Nutr 2021; 8:752583. [PMID: 34869526 PMCID: PMC8637291 DOI: 10.3389/fnut.2021.752583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Chilling injury is a physiological disorder affecting the quality of carambola fruit. In the present study, the effect of exogenous γ-aminobutyric acid (GABA) on CI development in carambola fruit during storage at 4°C for 15 days was investigated. The results showed that 2.5-mM GABA reduced CI index, maintained pericarp lightness, and decreased the electrolyte leakage (EL) and malondialdehyde content (MDA) while increased the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities. Endogenous GABA content was significantly higher in the treated fruit than in the control fruit during the whole storage. Besides, the treatment promoted the accumulation of proline and ascorbic acid (AsA) under chilling stress. Compared to the control, GABA-treated fruit exhibited a higher activity of phenylalanine ammonia-lyase (PAL) and total phenolic compounds, and a lower activity of polyphenol oxidase (PPO). In addition, the Safranin O/fast green staining revealed via microscopic images that the GABA treatment reduced the cell walls degradation of carambola fruit. Moreover, the results displayed a lower activity of phospholipase D (PLD) and lipoxygenase (LOX) enzymes, which coincided with a higher content of oleic acid (C18:1), linoleic acid (C18:2n6), and α-linolenic acid (C18:3n3) after 15 days of treatment, leading to the maintenance of the integrity and prevention of the membrane of the rapid softening of carambola fruit. The findings of the present work showed particularly new insights into the crosstalk between GABA and fatty acids. GABA might preserve the pericarp of carambola fruit by increasing the content of the unsaturated fatty acid (UFA) γ-linolenic acid and reducing the saturated fatty acid (SFA) such as caproic acid (C6:0), caprylic acid (C8:0), myristic acid (C14:0), and palmitic acid (C16:0) progressively. GABA can be used as an appropriate postharvest technology for improving the quality of carambola fruit during low-temperature storage.
Collapse
Affiliation(s)
| | - Wenhui Duan
- College of Food Science and Engineering, Hainan University, Haikou, China
| | | | - Tianye Chen
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiangbin Xu
- College of Food Science and Engineering, Hainan University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| |
Collapse
|
18
|
iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Sci Rep 2021; 11:23434. [PMID: 34873178 PMCID: PMC8648733 DOI: 10.1038/s41598-021-02707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Winter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.
Collapse
|
19
|
Physiological Responses and Proteomic Analysis on the Cold Stress Responses of Annual Pitaya (Hylocereus spp.) Branches. J CHEM-NY 2021. [DOI: 10.1155/2021/1416925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the physiological response of the annual branches of three varieties of pitaya (Xianmi, Fulong, and Zihonglong) in cold stress was investigated using a multivariate statistical method. Physiological change results showed that cold stress could decrease the moisture and chlorophyll contents, on the contrary, increase the relative electric conductivity, the contents of malonadehyde, soluble protein, soluble sugar, and free proline, and enhance the enzyme activities of peroxidase, superoxide dismutase, and catalase. Meanwhile, a comparative proteomic approach was also conducted to clarify the cold resistance-related proteins and pathways in annual pitaya branches. Proteomics results concluded that the cold tolerance of annual pitaya branches could be improved by modulating autophagy. Therefore, we hypothesized that an increased autophagy ability may be an important characteristic of the annual pitaya branches in response to cold stress conditions. Our results provide a good understanding of the physiological responses and molecular mechanisms of the annual pitaya branches in response to cold stress.
Collapse
|
20
|
Wani UM, Majeed ST, Raja V, Wani ZA, Jan N, Andrabi KI, John R. Ectopic expression of a novel cold-resistance protein 1 from Brassica oleracea promotes tolerance to chilling stress in transgenic tomato. Sci Rep 2021; 11:16574. [PMID: 34400729 PMCID: PMC8367951 DOI: 10.1038/s41598-021-96102-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cold stress is considered as one of the major environmental factors that adversely affects the plant growth and distribution. Therefore, there arises an immediate need to cultivate effective strategies aimed at developing stress-tolerant crops that would boost the production and minimise the risks associated with cold stress. In this study, a novel cold-responsive protein1 (BoCRP1) isolated from Brassica oleracea was ectopically expressed in a cold susceptible tomato genotype Shalimar 1 and its function was investigated in response to chilling stress. BoCRP1 was constitutively expressed in all the tissues of B. oleracea including leaf, root and stem. However, its expression was found to be significantly increased in response to cold stress. Moreover, transgenic tomato plants expressing BoCRP1 exhibited increased tolerance to chilling stress (4 °C) with an overall improved rate of seed germination, increased root length, reduced membrane damage and increased accumulation of osmoprotectants. Furthermore, we observed increased transcript levels of stress responsive genes and enhanced accumulation of reactive oxygen species scavenging enzymes in transgenic plants on exposure to chilling stress. Taken together, these results strongly suggest that BoCRP1 is a promising candidate gene to improve the cold stress tolerance in tomato.
