1
|
Panritdum P, Muangnoi C, Tuntipopipat S, Charoenkiatkul S, Sukprasansap M. Cleistocalyx nervosum var. paniala berry extract and cyanidin-3-glucoside inhibit hepatotoxicity and apoptosis. Food Sci Nutr 2024; 12:2947-2962. [PMID: 38628219 PMCID: PMC11016384 DOI: 10.1002/fsn3.3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 04/19/2024] Open
Abstract
Excessive oxidative toxicity in liver cells is a significant risk factor that can cause cellular injury, leading to the development of chronic liver disease (CLD). Natural anthocyanins have been shown to prevent the harmful effects of oxidative toxicity in mammalian cells. Ripe Cleistocalyx nervosum var. paniala berry fruits are rich in anthocyanins, which have been reported to possess many health benefits. Therefore, this study examined the protective effect of ethanolic fruit extract of C. nervosum var. paniala (CNPE) against hydrogen peroxide (H2O2)-induced oxidative damage and cell death in human hepatoma HepG2 cells. Results showed that CNPE had strong antioxidant capabilities and high amounts of total phenolics and anthocyanins. HPLC analysis showed that CNPE consists of cyanidin-3-glucoside (C3G). Our investigations found that HepG2 cells pretreated with CNPE or anthocyanin C3G inhibited H2O2-induced cellular damage and apoptosis by increasing the viability of cells, the expression of antiapoptotic Bcl-2 protein, and the activities of cellular antioxidant enzymes, namely SOD, CAT, and GPx. Moreover, both CNPE and C3G significantly suppressed expression of apoptotic proteins (Bax and cytochrome c) and the activities of cleaved caspase-9 and caspase-3 caused by H2O2. Our results indicate that CNPE and C3G can suppress H2O2-induced hepatotoxicity and cell death through stimulation of endogenous antioxidant enzyme activities and inhibition of apoptosis pathway in HepG2 cells. These findings might support development of CNPE as an alternative natural product for preventing CLD.
Collapse
Affiliation(s)
- Pasitta Panritdum
- Graduate student in Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of NutritionMahidol UniversityNakhon PathomThailand
| | - Siriporn Tuntipopipat
- Cell and Animal Model Unit, Institute of NutritionMahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
2
|
Amer K, Flikshteyn B, Lingiah V, Tafesh Z, Pyrsopoulos NT. Mechanisms of Disease and Multisystemic Involvement. Clin Liver Dis 2023; 27:563-579. [PMID: 37380283 DOI: 10.1016/j.cld.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Kamal Amer
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Ben Flikshteyn
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Vivek Lingiah
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Zaid Tafesh
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 53, Newark, NJ 07101-1709, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 536, Newark, NJ 07101-1709, USA.
| |
Collapse
|
3
|
Javadi A, Nikhbakht MR, Ghasemian Yadegari J, Rustamzadeh A, Mohammadi M, Shirazinejad A, Azadbakht S, Abdi Z. In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review. Int J Radiat Biol 2023; 99:155-165. [PMID: 35549605 DOI: 10.1080/09553002.2022.2078007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects. METHODS The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds. RESULTS Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals. CONCLUSION In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.
Collapse
Affiliation(s)
- Anis Javadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Nikhbakht
- Department of Physiology and Pharmacology, School of Medicine Medicinal Plants Research Center Yasuj, University of Medical Sciences, Yasuj, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mohammadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shirazinejad
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Saleh Azadbakht
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Abdi
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
4
|
Rodríguez MJ, Sabaj M, Tolosa G, Herrera Vielma F, Zúñiga MJ, González DR, Zúñiga-Hernández J. Maresin-1 Prevents Liver Fibrosis by Targeting Nrf2 and NF-κB, Reducing Oxidative Stress and Inflammation. Cells 2021; 10:3406. [PMID: 34943914 PMCID: PMC8699629 DOI: 10.3390/cells10123406] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex process characterized by the excessive accumulation of extracellular matrix (ECM) and an alteration in liver architecture, as a result of most types of chronic liver diseases such as cirrhosis, hepatocellular carcinoma (HCC) and liver failure. Maresin-1 (MaR1) is derivative of ω-3 docosahexaenoic acid (DHA), which has been shown to have pro-resolutive and anti-inflammatory effects. We tested the hypothesis that the application of MaR1 could prevent the development of fibrosis in an animal model of chronic hepatic damage. Sprague-Dawley rats were induced with liver fibrosis by injections of diethylnitrosamine (DEN) and treated with or without MaR1 for four weeks. In the MaR1-treated animals, levels of AST and ALT were normalized in comparison with DEN alone, the hepatic architecture was improved, and inflammation and necrotic areas were reduced. Cell proliferation, assessed by the mitotic activity index and the expression of Ki-67, was increased in the MaR1-treated group. MaR1 attenuated liver fibrosis and oxidative stress was induced by DEN. Plasma levels of the pro-inflammatory mediators TNF-α and IL-1β were reduced in MaR1-treated animals, whereas the levels of IL-10, an anti-inflammatory cytokine, increased. Interestingly, MaR1 inhibited the translocation of the p65 subunit of NF-κB, while increasing the activation of Nrf2, a key regulator of the antioxidant response. Finally, MaR1 treatment reduced the levels of the pro-fibrotic mediator TGF-β and its receptor, while normalizing the hepatic levels of IGF-1, a proliferative agent. Taken together, these results suggest that MaR1 improves the parameters of DEN-induced liver fibrosis, activating hepatocyte proliferation and decreasing oxidative stress and inflammation. These results open the possibility of MaR1 as a potential therapeutic agent in fibrosis and other liver pathologies.
