1
|
Varone M, Scavo G, Colardo M, Martella N, Pensabene D, Bisesto E, Del Busso A, Segatto M. p75NTR Modulation Reduces Oxidative Stress and the Expression of Pro-Inflammatory Mediators in a Cell Model of Rett Syndrome. Biomedicines 2024; 12:2624. [PMID: 39595188 PMCID: PMC11592079 DOI: 10.3390/biomedicines12112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Rett syndrome (RTT) is an early-onset neurological disorder primarily affecting females, leading to severe cognitive and physical disabilities. Recent studies indicate that an imbalance of redox homeostasis and exacerbated inflammatory responses are key players in the clinical manifestations of the disease. Emerging evidence highlights that the p75 neurotrophin receptor (p75NTR) is implicated in the regulation of oxidative stress (OS) and inflammation. Thus, this study is aimed at investigating the effects of p75NTR modulation by LM11A-31 on fibroblasts derived from RTT donors. Methods: RTT cells were treated with 0.1 µM of LM11A-31 for 24 h, and results were obtained using qPCR, immunofluorescence, ELISA, and Western blot techniques. Results: Our findings demonstrate that LM11A-31 reduces OS markers in RTT fibroblasts. Specifically, p75NTR modulation by LM11A-31 restores protein glutathionylation and reduces the expression of the pro-oxidant enzyme NOX4. Additionally, LM11A-31 significantly decreases the expression of the pro-inflammatory mediators interleukin-6 and interleukin-8. Additionally, LM11A-31 normalizes the expression levels of transcription factors involved in the regulation of the antioxidant response and inflammation. Conclusions: Collectively, these data suggest that p75NTR modulation may represent an effective therapeutic target to improve redox balance and reduce inflammation in RTT.
Collapse
Affiliation(s)
- Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Giuseppe Scavo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Emanuele Bisesto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Andrea Del Busso
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| |
Collapse
|
2
|
Gregor A, Zweier C. Modelling phenotypes, variants and pathomechanisms of syndromic diseases in different systems. MED GENET-BERLIN 2024; 36:121-131. [PMID: 38854643 PMCID: PMC11154186 DOI: 10.1515/medgen-2024-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems. Models discussed include budding yeast, the nematode worm, the fruit fly, the frog, zebrafish, mice and human cell-based systems.
Collapse
Affiliation(s)
- Anne Gregor
- University of BernDepartment of Human GeneticsInselspital Bern3010BernSwitzerland
| | | |
Collapse
|
3
|
Odabasi Y, Yanasik S, Saglam-Metiner P, Kaymaz Y, Yesil-Celiktas O. Comprehensive Transcriptomic Investigation of Rett Syndrome Reveals Increasing Complexity Trends from Induced Pluripotent Stem Cells to Neurons with Implications for Enriched Pathways. ACS OMEGA 2023; 8:44148-44162. [PMID: 38027357 PMCID: PMC10666228 DOI: 10.1021/acsomega.3c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Rett syndrome (RTT) is a rare genetic neurodevelopmental disorder that has no cure apart from symptomatic treatments. While intense research efforts are required to fulfill this unmet need, the fundamental challenge is to obtain sufficient patient data. In this study, we used human transcriptomic data of four different sample types from RTT patients including induced pluripotent stem cells, differentiated neural progenitor cells, differentiated neurons, and postmortem brain tissues with an increasing in vivo-like complexity to unveil specific trends in gene expressions across the samples. Based on DEG analysis, we identified F8A3, CNTN6, RPE65, and COL19A1 to have differential expression levels in three sample types and also observed previously reported genes such as MECP2, FOXG1, CACNA1G, SATB2, GABBR2, MEF2C, KCNJ10, and CUX2 in our study. Considering the significantly enriched pathways for each sample type, we observed a consistent increase in numbers from iPSCs to NEUs where MECP2 displayed profound effects. We also validated our GSEA results by using single-cell RNA-seq data. In WGCNA, we elicited a connection among MECP2, TNRC6A, and HOXA5. Our findings highlight the utility of transcriptomic analyses to determine genes that might lead to therapeutic strategies.