Collapse
Affiliation(s)
- Umer Majeed Wani
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India ,grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Sheikh Tahir Majeed
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Vaseem Raja
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| | - Zubair Ahmad Wani
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Nelofer Jan
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| | - Khursid Iqbal Andrabi
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Riffat John
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| |
Collapse
|
21
|
Ali I, Tang L, Dai J, Kang M, Mahmood A, Wang W, Liu B, Liu L, Cao W, Zhu Y. Responses of Grain Yield and Yield Related Parameters to Post-Heading Low-Temperature Stress in Japonica Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:1425. [PMID: 34371626 PMCID: PMC8309334 DOI: 10.3390/plants10071425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
There is unprecedented increase in low-temperature stress (LTS) during post-heading stages in rice as a consequence of the recent climate changes. Quantifying the effect of LTS on yields is key to unraveling the impact of climatic changes on crop production, and therefore developing corresponding mitigation strategies. The present research was conducted to analyze and quantify the effect of post-heading LTS on rice yields as well as yield and grain filling related parameters. A two-year experiment was conducted during rice growing season of 2018 and 2019 using two Japonica cultivars (Huaidao 5 and Nanjing 46) with different low-temperature sensitivities, at four daily minimum/maximum temperature regimes of 21/27 °C (T1), 17/23 °C (T2), 13/19 °C (T3) and 9/15 °C (T4). These temperature treatments were performed for 3 (D1), 6 (D2) or 9 days (D3), at both flowering and grain filling stages. We found LTS for 3 days had no significant effect on grain yield, even when the daily mean temperature was as low as 12 °C. However, LTS of between 6 and 9 days at flowering but not at filling stage significantly reduced grain yield of both cultivars. Comparatively, Huaidao 5 was more cold tolerant than Nanjing 46. LTS at flowering and grain filling stages significantly reduced both maximum and mean grain filling rates. Moreover, LTS prolonged the grain filling duration of both cultivars. Additionally, there was a strong correlation between yield loss and spikelet fertility, spikelet weight at maturity, grain filling duration as well as mean and maximum grain filling rates under post-heading LTS (p < 0.001). Moreover, the effect of post-heading LTS on rice yield can be well quantified by integrating the canopy temperature (CT) based accumulated cold degree days (ACDDCT) with the response surface model. The findings of this research are useful in modeling rice productivity under LTS and for predicting rice productivity under future climates.
Collapse
Affiliation(s)
- Iftikhar Ali
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Dai
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Kang
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Aqib Mahmood
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (I.A.); (L.T.); (J.D.); (M.K.); (A.M.); (W.W.); (B.L.); (L.L.); (W.C.)
- Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Yield, Physiological Performance, and Phytochemistry of Basil ( Ocimum basilicum L.) under Temperature Stress and Elevated CO 2 Concentrations. PLANTS 2021; 10:plants10061072. [PMID: 34071830 PMCID: PMC8226578 DOI: 10.3390/plants10061072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022]
Abstract
Early season sowing is one of the methods for avoiding yield loss for basil due to high temperatures. However, basil could be exposed to sub-optimal temperatures by planting it earlier in the season. Thus, an experiment was conducted that examines how temperature changes and carbon dioxide (CO2) levels affect basil growth, development, and phytonutrient concentrations in a controlled environment. The experiment simulated temperature stress, low (20/12 °C), and high (38/30 °C), under ambient (420 ppm) and elevated (720 ppm) CO2 concentrations. Low-temperature stress prompted the rapid closure of stomata resulting in a 21% decline in net photosynthesis. Chlorophylls and carotenoids decreased when elevated CO2 interacted with low-temperature stress. Basil exhibited an increase in stomatal conductance, intercellular CO2 concentration, apparent quantum yield, maximum photosystem II efficiency, and maximum net photosynthesis rate when subjected to high-temperature stress. Under elevated CO2, increasing the growth temperature from 30/22 °C to 38/30 °C markedly increased the antioxidants content of basil. Taken together, the evidence from this research recommends that varying the growth temperature of basil plants can significantly affect the growth and development rates compared to increasing the CO2 concentrations, which mitigates the adverse effects of temperature stress.