Collapse
Affiliation(s)
- María José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Matías Sabaj
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Gerardo Tolosa
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Francisca Herrera Vielma
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - María José Zúñiga
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| |
Collapse
|
5
|
Yang A, Sun Z, Liu R, Liu X, Zhang Y, Zhou Y, Qiu Y, Zhang X. Transferrin-Conjugated Erianin-Loaded Liposomes Suppress the Growth of Liver Cancer by Modulating Oxidative Stress. Front Oncol 2021; 11:727605. [PMID: 34513705 PMCID: PMC8427311 DOI: 10.3389/fonc.2021.727605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Liver cancer is one of the most malignant human cancers, with few treatments and a poor prognosis. Erianin (ERN) is a natural compound with multiple pharmacological activities that has been reported to have numerous excellent effects against liver cancer in experimental systems. However, its application in vivo has been limited due to its poor aqueous solubility and numerous off-target effects. This study aimed to improve the therapeutic efficacy of ERN by developing novel ERN-loaded tumor-targeting nanoparticles. Results In this study, ERN was loaded into liposomes by ethanol injection (LP-ERN), and the resulting LP-ERN nanoparticles were treated with transferrin to form Tf-LP-ERN to improve the solubility and enhance the tumor-targeting of ERN. LP-ERN and Tf-LP-ERN nanoparticles had smooth surfaces and a uniform particle size, with particle diameters of 62.60 nm and 88.63 nm, respectively. In HepG2 and SMMC-7721 cells, Tf-LP-ERN induced apoptosis, decreased mitochondrial membrane potentials and increased ERN uptake more effectively than free ERN and LP-ERN. In xenotransplanted mice, Tf-LP-ERN inhibited tumor growth, but had a minimal effect on body weight and organ morphology. In addition, Tf-LP-ERN nanoparticles targeted tumors more effectively than free ERN and LP-ERN nanoparticles, and in tumor tissues Tf-LP-ERN nanoparticles promoted the cleavage PARP-1, caspase-3 and caspase-9, increased the expression levels of Bax, Bad, PUMA, and reduced the expression level of Bcl-2. Moreover, in the spleen of heterotopic tumor model BALB/c mice, ERN, LP-ERN and Tf-LP-ERN nanoparticles increased the expression levels of Nrf2, HO-1, SOD-1 and SOD-2, but reduced the expression levels of P-IKKα+β and P-NF-κB, with Tf-LP-ERN nanoparticles being most effective in this regard. Tf-LP-ERN nanoparticles also regulated the expression levels of TNF-α, IL-10 and CCL11 in serum. Conclusion Tf-LP-ERN nanoparticles exhibited excellent anti-liver cancer activity in vivo and in vitro by inducing cellular apoptosis, exhibiting immunoregulatory actions, and targeting tumor tissues, and did so more effectively than free ERN and LP-ERN nanoparticles. These results suggest that the clinical utility of a Tf-conjugated LP ERN-delivery system for the treatment of liver cancer warrants exploration.