Collapse
Affiliation(s)
- Yusuf
Caglar Odabasi
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Sena Yanasik
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Yasin Kaymaz
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| |
Collapse
|
4
|
Musokhranova U, Grau C, Vergara C, Rodríguez-Pascau L, Xiol C, Castells AA, Alcántara S, Rodríguez-Pombo P, Pizcueta P, Martinell M, García-Cazorla A, Oyarzábal A. Mitochondrial modulation with leriglitazone as a potential treatment for Rett syndrome. J Transl Med 2023; 21:756. [PMID: 37884937 PMCID: PMC10601217 DOI: 10.1186/s12967-023-04622-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment. METHODS We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2tm1.1Bird-/+ mice brain, discriminating between different brain areas. The characterization was made according to their bioenergetics function, oxidative stress, network dynamics or ultrastructure. Building on that, we have studied the effect of leriglitazone, a PPARγ agonist, in the modulation of mitochondrial performance. For that, we treated Rett female mice with 75 mg/kg/day leriglitazone from weaning until sacrifice at 7 months, studying both the mitochondrial performance changes and their consequences on the mice phenotype. Finally, we studied its effect on neuroinflammation based on the presence of reactive glia by immunohistochemistry and through a cytokine panel. RESULTS We have described mitochondrial alterations in Rett fibroblasts regarding both shape and bioenergetic functions, as they displayed less interconnected and shorter mitochondria and reduced ATP production along with increased oxidative stress. The bioenergetic alterations were recalled in Rett mice models, being especially significant in cerebellum, already detectable in pre-symptomatic stages. Treatment with leriglitazone recovered the bioenergetic alterations both in Rett fibroblasts and female mice and exerted an anti-inflammatory effect in the latest, resulting in the amelioration of the mice phenotype both in general condition and exploratory activity. CONCLUSIONS Our studies confirm the mitochondrial dysfunction in Rett syndrome, setting the differences through brain areas and disease stages. Its modulation through leriglitazone is a potential treatment for this disorder, along with other diseases with mitochondrial involvement. This work constitutes the preclinical necessary evidence to lead to a clinical trial.
Collapse
Affiliation(s)
- Uliana Musokhranova
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | - Cristina Grau
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | | | | | - Clara Xiol
- Department of Medical Genetics, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alba A Castells
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soledad Alcántara
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, IDIPAZ, Madrid, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | | | - Marc Martinell
- Minoryx Therapeutics BE S.A., Gosselies, Charleroi, Belgium
- Minoryx Therapeutics S.L., Barcelona, Spain
| | - Angels García-Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain.
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.
| |
Collapse
|
5
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
6
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Al Sammarraie SHA, Aprile D, Meloni I, Alessio N, Mari F, Manata M, Lo Rizzo C, Di Bernardo G, Peluso G, Renieri A, Galderisi U. An Example of Neuro-Glial Commitment and Differentiation of Muse Stem Cells Obtained from Patients with IQSEC2-Related Neural Disorder: A Possible New Cell-Based Disease Model. Cells 2023; 12:977. [PMID: 37048050 PMCID: PMC10093355 DOI: 10.3390/cells12070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Although adult stem cells may be useful for studying tissue-specific diseases, they cannot be used as a general model for investigating human illnesses given their limited differentiation potential. Multilineage-differentiating stress-enduring (Muse) stem cells, a SSEA3(+) cell population isolated from mesenchymal stromal cells, fat, and skin fibroblasts, may be able to overcome that restriction. The Muse cells present in fibroblast cultures obtained from biopsies of patients' skin may be differentiated into cells of interest for analyzing diseases. We isolated Muse stem cells from patients with an intellectual disability (ID) and mutations in the IQSEC2 gene (i.e., BRAG1 gene) and induced in vitro neuroglial differentiation to study cell commitment and the differentiation of neural lineages. The neuroglial differentiation of Muse cells revealed that IQSEC2 mutations may alter the self-renewal and lineage specification of stem cells. We observed a decrease in the percentage of SOX2 (+) neural stem cells and neural progenitors (i.e., SOX2+ and NESTIN+) in cultures obtained from Muse cells with the mutated IQSEC2 gene. The alteration in the number of stem cells and progenitors produced a bias toward the astrocytes' differentiation. Our research demonstrates that Muse stem cells may represent a new cell-based disease model.