Collapse
|
23
|
Wang W, Du J, Chen L, Zeng Y, Tan X, Shi Q, Pan X, Wu Z, Zeng Y. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage. BMC Genomics 2021; 22:176. [PMID: 33706696 PMCID: PMC7952222 DOI: 10.1186/s12864-021-07458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.
Collapse
Affiliation(s)
- Wenxia Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liming Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueming Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaohua Pan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yanhua Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
24
|
Li Y, Ren K, Hu M, He X, Gu K, Hu B, Su J, Jin Y, Gao W, Yang D, Li F, Zou C. Cold stress in the harvest period: effects on tobacco leaf quality and curing characteristics. BMC PLANT BIOLOGY 2021; 21:131. [PMID: 33685400 PMCID: PMC7941949 DOI: 10.1186/s12870-021-02895-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Weather change in high-altitude areas subjects mature tobacco (Nicotiana tabacum L.) to cold stress, which damages tobacco leaf yield and quality. A brupt diurnal temperature differences (the daily temperature dropping more than 20 °C) along with rainfall in tobacco-growing areas at an altitude above 2450 m, caused cold stress to field-grown tobacco. RESULTS After the flue-cured tobacco suffered cold stress in the field, the surface color of tobacco leaves changed and obvious large browning areas were appeared, and the curing availability was extremely poor. Further research found the quality of fresh tobacco leaves, the content of key chemical components, and the production quality were greatly reduced by cold stress. We hypothesize that cold stress in high altitude environments destroyed the antioxidant enzyme system of mature flue-cured tobacco. Therefore, the quality of fresh tobacco leaves, the content of key chemical components, and the production quality were greatly reduced by cold stress. CONCLUSION This study confirmed that cold stress in high-altitude tobacco areas was the main reason for the browning of tobacco leaves during the tobacco curing process. This adverse environment seriously damaged the quality of tobacco leaves, but can be mitigated by pay attention to the weather forecast and pick tobacco leaves in advance.
Collapse
Affiliation(s)
- Yan Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Mengyang Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Xian He
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Jiaen Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Yan Jin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China
| | - Wenyou Gao
- Dali Tobacco Monopoly Bureau of Yunnan Province, Dali, Yunnan, People's Republic of China
| | - Daosheng Yang
- Dali Tobacco Monopoly Bureau of Yunnan Province, Dali, Yunnan, People's Republic of China
| | - Folin Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
25
|
Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress. J Genet Eng Biotechnol 2020; 18:77. [PMID: 33245438 PMCID: PMC7695757 DOI: 10.1186/s43141-020-00091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Background Phytochromes are plant photoreceptors that have long been associated with photomorphogenesis in plants; however, more recently, their crucial role in the regulation of variety of abiotic stresses has been explored. Chilling stress is one of the abiotic factors that severely affect growth, development, and productivity of crops. In the present work, we have analyzed and compared physiological, biochemical, and molecular responses in two contrasting phytochrome mutants of tomato, namely aurea (aur) and high pigment1 (hp1), along with wild-type cultivar Micro-Tom (MT) under chilling stress. In tomato, aur is phytochrome-deficient mutant while hp1 is a phytochrome-sensitive mutant. The genotype-specific physiological, biochemical, and molecular responses under chilling stress in tomato mutants strongly validated phytochrome-mediated regulation of abiotic stress. Results Here, we demonstrate that phytochrome-sensitive mutant hp1 show improved performance compared to phytochrome-deficient mutant aur and wild-type MT plants under chilling stress. Interestingly, we noticed significant increase in several photosynthetic-related parameters in hp1 under chilling stress that include photosynthetic rate, stomatal conductance, stomatal aperture, transpiration rate, chlorophyll a and carotenoids. Whereas most parameters were negatively affected in aur and MT except a slight increase in carotenoids in MT plants under chilling stress. Further, we found that PSII quantum efficiency (Fv/Fm), PSII operating efficiency (Fq′/Fm′), and non-photochemical quenching (NPQ) were all positively regulated in hp1, which demonstrate enhanced photosynthetic performance of hp1 under stress. On the other hand, Fv/Fm and Fq′/Fm′ were decreased significantly in aur and wild-type plants. In addition, NPQ was not affected in MT but declined in aur mutant after chilling stress. Noticeably, the transcript analysis show that PHY genes which were previously reported to act as molecular switches in response to several abiotic stresses were mainly induced in hp1 and repressed in aur and MT in response to stress. As expected, we also found reduced levels of malondialdehyde (MDA), enhanced activities of antioxidant enzymes, and higher accumulation of protecting osmolytes (soluble sugars, proline, glycine betaine) which further elaborate the underlying tolerance mechanism of hp1 genotype under chilling stress. Conclusion Our findings clearly demonstrate that phytochrome-sensitive and phytochrome-deficient tomato mutants respond differently under chilling stress thereby regulating physiological, biochemical, and molecular responses and thus establish a strong link between phytochromes and their role in stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-020-00091-1.