Collapse
Affiliation(s)
- Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhen Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Rui Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun, China.,Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Yang A, Sun Z, Liu R, Liu X, Zhang Y, Zhou Y, Qiu Y, Zhang X. Transferrin-Conjugated Erianin-Loaded Liposomes Suppress the Growth of Liver Cancer by Modulating Oxidative Stress. Front Oncol 2021. [DOI: 10.3389/fonc.2021.727605
expr 862146617 + 836050171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BackgroundLiver cancer is one of the most malignant human cancers, with few treatments and a poor prognosis. Erianin (ERN) is a natural compound with multiple pharmacological activities that has been reported to have numerous excellent effects against liver cancer in experimental systems. However, its application in vivo has been limited due to its poor aqueous solubility and numerous off-target effects. This study aimed to improve the therapeutic efficacy of ERN by developing novel ERN-loaded tumor-targeting nanoparticles.ResultsIn this study, ERN was loaded into liposomes by ethanol injection (LP-ERN), and the resulting LP-ERN nanoparticles were treated with transferrin to form Tf-LP-ERN to improve the solubility and enhance the tumor-targeting of ERN. LP-ERN and Tf-LP-ERN nanoparticles had smooth surfaces and a uniform particle size, with particle diameters of 62.60 nm and 88.63 nm, respectively. In HepG2 and SMMC-7721 cells, Tf-LP-ERN induced apoptosis, decreased mitochondrial membrane potentials and increased ERN uptake more effectively than free ERN and LP-ERN. In xenotransplanted mice, Tf-LP-ERN inhibited tumor growth, but had a minimal effect on body weight and organ morphology. In addition, Tf-LP-ERN nanoparticles targeted tumors more effectively than free ERN and LP-ERN nanoparticles, and in tumor tissues Tf-LP-ERN nanoparticles promoted the cleavage PARP-1, caspase-3 and caspase-9, increased the expression levels of Bax, Bad, PUMA, and reduced the expression level of Bcl-2. Moreover, in the spleen of heterotopic tumor model BALB/c mice, ERN, LP-ERN and Tf-LP-ERN nanoparticles increased the expression levels of Nrf2, HO-1, SOD-1 and SOD-2, but reduced the expression levels of P-IKKα+β and P-NF-κB, with Tf-LP-ERN nanoparticles being most effective in this regard. Tf-LP-ERN nanoparticles also regulated the expression levels of TNF-α, IL-10 and CCL11 in serum.ConclusionTf-LP-ERN nanoparticles exhibited excellent anti-liver cancer activity in vivo and in vitro by inducing cellular apoptosis, exhibiting immunoregulatory actions, and targeting tumor tissues, and did so more effectively than free ERN and LP-ERN nanoparticles. These results suggest that the clinical utility of a Tf-conjugated LP ERN-delivery system for the treatment of liver cancer warrants exploration.
Collapse
|
7
|
Yang A, Zhang P, Sun Z, Liu X, Zhang X, Liu X, Wang D, Meng Z. Lysionotin induces apoptosis of hepatocellular carcinoma cells via caspase-3 mediated mitochondrial pathway. Chem Biol Interact 2021; 344:109500. [PMID: 33989594 DOI: 10.1016/j.cbi.2021.109500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has attracted considerable attention due to its multiple biological activities. The present study analyzes the anti-liver cancer effects of lysionotin in cells and mouse models. In HepG2 and SMMC-7721 cells, lysionotin significantly reduced the viability of cells, inhibited cell proliferation and migration, enhanced cell apoptosis, promoted the increase of intracellular reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (MMP), and alternated the content of apoptosis-related proteins. In HepG2-and SMMC-7721-xenograft tumor mouse models, lysionotin inhibited tumor growth, reduced the expression levels of anti-apoptotic proteins and enhanced the expression levels of pro-apoptotic proteins in tumor tissues. Additionally, the pre-treatment of Ac-DEVD-CHO, an inhibitor of caspase-3, strongly restored the low cell viability, the enhanced apoptosis rate, the dissipation of MMP caused by lysionotin exposure, as well as prevented the lysionotin-caused enhancement on expressions of apoptosis related proteins, especially cleaved poly (ADP-ribose) polymerase (PARP), Fas Ligand (FasL), cleaved caspase-3 and Bax in both HepG2 and SMMC-7721 cells. Altogether, lysionotin showed significant anti-liver cancer effects related to caspase-3 mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Anhui Yang
- Department of Translational Medicine Research, First Hospital, Jilin University, Changchun, Jilin, 130061, China; School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, China.