Collapse
Affiliation(s)
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Ilaria Meloni
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Francesca Mari
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Marianna Manata
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Caterina Lo Rizzo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | | - Alessandra Renieri
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Genome and Stem Cell Center (GENKÖK), Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
8
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Baroncelli L, Auel S, Rinne L, Schuster AK, Brand V, Kempkes B, Dietrich K, Müller M. Oral Feeding of an Antioxidant Cocktail as a Therapeutic Strategy in a Mouse Model of Rett Syndrome: Merits and Limitations of Long-Term Treatment. Antioxidants (Basel) 2022; 11:antiox11071406. [PMID: 35883897 PMCID: PMC9311910 DOI: 10.3390/antiox11071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that typically arises from spontaneous germline mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. For the first 6–18 months of life, the development of the mostly female patients appears normal. Subsequently, cognitive impairment, motor disturbances, hand stereotypies, epilepsy, and irregular breathing manifest, with previously learned skills being lost. Early mitochondrial impairment and a systemic oxidative burden are part of the complex pathogenesis, and contribute to disease progression. Accordingly, partial therapeutic merits of redox-stabilizing and antioxidant (AO) treatments were reported in RTT patients and Mecp2-mutant mice. Pursuing these findings, we conducted a full preclinical trial on male and female mice to define the therapeutic value of an orally administered AO cocktail composed of vitamin E, N-acetylcysteine, and α-lipoic acid. AO treatment ameliorated some of the microcephaly-related aspects. Moreover, the reduced growth, lowered blood glucose levels, and the hippocampal synaptic plasticity of Mecp2−/y mice improved. However, the first-time detected intensified oxidative DNA damage in Mecp2-mutant cortex persisted. The behavioral performance, breathing regularity, and life expectancy of Mecp2-mutant mice did not improve upon AO treatment. Long-term-treated Mecp2+/− mice eventually became obese. In conclusion, the AO cocktail ameliorated a subset of symptoms of the complex RTT-related phenotype, thereby further confirming the potential merits of AO-based pharmacotherapies. Yet, it also became evident that long-term AO treatment may lose efficacy and even aggravate the metabolic disturbances in RTT. This emphasizes the importance of a constantly well-balanced redox balance for systemic well-being.