Collapse
|
26
|
Nogales A, Ribeiro H, Nogales-Bueno J, Hansen LD, Gonçalves EF, Coito JL, Rato AE, Peixe A, Viegas W, Cardoso H. Response of Mycorrhizal 'Touriga Nacional' Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1499. [PMID: 33167584 PMCID: PMC7694551 DOI: 10.3390/plants9111499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. 'Touriga Nacional' variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion efficiency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 °C, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programs.
Collapse
Affiliation(s)
- Amaia Nogales
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Hugo Ribeiro
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Julio Nogales-Bueno
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Elsa F. Gonçalves
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - João Lucas Coito
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Ana Elisa Rato
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Augusto Peixe
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Wanda Viegas
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Hélia Cardoso
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
27
|
Biswas S, Biswas AK, De B. Influence of sodium chloride on growth and metabolic reprogramming in nonprimed and haloprimed seedlings of blackgram (Vigna mungo L.). PROTOPLASMA 2020; 257:1559-1583. [PMID: 32647999 DOI: 10.1007/s00709-020-01532-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
Salinity hinders agricultural productivity worldwide by distressing plant metabolism. Growth of blackgram (Vigna mungo L. var. Sulata), an adverse climate-resistant pulse, is arrested under salinity. Present research integrates study of physio-biochemical parameters and non-targeted metabolomics approach to explore the alterations in metabolic pathway during adaptive responses of nonprimed and haloprimed blackgram seedlings grown hydroponically under NaCl stress. Salinity provoked accumulation of peroxides, compatible solutes and phenolics which increased free radical scavenging activities of nonprimed seedlings under salinity. Pre-germination seed halopriming abrogated NaCl-mediated adversities in haloprimed plantlets favouring better growth. Thus, farmers may adopt seed halopriming technique to improve blackgram productivity in saline-prone fields. Additionally, metabolomics study uncovered numerous metabolites amongst which 35 compounds altered significantly under salinity. The candidate metabolites were aspartic acid, L-glutamic acid, L-proline, L-asparagine, DL-isoleucine, L-homoserine, citrulline, L-ornithine, D-altrose, D-allose, N-acetyl-D-mannosamine, fructose, tagatose, sucrose, D-glucose, maltose, glycerol-1-phosphate, D-sorbitol, benzoic acid, shikimic acid, 4-hydroxycinnamic acid, arbutin, succinic acid, pipecolic acid, fumaric acid, nicotinic acid, L-pyroglutamic acid, oxalic acid, glyceric acid, maleamic acid, adenine, guanosine, lauric acid, stearic acid and porphine. Comparing metabolic responses of nonprimed and haloprimed seedlings, it was clear that efficient alteration in carbohydrate metabolism, phenolics accumulation, amino acid, organic acid and nucleic acid metabolism were the key places of metabolic reprogramming for tolerating salinity. Overall, we report, for the first time, 35 contributory candidate compounds that constituted core fundamental metabolome invoking salinity tolerance in nonprimed and haloprimed blackgram. These metabolites may be targeted by biotechnologists to produce high vigour salt-tolerant transgenic blackgram via genetic engineering.