| | - Zhen Sun
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Zhaoli Meng
- Department of Translational Medicine Research, First Hospital, Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
8
|
Wang X, Li F, Liu J, Ji C, Wu H. Transcriptomic, proteomic and metabolomic profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate (TPP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111126. [PMID: 32823070 DOI: 10.1016/j.ecoenv.2020.111126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Triphenyl phosphate (TPP) has been found in various environmental media and in biota suggesting widespread human exposure. However, there is still insufficient information on the hepatotoxicity mechanisms of health risk exposed to TPP. In this study, TPP could induce human normal liver cell (L02) apoptosis, injury cell ultrastructure and elevate the levels of reactive oxygen species (ROS). The integrated multi-omic (transcriptomic, proteomic, and metabolomic) analysis was used to further investigate the mechanisms. Transcriptomic analysis revealed that TPP exposure markedly affected cell apoptosis, oncogene activation, REDOX homeostasis, DNA damage and repair. Additionally, proteomic analysis found that the related proteins associated with apoptosis, oxidative stress, metabolism and membrane structure were affected. And metabolomic analysis verified that the related metabolic pathways, such as glycolysis, citrate cycle, oxidative phosphorylation, lipid and protein metabolism, were also significantly disrupted. Based on the multi-omic results, a hypothesized network was constructed to discover the key molecular events in response to TPP and illustrate the mechanism of TPP-induced hepatotoxicity in L02 cells. Therefore, molecular responses could be elucidated at multiple biological levels, and multi-omic analysis could provide scientific tools for exploring potential mechanisms of toxicity and chemical risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Jialin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
9
|
Grape-Leaf Extract Attenuates Alcohol-Induced Liver Injury via Interference with NF-κB Signaling Pathway. Biomolecules 2020; 10:biom10040558. [PMID: 32268521 PMCID: PMC7225955 DOI: 10.3390/biom10040558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Grape (Vitis vinifera) leaf extracts (GLEs) are known to be rich in phenolic compounds that exert potent antioxidant effects. Given the vulnerability of the liver to oxidative damage, antioxidants have been proposed as therapeutic agents and coadjuvant drugs to ameliorate liver pathologies. The current study was designed to characterize secondary metabolites and investigate the hepatoprotective effects of GLE and its underlying mechanisms. The secondary metabolites were profiled using HPLC–PDA–ESI-MS, and forty-five compounds were tentatively identified. In experimental in vivo design, liver injury was induced by oral administration of high doses of ethanol (EtOH) for 12 days to male Sprague Dawley rats that were split into five different groups. Blood samples and livers were then collected, and used for various biochemical, immunohistochemical, and histopathological analyses. Results showed that GLE-attenuated liver injury and promoted marked hepatic antioxidant effects, in addition to suppressing the increased heat-shock protein-70 expression. Moreover, GLE suppressed EtOH-induced expression of nuclear factor-κB (NF-κB) p65 subunit and proinflammatory cytokine tumor necrosis factor-α. Caspase-3 and survivin were enhanced by EtOH intake and suppressed by GLE intake. Finally, EtOH-induced histopathological changes in liver sections were markedly normalized by GLE. In conclusion, our results suggested that GLE interferes with NF-κB signaling and induces antioxidant effects, which both play a role in attenuating apoptosis and associated liver injury in a model of EtOH-induced liver damage in rats.
Collapse
|
10
|
Kim SH, Kwon D, Lee S, Son SW, Kwon JT, Kim PJ, Lee YH, Jung YS. Concentration- and Time-Dependent Effects of Benzalkonium Chloride in Human Lung Epithelial Cells: Necrosis, Apoptosis, or Epithelial Mesenchymal Transition. TOXICS 2020; 8:toxics8010017. [PMID: 32121658 PMCID: PMC7151738 DOI: 10.3390/toxics8010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC), an antimicrobial agent in inhalable medications and household sprays, has been reported to be toxic to pulmonary organs. Although cell membrane damage has been considered as the main cytotoxic mechanism of BAC, its concentration- and time-dependent cellular effects on lung epithelium have not been fully understood. In the present study, human lung epithelial (H358) cells were exposed to 0.2–40 μg/mL of BAC for 30 min or 21 days. Cell membranes were rapidly disrupted by 30 min exposure, but 24 h incubation of BAC (4–40 μg/mL) predominantly caused apoptosis rather than necrosis. BAC (2–4 μg/mL) induced mitochondrial depolarization, which may be associated with increased expression of pro-apoptotic proteins (caspase-3, PARP, Bax, p53, and p21), and decreased levels of the anti-apoptotic protein Bcl-2. The protein expression levels of IRE1α, BiP, CHOP, and p-JNK were also elevated by BAC (2–4 μg/mL) suggesting the possible involvement of endoplasmic reticulum stress in inducing apoptosis. Long-term (7–21 days) incubation with BAC (0.2–0.6 μg/mL) did not affect cell viability but led to epithelial-mesenchymal transition (EMT) as shown by the decrease of E-cadherin and the increase of N-cadherin, fibronectin, and vimentin, caused by the upregulation of EMT transcription factors, such as Snail, Slug, Twist1, Zeb1, and Zeb2. Therefore, we conclude that apoptosis could be an important mechanism of acute BAC cytotoxicity in lung epithelial cells, and chronic exposure to BAC even at sub-lethal doses can promote pulmonary EMT.