Collapse
Affiliation(s)
- Laura Baroncelli
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Institute of Neuroscience, National Research Council (CNR), via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, I-56128 Pisa, Italy
| | - Stefanie Auel
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Lena Rinne
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Ann-Kathrin Schuster
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Victoria Brand
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Belinda Kempkes
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Katharina Dietrich
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
10
|
Liu S, Pei P, Li L, Wu H, Zheng X, Wang S, Xiao Y, Pan H, Bao X, Qi Y, Ma Y. Mitochondrial DNA Copy Number in Rett Syndrome Caused by Methyl-CpG-Binding Protein-2 Variants. J Pediatr 2022; 241:154-161. [PMID: 34619114 DOI: 10.1016/j.jpeds.2021.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine changes in mitochondrial DNA (mtDNA) copy number in peripheral blood in Rett syndrome caused by methyl-CpG-binding protein-2 (MECP2) variants and explore the mechanism of mitochondrial dysfunction in Rett syndrome. STUDY DESIGN Female patients who were diagnosed with Rett syndrome and had an MECP2 variant (n = 142) were recruited in this study, along with the same number of age- and sex-matched healthy controls. MtDNA copy number was quantified by real-time quantitative polymerase chain reaction with TaqMan probes. The differences in mtDNA copy number between the Rett syndrome group and the control group were analyzed using the independent-samples t test. Linear regression, biserial correlation analysis, and one-way ANOVA were applied for the correlations between mtDNA copy number and age, clinical severity, variant types, functional domains, and hot-spot variants. RESULTS MtDNA copy number was found to be significantly increased in the patients with Rett syndrome with MECP2 gene variants compared with the control subjects. Age, clinical severity, variant types, functional domains, and hot-spot variants were not related to mtDNA copy number in patients with Rett syndrome. CONCLUSIONS MtDNA copy number is increased significantly in patients with Rett syndrome, suggesting that changes in mitochondrial function in Rett syndrome trigger a compensatory increase in mtDNA copy number and providing new possibilities for treating Rett syndrome, such as mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Siwen Liu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Pei Pei
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Lin Li
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hairong Wu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xuefei Zheng
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Songtao Wang
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yang Xiao
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hong Pan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
11
|
Golubiani G, Lagani V, Solomonia R, Müller M. Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex: Evidence for a Pronounced Multi-Facetted Metabolic Component in Rett Syndrome. Cells 2021; 10:cells10092494. [PMID: 34572143 PMCID: PMC8472238 DOI: 10.3390/cells10092494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/10/2023] Open
Abstract
Using unsupervised metabolomics, we defined the complex metabolic conditions in the cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and cognitive disabilities in females, results in profound cognitive impairment with autistic features, motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene, which encodes a transcriptional modulator. It then causes a deregulation of several target genes and metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and 33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochondrial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated pathways that were identified—in particular the markedly affected amino acid and carbohydrate metabolism—confirm a complex and multifaceted metabolic component in RTT, which in turn signifies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of potential biomarkers for a more detailed rating of disease severity and disease progression.
Collapse
Affiliation(s)
- Gocha Golubiani
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
12
|
A O, U M, Lf B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine 2021; 69:103474. [PMID: 34256347 PMCID: PMC8324816 DOI: 10.1016/j.ebiom.2021.103474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Whereas energy function in the aging brain and their related neurodegenerative diseases has been explored in some detail, there is limited knowledge about molecular mechanisms and brain networks of energy metabolism during infancy and childhood. In this review we describe current insights on physiological brain energetics at prenatal and neonatal stages, and in childhood. We then describe the main groups of inborn errors of energy metabolism affecting the brain. Of note, scarce basic neuroscience research in this field limits the opportunity for these disorders to provide paradigms of energy utilization during neurodevelopment. Finally, we report energy metabolism disturbances in well-known non-metabolic neurodevelopmental disorders. As energy metabolism is a fundamental biological function, brain energy utilization is likely altered in most neuropediatric diseases. Precise knowledge on mechanisms of brain energy disturbance will open the possibility of metabolic modulation therapies regardless of disease etiology.
Collapse
Affiliation(s)
- Oyarzábal A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Musokhranova U
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barros Lf
- Center for Scientific Studies - CECs, Valdivia 5110466, Chile
| | - García-Cazorla A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
13
|
Pecorelli A, Cordone V, Schiavone ML, Caffarelli C, Cervellati C, Cerbone G, Gonnelli S, Hayek J, Valacchi G. Altered Bone Status in Rett Syndrome. Life (Basel) 2021; 11:life11060521. [PMID: 34205017 PMCID: PMC8230033 DOI: 10.3390/life11060521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/β-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Correspondence: (A.P.); (G.V.)
| | - Valeria Cordone
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Lucia Schiavone
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Gaetana Cerbone
- Division of Medical Genetics, “S.G. Moscati” Hospital, 74100 Avellino, Italy;
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Joussef Hayek
- Toscana Life Sciences Foundation, 53100 Siena, Italy;
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.P.); (G.V.)