Collapse
Affiliation(s)
- Sabarni Biswas
- Plant Physiology and Biochemistry Laboratory, Centre for Advanced Studies, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Phytochemistry and Pharmacognosy Research Laboratory, Centre for Advanced Studies, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre for Advanced Studies, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Research Laboratory, Centre for Advanced Studies, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
28
|
Liu Q, Sun C, Han J, Li L, Wang K, Wang Y, Chen J, Zhao M, Wang Y, Zhang M. Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng, Panax ginseng C.A. Meyer. PLoS One 2020; 15:e0234423. [PMID: 32525906 PMCID: PMC7289381 DOI: 10.1371/journal.pone.0234423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
The NAC gene family is one of the important plant-specific transcription factor families involved in variety of physiological processes. It has been found in several plant species; however, little is known about the gene family in ginseng, Panax ginseng C.A. Meyer. Here we report identification and systematic analysis of this gene family in ginseng. A total of 89 NAC genes, designated PgNAC01 to PgNAC89, are identified. These genes are alternatively spliced into 251 transcripts at fruiting stage of a four-year-old ginseng plant. The genes of this gene family have five conserved motifs and are clustered into 11 subfamilies, all of which are shared with the genes of the NAC gene families identified in the dicot and monocot model plant species, Arabidopsis and rice. This result indicates that the PgNAC gene family is an ancient and evolutionarily inactive gene family. Gene ontology (GO) analysis shows that the functions of the PgNAC gene family have been substantially differentiated; nevertheless, over 86% the PgNAC transcripts remain functionally correlated. Finally, five of the PgNAC genes, PgNAC05-2, PgNAC41-2, PgNAC48, PgNAC56-1, and PgNAC59, are identified to be involved in plant response to cold stress, suggesting that this gene family plays roles in response to cold stress in ginseng. These results, therefore, provide new insights into functional differentiation and evolution of a gene family in plants and gene resources necessary to comprehensively determine the functions of the PgNAC gene family in response to cold and other abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jiazhuang Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yanfang Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| |
Collapse
|
29
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
30
|
Li J, Yang Y, Iqbal A, Qadri R, Shi P, Wang Y, Wu Y, Fan H, Wu G. Correlation analysis of cold-related gene expression with physiological and biochemical indicators under cold stress in oil palm. PLoS One 2019; 14:e0225768. [PMID: 31774880 PMCID: PMC6881061 DOI: 10.1371/journal.pone.0225768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is a representative tropical oil crop that is sensitive to low temperature. Oil palm can experience cold damage when exposed to low temperatures for a long period. During these unfavorable conditions, a series of gene induction/repression and physico-chemical changes occur in oil palm. To better understand the link between these events, we investigated the expression levels of various genes (including COR410, COR413, CBF1, CBF2, CBF3, ICE1-1, ICE1-2, ICE1-4, SIZ1-1, SIZ1-2, ZAT10, ZAT12) and the accumulation of osmolytes (proline, malondialdehyde and sucrose). Likewise, the activity of superoxide dismutase (SOD) in oil palm under cold stress (4°C, 8°C and 12°C) was examined. The results showed a clear link among the expression of CBFs (especially CBF1 and CBF3) and the all genes examined under cold stress (12°C). The expression of CBF1 and CBF2 also exhibited a positive link with the accumulation of sucrose and proline under cold stress in oil palm. At 4°C, the proline content exhibited a very significant correlation with electrolyte leakage in oil palm. The results of this study provide necessary information regarding the mechanism of the response and adaption of oil palm to cold stress. Additionally, they offer clues for the selection or development of cold-tolerant cultivars from the available germplasms of oil palm.
Collapse
Affiliation(s)
- Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
- * E-mail:
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Rashad Qadri
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Guojiang Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
31
|
Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms 2019; 7:microorganisms7090337. [PMID: 31510075 PMCID: PMC6780275 DOI: 10.3390/microorganisms7090337] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 09/07/2019] [Indexed: 12/04/2022] Open
Abstract
Abiotic stress in plants pose a major threat to cereal crop production worldwide and cold stress is also notorious for causing a decrease in plant growth and yield in wheat. The present study was designed to alleviate cold stress on plants by inoculating psychrophilic PGPR bacteria belonging to Bacillus genera isolated from extreme rhizospheric environments of Qinghai-Tibetan plateau. The genetic screening of psychrophilic Bacillus spp. CJCL2, RJGP41 and temperate B. velezensis FZB42 revealed presence of genetic features corresponding to cold stress response, membrane transport, signal transduction and osmotic regulation. Subsequently, the time frame study for the expression of genes involved in these pathways was also significantly higher in psychrophilic strains as analyzed through qPCR analysis at 4 ℃. The inoculated cold tolerant Bacillus strains also aided in inducing stress response in wheat by regulating abscisic acid, lipid peroxidation and proline accumulation pathways in a beneficial manner. Moreover, during comparative analysis of growth promotion in wheat all three Bacillus strains showed significant results at 25 ℃. Whereas, psychrophilic Bacillus strains CJCL2 and RJGP41 were able to positively regulate the expression of phytohormones leading to significant improvement in plant growth under cold stress.