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Doyoung Kwon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Seunghyun Lee
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Seung Won Son
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Pil-Je Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| | - Young-Suk Jung
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| |
Collapse
|
11
|
Cheng KC, Wang CJ, Chang YC, Hung TW, Lai CJ, Kuo CW, Huang HP. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J Food Drug Anal 2020; 28:84-93. [DOI: 10.1016/j.jfda.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
|
12
|
The anti-carcinogenesis properties of erianin in the modulation of oxidative stress-mediated apoptosis and immune response in liver cancer. Aging (Albany NY) 2019; 11:10284-10300. [PMID: 31754081 PMCID: PMC6914393 DOI: 10.18632/aging.102456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
In this study, erianin was found to reduce the viability of cancer cells, inhibit their proliferation and migration, induce G2/M phase arrest, enhance cancer cell apoptosis, promote an increase in levels of intracellular reactive oxygen species and a decrease in mitochondrial membrane potential, and regulate the expression levels of anti- and pro-apoptosis-related proteins in HepG2 and SMMC-7721 cells. Erianin inhibited tumor growth in HepG2- and SMMC-7721-xenograft tumor nude mouse models, reduced the expression levels of anti-apoptosis proteins and enhanced the expression levels of pro-apoptosis proteins in tumor tissues. Erianin inhibited tumor growth in immunosuppressed BALB/c mice bearing heterotopic tumors. Among 111 types of cytokines detected in proteome profiling of tumor tissues, erianin substantially influenced levels of 38 types of cytokines in HepG2-xenografted tumors and of 15 types of cytokines in SMMC-7721-xenografted tumors, most of which are related to immune functions. Erianin strongly affected the serum levels of cytokines, and regulated the activation of nuclear factor-kappa B (NF-κB), and the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in spleen. The anti-liver cancer properties of erianin were found to be related mostly to its modulation of oxidative stress-mediated mitochondrial apoptosis and immune response.
Collapse
|
13
|
Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2019; 47:322-332. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Lee YH, Son JY, Kim KS, Park YJ, Kim HR, Park JH, Kim KB, Lee KY, Kang KW, Kim IS, Kacew S, Lee BM, Kim HS. Estrogen Deficiency Potentiates Thioacetamide-Induced Hepatic Fibrosis in Sprague-Dawley Rats. Int J Mol Sci 2019; 20:3709. [PMID: 31362375 PMCID: PMC6696236 DOI: 10.3390/ijms20153709] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is characterized by persistent deposition of extracellular matrix proteins and occurs in chronic liver diseases. The aim of the present study is to investigate whether estrogen deficiency (ED) potentiates hepatic fibrosis in a thioacetamide (TAA)-treated rat model. Fibrosis was induced via intraperitoneal injection (i.p.) of TAA (150 mg/kg/day) for four weeks in ovariectomized (OVX) female, sham-operated female, or male rats. In TAA-treated OVX rats, the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) were significantly increased compared to those in TAA-treated sham-operated OVX rats or TAA-treated male rats. Furthermore, α-smooth muscle actin (α-SMA) expression was significantly increased compared to that in TAA-treated sham-operated rats. This was accompanied by the appearance of fibrosis biomarkers including vimentin, collagen-I, and hydroxyproline, in the liver of TAA-treated OVX rats. In addition, ED markedly reduced total glutathione (GSH) levels, as well as catalase (CAT) and superoxide dismutase (SOD) activity in TAA-treated OVX rats. In contrast, hepatic malondialdehyde (MDA) levels were elevated in TAA-treated OVX rats. Apoptosis significantly increased in TAA-treated OVX rats, as reflected by elevated p53, Bcl-2, and cleaved caspase 3 levels. Significant increases in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were exhibited in TAA-treated OVX rats, and this further aggravated fibrosis through the transforming growth factor-β (TGF-β)/Smad pathway. Our data suggest that ED potentiates TAA-induced oxidative damage in the liver, suggesting that ED may enhance the severity of hepatic fibrosis in menopausal women.
