1
|
Zeng Y, Zhang W, Xue T, Zhang D, Lv M, Jiang Y. Sphk1-induced autophagy in microglia promotes neuronal injury following cerebral ischaemia-reperfusion. Eur J Neurosci 2022; 56:4287-4303. [PMID: 35766986 DOI: 10.1111/ejn.15749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022]
Abstract
Microglial hyperactivation mediated by sphingosine kinase 1/sphingosine-1-phosphate (SphK1/S1P) signalling and the consequent inflammatory mediator production serve as the key drivers of cerebral ischaemia-reperfusion injury (CIRI). Although SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether SphK1 is similarly capable of regulating damage mediated by CIRI-activated microglia. In the current study, we adopted both in vitro oxygen-glucose deprivation reperfusion (OGDR) models and in vivo rat models of focal CIRI to ascertain this possibility. It was found that CIRI upregulated SphK1 and induced autophagy in microglia, while inhibiting these changes significantly impaired to prevented neuronal apoptosis. Results of mechanistic investigation revealed that SphK1 promoted autophagy via the tumour necrosis factor receptor associated factor 2 (TRAF2) pathway. Altogether, our findings unfolded to reveal a novel mechanism, whereby SphK1-induced autophagy in microglia contributed to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in ischaemic stroke patients.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tengteng Xue
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dayong Zhang
- Department of New Media and Arts, Harbin Institute of Technology, Harbin, China
| | - Manhua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongjia Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Uhelski ML, Li Y, Fonseca MM, Romero-Snadoval EA, Dougherty PM. Role of innate immunity in chemotherapy-induced peripheral neuropathy. Neurosci Lett 2021; 755:135941. [PMID: 33961945 DOI: 10.1016/j.neulet.2021.135941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.
Collapse
Affiliation(s)
- Megan L Uhelski
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Yan Li
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Miriam M Fonseca
- The Department of Anesthesiology, Wake Forest School of Medicine, United States
| | | | - Patrick M Dougherty
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States.
| |
Collapse
|
3
|
Toral-Rios D, Patiño-López G, Gómez-Lira G, Gutiérrez R, Becerril-Pérez F, Rosales-Córdova A, León-Contreras JC, Hernández-Pando R, León-Rivera I, Soto-Cruz I, Florán-Garduño B, Campos-Peña V. Activation of STAT3 Regulates Reactive Astrogliosis and Neuronal Death Induced by AβO Neurotoxicity. Int J Mol Sci 2020; 21:ijms21207458. [PMID: 33050466 PMCID: PMC7590075 DOI: 10.3390/ijms21207458] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023] Open
Abstract
Amyloid-beta oligomers (AβO) have been proposed as the most potent neurotoxic and inflammation inducers in Alzheimer’s disease (AD). AβO contribute to AD pathogenesis by impairing the production of several cytokines and inflammation-related signaling pathways, such as the Janus kinases/signal transducer of transcription factor-3 (JAK/STAT3) pathway. STAT3 modulates glial activation, indirectly regulates Aβ deposition, and induces cognitive decline in AD transgenic models. However, in vivo studies using an AβO microinjection rat model have not yet explored STAT3 role. The main purpose of this study was to elucidate if a single microinjection of AβO could promote an increased expression of STAT3 in glial cells favoring neuroinflammation and neurodegeneration. We designed a model of intrahippocampal microinjection and assessed glial activation, cytokines production, STAT3 expression, and neurodegeneration in time. Our results showed robust expression of STAT3 in glial cells (mainly in astrocytes) and neurons, correlating with neuronal death in response to AβO administration. A STAT3 inhibition assay conducted in rat primary hippocampal cultures, suggested that the induction of the transcription factor by AβO in astrocytes leads them to an activation state that may favor neuronal death. Notwithstanding, pharmacological inhibition of the JAK2/STAT3 pathway should be focused on astrocytes because it is also essential in neurons survival. Overall, these findings strongly suggest the participation of STAT3 in the development of neurodegeneration.
Collapse
Affiliation(s)
- Danira Toral-Rios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (D.T.-R.); (B.F.-G.)
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Gisela Gómez-Lira
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 14330, Mexico; (G.G.-L.); (R.G.)
| | - Rafael Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 14330, Mexico; (G.G.-L.); (R.G.)
| | - Fernando Becerril-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria;
| | - Aldebarán Rosales-Córdova
- Departamento de Administración, Facultad de Economía y Negocios, Universidad Anáhuac de México, Huixquilucan 52786, Mexico;
| | - Juan Carlos León-Contreras
- Departamento de Patología, Sección Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (J.C.L.-C.); (R.H.-P.)
| | - Rogelio Hernández-Pando
- Departamento de Patología, Sección Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (J.C.L.-C.); (R.H.-P.)
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos 62210, Mexico;
| | - Isabel Soto-Cruz
- Laboratorio de Oncología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (D.T.-R.); (B.F.-G.)
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de Mexico 14269, Mexico
- Correspondence: ; Tel.: +555-6063-822 (ext. 2010)
| |
Collapse
|
4
|
Depletion of Mitofusin-2 Causes Mitochondrial Damage in Cisplatin-Induced Neuropathy. Mol Neurobiol 2017; 55:1227-1235. [PMID: 28110471 DOI: 10.1007/s12035-016-0364-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023]
Abstract
Sensory neuropathy is a relevant side effect of the antineoplastic agent cisplatin. Mitochondrial damage is assumed to play a critical role in cisplatin-induced peripheral neuropathy, but the pathomechanisms underlying cisplatin-induced mitotoxicity and neurodegeneration are incompletely understood. In an animal model of cisplatin-induced neuropathy, we determined in detail the extent and spatial distribution of mitochondrial damage during cisplatin treatment. Changes in the total number of axonal mitochondria during cisplatin treatment were assessed in intercostal nerves from transgenic mice that express cyan fluorescent protein. Further, we explored the impact of cisplatin on the expression of nuclear encoded molecules of mitochondrial fusion and fission, including mitofusin-2 (MFN2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (DRP1). Cisplatin treatment resulted in a loss of total mitochondrial mass in axons and in an abnormal mitochondrial morphology including atypical enlargement, increased vacuolization, and loss of cristae. These changes were observed in distal and proximal nerve segments and were more prominent in axons than in Schwann cells. Transcripts of fusion and fission proteins were reduced in distal nerve segments. Significant reduced expression levels of the fusion protein MFN2 was detected in nerves of cisplatin-exposed animals. In summary, we provide for the first time an evidence that cisplatin alters mitochondrial dynamics in peripheral nerves. Loss of MFN2, previously implicated in the pathogenesis of other neurodegenerative diseases, also contributes to the pathogenesis in cisplatin-induced neuropathy.
Collapse
|