Collapse
|
32
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 PMCID: PMC6694648 DOI: 10.1186/s12870-019-1922-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | | |
Collapse
|
33
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 DOI: 10.1186/s12870-12019-11922-12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | | |
Collapse
|
34
|
Mandizvo T, Odindo A. Seed mineral reserves and vigour of Bambara groundnut ( Vigna subterranea L.) landraces differing in seed coat colour. Heliyon 2019; 5:e01635. [PMID: 31193073 PMCID: PMC6515839 DOI: 10.1016/j.heliyon.2019.e01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Accepted: 04/30/2019] [Indexed: 12/04/2022] Open
Abstract
A newly emerged seedling, given light and water, but no external source of minerals, uses its internal mineral nutrient reserves effectively for an early establishment. This research sought to investigate the influence of seed coat colour on the abundance of mineral elements in Bambara groundnut. Four landraces (G340A, Kazai, Kazuma, and Mana) varying in seed coat colour were analysed for differences in seed mineral composition using energy dispersive x-ray (EDX) analysis and atomic absorption spectrometry (AAS). Seeds were germinated at 10 °C and 25 °C, and various indices including, (1) mean emergence time, (2) mean germination rate, (3) coefficient of velocity of germination, and (4) final germination percentage (FGP) were calculated. The importance of seed mineral elements in the establishment of Bambara groundnut was examined by measuring root length (RL), shoot length (SL), shoot dry mass (SDM), and root dry mass (RDM). Plant tissue elemental analysis was done using flame atomic emission spectrometry (FAES) for K and flame atomic absorption spectrometry (FAAS) for Mg, Cu, Mn, and Zn. There were significant differences (P < 0.001) in mineral element content of dry seeds. G340A and Kazai had the highest and the lowest K, P, Mg, Mn, and Zn (11.65 gkg-1, 7.2 gkg-1, 2.33 gkg-1, 59.56 mgkg-1, and 44.42 mgkg-1), and (8.82 gkg-1, 4.75 gkg-1, 1.38 gkg-1, 48.9 mgkg-1, and 42.6 mgkg-1), respectively. Cold test germination indices were significantly different, the highest FGP was 73.3% in G340A and the lowest was 57.8% in Kazai. There were strong positive correlations between seed mineral concentration and plant growth parameters (p < 0.001). We concluded that (1) seed mineral concentration has a significant impact on the early establishment of Bambara groundnut and (2) the dark-coloured landraces (hue 8º) used in this study have the highest concentration of macro and micro elements compared to light coloured seeds (hue 38º).
Collapse
|
35
|
Verma D, Lakhanpal N, Singh K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 2019; 20:227. [PMID: 30890148 PMCID: PMC6425617 DOI: 10.1186/s12864-019-5593-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa. Results A total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR. Conclusion We identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Neha Lakhanpal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
36
|
Wang J, Huang F, You X, Hou X. Identification and Functional Characterization of a Cold-Related Protein, BcHHP5, in Pak-Choi ( Brassica rapa ssp. chinensis). Int J Mol Sci 2018; 20:E93. [PMID: 30587842 PMCID: PMC6337265 DOI: 10.3390/ijms20010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023] Open
Abstract
In plants, heptahelical proteins (HHPs) have been shown to respond to a variety of abiotic stresses, including cold stress. Up to the present, the regulation mechanism of HHP5 under low temperature stress remains unclear. In this study, BcHHP5 was isolated from Pak-choi (Brassica rapa ssp. chinensis cv. Suzhouqing). Sequence analysis and phylogenetic analysis indicated that BcHHP5 in Pak-choi is similar to AtHHP5 in Arabidopsis thaliana. Structure analysis showed that the structure of the BcHHP5 protein is relatively stable and highly conservative. Subcellular localization indicated that BcHHP5 was localized on the cell membrane and nuclear membrane. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcHHP5 was induced to express by cold and other abiotic stresses. In Pak-choi, BcHHP5-silenced assay, inhibiting the action of endogenous BcHHP5, indicated that BcHHP5-silenced might have a negative effect on cold tolerance, which was further confirmed. All of these results indicate that BcHHP5 might play a role in abiotic response. This work can serve as a reference for the functional analysis of other cold-related proteins from Pak-choi in the future.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feiyi Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Noman A, Kanwal H, Khalid N, Sanaullah T, Tufail A, Masood A, Sabir SUR, Aqeel M, He S. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris. FRONTIERS IN PLANT SCIENCE 2017; 8:1388. [PMID: 28855910 PMCID: PMC5557727 DOI: 10.3389/fpls.2017.01388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/14/2023]