Collapse
Affiliation(s)
- Yong Hee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoo Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hae Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Keon Wook Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
15
|
Chen P, Hu M, Liu F, Yu H, Chen C. S-allyl-l-cysteine (SAC) protects hepatocytes from alcohol-induced apoptosis. FEBS Open Bio 2019; 9:1327-1336. [PMID: 31161729 PMCID: PMC6609569 DOI: 10.1002/2211-5463.12684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte apoptosis is frequently observed in alcohol‐related liver disease (ARLD), which ranks among the 30 leading causes of death worldwide. In the current study, we explored the impact of S‐allyl‐l‐cysteine (SAC), an organosulfur component of garlic, on hepatocyte apoptosis induced by alcohol. Rat liver (BRL‐3A) cells were challenged by ethanol with or without SAC treatment. Cell death/viability, reactive oxygen species (ROS) generation, mitochondrial Cytochrome C release, and caspase 3 activity were then examined. We found that ethanol remarkably induced apoptosis of hepatocytes, while SAC treatment rescued ethanol‐induced hepatocyte injury, as demonstrated by cell counting kit‐8 (CCK8) assay, TUNEL assay, and annexin V/PI staining assay. Ethanol evoked ROS generation in BRL‐3A cells, and this was abated by SAC pretreatment, as indicated by 2′,7′‐dichlorofluorescin diacetate (DCFDA) staining assay. Moreover, ethanol suppressed cellular anti‐apoptotic protein B‐cell lymphoma‐2 (Bcl‐2) expression, increased pro‐apoptotic protein Bcl‐2‐associated X protein (Bax) expression, induced mitochondrial Cytochrome C release, and activated the caspase 3‐dependent apoptosis pathway in BRL‐3A cells. SAC was sufficient to abolish all these changes induced by ethanol, thereby revealing the molecular mechanisms underlying its protective effects. In conclusion, SAC protects hepatocytes from ethanol‐induced apoptosis and may be suitable for use as a novel anti‐apoptotic agent for treating ARLD.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Mingdao Hu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Feng Liu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Henghai Yu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Chen Chen
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
16
|
Zhou BG, Zhao HM, Lu XY, Zhou W, Liu FC, Liu XK, Liu DY. Effect of Puerarin Regulated mTOR Signaling Pathway in Experimental Liver Injury. Front Pharmacol 2018; 9:1165. [PMID: 30405406 PMCID: PMC6206176 DOI: 10.3389/fphar.2018.01165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
It is known that excessive hepatocellular apoptosis is a typical characteristic of hepatic disease, and is regulated by the mammalian target of rapamycin (mTOR) signaling pathway. As the main active component of Kudzu (Pueraria lobata) roots, which is frequently used to treat hepatic diseases, Puerarin (Pue) has been reported to alleviate and protect against hepatic injury. However, it is unclear whether Pue can inhibit mTOR signaling to prevent excessive apoptosis in the treatment of hepatic diseases. In the present study, Pue effectively ameliorated pathological injury of the liver, decreased serum enzyme (ALT, AST, γ-GT, AKP, DBIL, and TBIL) levels, regulated the balance between pro-inflammatory (TNF-α, IL-1β, IL-4, IL-6, and TGF-β1) and anti-inflammatory cytokines (IL-10), restored the cell cycle and inhibited hepatocellular apoptosis and caspase-3 expression in rats with liver injury induced by 2-AAF/PH. Pue inhibited p-mTOR, p-AKT and Raptor activity, and increased Rictor expression in the liver tissues of rats with experimental liver injury. These results indicated that Pue effectively regulated the activation of mTOR signaling pathway in the therapeutic and prophylactic process of Pue on experimental liver injury.
Collapse
Affiliation(s)
- Bu-Gao Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fu-Chun Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
17
|
Zhang X, Wang M, Teng S, Wang D, Li X, Wang X, Liao W, Wang D. Indolyl-chalcone derivatives induce hepatocellular carcinoma cells apoptosis through oxidative stress related mitochondrial pathway in vitro and in vivo. Chem Biol Interact 2018; 293:61-69. [DOI: 10.1016/j.cbi.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
|
18
|
Zhao HM, Zhang XY, Lu XY, Yu SR, Wang X, Zou Y, Zuo ZY, Liu DY, Zhou BG. Erzhi Pill ® Protected Experimental Liver Injury Against Apoptosis via the PI3K/Akt/Raptor/Rictor Pathway. Front Pharmacol 2018; 9:283. [PMID: 29636693 PMCID: PMC5880944 DOI: 10.3389/fphar.2018.00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Erzhi Pill (EZP) is one of the basic prescriptions for treating liver diseases in traditional Chinese medicine. However, its mechanism of action is still undefined. The PI3K/AKT/Raptor/Rictor signaling pathway is closely related to apoptosis and plays a significant role in the pathogenesis of liver disease. To define the mechanism of the hepatoprotective effect of EZP in the treatment of liver disease, hepatic injury induced by 2-acetylaminofluorene/partial hepatectomy was treated by EZP for 14 days. The therapeutic effect of EZP was confirmed by the decreased production of aspartate aminotransferase and alanine aminotransferase, recovery of pathological liver injury, followed by inhibition of pro-inflammatory cytokines and transforming growth factor-β1. Bromodeoxyuridine assay and TUNEL staining indicated that apoptosis was suppressed and the numbers of cells in S phase and G0/G1phase were decreased. The crucial proteins in the PI3K/AKT/Raptor/Rictor signaling pathway were deactivated in rats with experimental liver injury treated by EZP. These results indicated that the hepatoprotective effect of EZP via inhibition of hepatocyte apoptosis was closely related to repression of the PI3K/Akt/Raptor/Rictor signaling pathway.