| |
Collapse
|
14
|
Zalosnik MI, Fabio MC, Bertoldi ML, Castañares CN, Degano AL. MeCP2 deficiency exacerbates the neuroinflammatory setting and autoreactive response during an autoimmune challenge. Sci Rep 2021; 11:10997. [PMID: 34040112 PMCID: PMC8155097 DOI: 10.1038/s41598-021-90517-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Rett syndrome is a severe and progressive neurological disorder linked to mutations in the MeCP2 gene. It has been suggested that immune alterations may play an active role in the generation and/or maintenance of RTT phenotypes. However, there is no clear consensus about which pathways are regulated in vivo by MeCP2 in the context of immune activation. In the present work we set to characterize the role of MeCP2 during the progression of Experimental Autoimmune Encephalomyelitis (EAE) using the MeCP2308/y mouse model (MUT), which represents a condition of "MeCP2 function deficiency". Our results showed that MeCP2 deficiency increased the susceptibility to develop EAE, along with a defective induction of anti-inflammatory responses and an exacerbated MOG-specific IFNγ expression in immune sites. In MUT-EAE spinal cord, we found a chronic increase in pro-inflammatory cytokines gene expression (IFNγ, TNFα and IL-1β) and downregulation of genes involved in immune regulation (IL-10, FoxP3 and CX3CR1). Moreover, our results indicate that MeCP2 acts intrinsically upon immune activation, affecting neuroimmune homeostasis by regulating the pro-inflammatory/anti-inflammatory balance in vivo. These results are relevant to identify the potential consequences of MeCP2 mutations on immune homeostasis and to explore novel therapeutic strategies for MeCP2-related disorders.
Collapse
Affiliation(s)
- M I Zalosnik
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - M C Fabio
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
| | - M L Bertoldi
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - C N Castañares
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
| | - A L Degano
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
15
|
Ehrhart F, Coort SL, Eijssen L, Cirillo E, Smeets EE, Bahram Sangani N, Evelo CT, Curfs LMG. Integrated analysis of human transcriptome data for Rett syndrome finds a network of involved genes. World J Biol Psychiatry 2020; 21:712-725. [PMID: 30907210 DOI: 10.1080/15622975.2019.1593501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Rett syndrome (RTT) is a rare disorder causing severe intellectual and physical disability. The cause is a mutation in the gene coding for the methyl-CpG binding protein 2 (MECP2), a multifunctional regulator protein. Purpose of the study was integration and investigation of multiple gene expression profiles in human cells with impaired MECP2 gene to obtain a robust, data-driven insight in molecular disease mechanisms. METHODS Information about changed gene expression was extracted from five previously published studies, integrated and the resulting differentially expressed genes were analysed using overrepresentation analysis of biological pathways and gene ontology, and network analysis. RESULTS We identified a set of genes, which are significantly changed not in all but several transcriptomics datasets and were not mentioned in the context of RTT before. We found that these genes are involved in several processes and molecular pathways known to be affected in RTT. Integrating transcription factors we identified a possible link how MECP2 regulates cytoskeleton organisation via MEF2C and CAPG. CONCLUSIONS Integrative analysis of omics data and prior knowledge databases is a powerful approach to identify links between mutation and phenotype especially in rare disease research where little data is available.