Abstract
Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Hina Kanwal
- Department of Botany, Government College Women UniversityFaisalabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women UniversitySialkot, Pakistan
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Aasma Tufail
- Division of Science & Technology, Department of Botany, University of EducationLahore, Pakistan
| | - Atifa Masood
- Department of Botany, University of LahoreSargodha, Pakistan
| | - Sabeeh-ur-Rasool Sabir
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
- *Correspondence: Muhammad Aqeel
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- Shuilin He
| |
Collapse
|
38
|
Fan J, Chen K, Amombo E, Hu Z, Chen L, Fu J. Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLoS One 2015; 10:e0132991. [PMID: 26177459 PMCID: PMC4503672 DOI: 10.1371/journal.pone.0132991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO) is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP) was used as NO donor, while 2-phenyl-4,4,5,5-tetramentylimidazoline-l-oxyl-3-xide (PTIO) plus NG-nitro-L-arginine methyl ester (L-NAME) were applied as NO inhibitor. Wild bermudagrass was subjected to 4 °C in a growth chamber under different treatments (Control, SNP, PTIO + L-NAME). The results indicated lower levels of malondialdehyde (MDA) content and electrolyte leakage (EL), higher value for chlorophyll content, superoxide dismutase (SOD) and peroxidase (POD) activities after SNP treatment than that of PTIO plus L-NAME treatments under cold stress. Analysis of Chlorophyll (Chl) a fluorescence transient displayed that the OJIP transient curve was higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. The values of photosynthetic fluorescence parameters were higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. Expression of cold-responsive genes was altered under cold stress after treated with SNP or PTIO plus L-NAME. In summary, our findings indicated that, as an important strategy to protect bermudagrass against cold stress, NO could maintain the stability of cell membrane, up-regulate the antioxidant enzymes activities, recover process of photosystem II (PSII) and induce the expression of cold-responsive genes.
Collapse
Affiliation(s)
- Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
39
|
De Novo Transcriptome Sequencing of Low Temperature-Treated Phlox subulata and Analysis of the Genes Involved in Cold Stress. Int J Mol Sci 2015; 16:9732-48. [PMID: 25938968 PMCID: PMC4463614 DOI: 10.3390/ijms16059732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
Phlox subulata, a perennial herbaceous flower, can survive during the winter of northeast China, where the temperature can drop to −30 °C, suggesting that P. subulata is an ideal model for studying the molecular mechanisms of cold acclimation in plants. However, little is known about the gene expression profile of P. subulata under cold stress. Here, we examined changes in cold stress-related genes in P. subulata. We sequenced three cold-treated (CT) and control (CK) samples of P. subulata. After denovo assembly and quantitative assessment of the obtained reads, 99,174 unigenes were generated. Based on similarity searches with known proteins in public protein databases, 59,994 unigenes were functionally annotated. Among all differentially expressed genes (DEGs), 8302, 10,638 and 11,021 up-regulated genes and 9898, 17,876, and 12,358 down-regulated genes were identified after treatment at 4, 0, and −10 °C, respectively. Furthermore, 3417 up-regulated unigenes were expressed only in CT samples. Twenty major cold-related genes, including transcription factors, antioxidant enzymes, osmoregulation proteins, and Ca2+ and ABA signaling components, were identified, and their expression levels were estimated. Overall, this is the first transcriptome sequencing of this plant species under cold stress. Studies of DEGs involved in cold-related metabolic pathways may facilitate the discovery of cold-resistance genes.
Collapse
|
40
|
Geetika S, Harpreet K, Renu B, Spal KN, Poonam S. Thermo-Protective Role of 28-Homobrassinolide in <i>Brassica juncea</i> Plants. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.515257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|