Collapse
Affiliation(s)
- Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Yun Zhang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Song-Ren Yu
- Editorial Department, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xin Wang
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, China
| | - Yong Zou
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Yun Zuo
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bu-Gao Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Chung H, Chen X, Yu Y, Lee H, Song CH, Choe H, Lee S, Kim H, Hong S. A critical role of hepatitis B virus polymerase in cirrhosis, hepatocellular carcinoma, and steatosis. FEBS Open Bio 2018; 8:130-145. [PMID: 29321963 PMCID: PMC5757181 DOI: 10.1002/2211-5463.12357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B is one of the most common infectious diseases in the world; more than 350 million people are carriers of hepatitis B virus (HBV). Chronic HBV infection (CHB) leads to liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and steatosis. Despite its seriousness in terms of public health, the pathogenic mechanism of how CHB leads to liver diseases, especially cirrhosis and steatosis, remains unclear. We studied the role of HBV polymerase (HBp) reverse transcriptase (RT) activity in association with the pathogenesis of liver diseases in CHB by developing transgenic mice expressing HBp or the RT domain of HBp. Thorough pathological, serological, and histological analyses of the transgenic mice, as well as mechanistic studies, were conducted. All of the transgenic mice expressing RT in their livers developed early cirrhosis with steatosis by 18 months of age, and 10% developed HCC. The RT activity of HBp stimulates coordinated proapoptotic and proinflammatory responses involving the caspase-9, caspase-3, and caspase-1 pathways that might lead to the development of cirrhosis, HCC, and steatosis. The animal model described here should prove useful for elucidating the molecular events in the CHB-induced liver diseases.
Collapse
Affiliation(s)
- Hea‐Jong Chung
- Department of Biomedical SciencesChonbuk National University Medical SchoolJeonjuChonbukSouth Korea
- Present address:
Department of MicrobiologySeonam University Medical SchoolNamwonChonbukSouth Korea
| | - Xiao Chen
- Department of Biomedical SciencesChonbuk National University Medical SchoolJeonjuChonbukSouth Korea
| | - Yang Yu
- Department of Biomedical SciencesChonbuk National University Medical SchoolJeonjuChonbukSouth Korea
| | - Heui‐Kwan Lee
- Department of Radiation OncologyPresbyterian Medical CenterSeonam University Medical SchoolJeonjuChonbukSouth Korea
| | - Chang Ho Song
- Department of AnatomyChonbuk National University Medical SchoolJeonjuChonbukSouth Korea
| | - Han Choe
- Department of PhysiologyBio‐Medical Institute of TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seungkoo Lee
- Department of Anatomic PathologySchool of MedicineKangwon National UniversityChuncheonGangwonSouth Korea
| | - Hyeon‐Jin Kim
- JINIS BDRD InstituteJINIS Biopharmaceuticals Co.WanjuChonbukSouth Korea
| | - Seong‐Tshool Hong
- Department of Biomedical SciencesChonbuk National University Medical SchoolJeonjuChonbukSouth Korea
| |
Collapse
|
20
|
Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis. Biomed Pharmacother 2017; 92:316-323. [DOI: 10.1016/j.biopha.2017.05.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
|
21
|
Paracrine Effects of Bone Marrow Mononuclear Cells in Survival and Cytokine Expression after 90% Partial Hepatectomy. Stem Cells Int 2017; 2017:5270527. [PMID: 28326105 PMCID: PMC5343266 DOI: 10.1155/2017/5270527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Acute liver failure is a complex and fatal disease. Cell-based therapies are a promising alternative therapeutic approach for liver failure due to relatively simple technique and lower cost. The use of semipermeable microcapsules has become an interesting tool for evaluating paracrine effects in vivo. In this study, we aimed to assess the paracrine effects of bone marrow mononuclear cells (BMMC) encapsulated in sodium alginate to treat acute liver failure in an animal model of 90% partial hepatectomy (90% PH). Encapsulated BMMC were able to increase 10-day survival without enhancing liver regeneration markers. Gene expression of Il-6 and Il-10 in the remnant liver was markedly reduced at 6 h after 90% PH in animals receiving encapsulated BMMC compared to controls. This difference, however, was neither reflected by changes in the number of CD68+ cells nor by serum levels of IL6. On the other hand, treated animals presented increased caspase activity and gene expression in the liver. Taken together, these results suggest that BMMC regulate immune response and promote apoptosis in the liver after 90% PH by paracrine factors. These changes ultimately may be related to the higher survival observed in treated animals, suggesting that BMMC may be a promising alternative to treat acute liver failure.
Collapse
|
22
|
Etewa SE, Hegab MHA, Metwally AS, Abd Allah SH, Shalaby SM, El-Shal AS, Baredy M, El Shafey MA, Moawad HSF. Murine hepatocytes DNA changes as an assessment of the immunogenicity of potential anti-schistosomal vaccines experimentally. J Parasit Dis 2016; 41:219-229. [PMID: 28316416 DOI: 10.1007/s12639-016-0782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Abstract
Hepatic affection by granulomatous inflammation in schistosomiasis suggested that a potential anti-pathology vaccine could be generated based on limiting the presence of hazardous hepatocytes induced apoptosis and caused reduction of granulomas number and size . So, this work is concerned with experimental assessment of the efficacy of different Schistosoma mansoni antigens (SEA, SWAP and combined SEA and SWAP) on murine liver after challenge by Schistosoma infection, histopathological, histochemical and molecular investigations were performed on sixty male laboratory bred Swiss Albino mice. A schedule of vaccination and challenge infection was followed and performed on 6 mice groups (each of ten); control normal (G1), control infected (G2), adjuvant received then infected (G3), SEA + adj. received then infected (G4), SWAP + adj. received then infected (G5) and SEA + SWAP + adj. received then infected (G6).Animals were euthanized 10 weeks post infection.Vaccination efficacy was assessed by histopathological, histochemical and molecular studies on murine hepatic tissues.Results showed that:The combined (SEA + SWAP) antigens were better in reducing the number and diameter of the hepatic granulomas, with more protection of the hepatocytes DNA, in addition to more decrease of hepatocytes induced apoptosis and fragmentation as demonstrated by molecular assay.
Collapse
Affiliation(s)
- Samia E Etewa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H A Hegab
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf S Metwally
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Somia H Abd Allah
- Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sally M Shalaby
- Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S El-Shal
- Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Baredy
- Histology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud A El Shafey
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Howayda S F Moawad
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Stiedl P, McMahon R, Blaas L, Stanek V, Svinka J, Grabner B, Zollner G, Kessler SM, Claudel T, Müller M, Mikulits W, Bilban M, Esterbauer H, Eferl R, Haybaeck J, Trauner M, Casanova E. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis. Hepatology 2015; 61:613-26. [PMID: 25179284 PMCID: PMC4986903 DOI: 10.1002/hep.27408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the GH receptor gene (Ghr(-/-), a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2(-/-)), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr(-/-);Mdr2(-/-) mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation, and increased collagen deposition relative to Mdr2(-/-) mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr(-/-);Mdr2(-/-) mice had a pronounced down-regulation of hepatoprotective genes Hnf6, Egfr, and Igf-1, and significantly increased levels of reactive oxygen species (ROS) and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr(-/-)) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis, and bile infarcts compared to their wild-type littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr(-/-);Mdr2(-/-) mice displayed a significant decrease in tumor incidence compared to Mdr2(-/-) mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. CONCLUSION GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments.
Collapse
Affiliation(s)
- Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Robert McMahon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Victoria Stanek
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Jasmin Svinka
- Department of Internal Medicine I, Comprehensive Cancer Center CCC, Institute for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sonja M. Kessler
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Biomodels Austria, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Department of Internal Medicine I, Comprehensive Cancer Center CCC, Institute for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Robert Eferl
- Department of Internal Medicine I, Comprehensive Cancer Center CCC, Institute for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Wang K, Lin B. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell Signal 2013; 25:1970-80. [PMID: 23770286 DOI: 10.1016/j.cellsig.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| | | |
Collapse
|