Collapse
Affiliation(s)
- Friederike Ehrhart
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lars Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric E Smeets
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nasim Bahram Sangani
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- GCK - Rett Expertise Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
16
|
Casanova EL, Baeza-Velasco C, Buchanan CB, Casanova MF. The Relationship between Autism and Ehlers-Danlos Syndromes/Hypermobility Spectrum Disorders. J Pers Med 2020; 10:E260. [PMID: 33271870 PMCID: PMC7711487 DOI: 10.3390/jpm10040260] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable interest has arisen concerning the relationship between hereditary connective tissue disorders such as the Ehlers-Danlos syndromes (EDS)/hypermobility spectrum disorders (HSD) and autism, both in terms of their comorbidity as well as co-occurrence within the same families. This paper reviews our current state of knowledge, as well as highlighting unanswered questions concerning this remarkable patient group, which we hope will attract further scientific interest in coming years. In particular, patients themselves are demanding more research into this growing area of interest, although science has been slow to answer that call. Here, we address the overlap between these two spectrum conditions, including neurobehavioral, psychiatric, and neurological commonalities, shared peripheral neuropathies and neuropathologies, and similar autonomic and immune dysregulation. Together, these data highlight the potential relatedness of these two conditions and suggest that EDS/HSD may represent a subtype of autism.
Collapse
Affiliation(s)
- Emily L. Casanova
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29615, USA;
| | - Carolina Baeza-Velasco
- Laboratory of Psychopathology and Health Processes, University of Paris, 92100 Boulogne Billancourt, France;
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, 34000 Montpellier, France
| | | | - Manuel F. Casanova
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29615, USA;
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
17
|
Sbardella D, Tundo GR, Cunsolo V, Grasso G, Cascella R, Caputo V, Santoro AM, Milardi D, Pecorelli A, Ciaccio C, Di Pierro D, Leoncini S, Campagnolo L, Pironi V, Oddone F, Manni P, Foti S, Giardina E, De Felice C, Hayek J, Curatolo P, Galasso C, Valacchi G, Coletta M, Graziani G, Marini S. Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with MeCP2 non-sense mutations. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165793. [PMID: 32275946 DOI: 10.1016/j.bbadis.2020.165793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023]
Abstract
Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.
Collapse
Affiliation(s)
- Diego Sbardella
- IRCSS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Grazia Raffaella Tundo
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Alessandra Pecorelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Chiara Ciaccio
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Virginia Pironi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | | | - Priscilla Manni
- Ophthalmology Unit, St. Andrea Hospital, Faculty of Medicine and Psychology, NESMOS Department, University of Rome "Sapienza", Rome, Italy
| | - Salvatore Foti
- Department of Chemistry, University of Catania, Catania, Italy
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Joussef Hayek
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; "Isola di Bau", Multi-Specialist Centre, Certaldo (Florence), Italy
| | - Paolo Curatolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Cinzia Galasso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Massimiliano Coletta
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
18
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Paakkola T, Salokas K, Miinalainen I, Lehtonen S, Manninen A, Kaakinen M, Ruddock LW, Varjosalo M, Kaarteenaho R, Uusimaa J, Hinttala R. Biallelic mutations in human NHLRC2 enhance myofibroblast differentiation in FINCA disease. Hum Mol Genet 2019; 27:4288-4302. [PMID: 30239752 DOI: 10.1093/hmg/ddy298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023] Open
Abstract
The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Teija Paakkola
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | | | | | - Aki Manninen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Lloyd W Ruddock
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Unit of Internal Medicine and Respiratory Medicine, Oulu University Hospital, OYS, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
20
|
Pecorelli A, Cervellati C, Cordone V, Amicarelli F, Hayek J, Valacchi G. 13-HODE, 9-HODE and ALOX15 as potential players in Rett syndrome OxInflammation. Free Radic Biol Med 2019; 134:598-603. [PMID: 30743046 DOI: 10.1016/j.freeradbiomed.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022]
Abstract
Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT), a pervasive neurodevelopmental disorder, that shows also multisystem disturbances associated with a metabolic component. The aim of this study was to investigate whether an increased production of oxidized linoleic acid metabolites, specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), can contribute to the altered the redox and immune homeostasis, suggested to be involved in RTT. Serum levels of 9- and 13-HODEs were elevated in RTT and associated with the expression of arachidonate 15-Lipoxygenase (ALOX15) in peripheral blood mononuclear cells (PBMCs). Omega-3 polyunsaturated fatty acids supplementation has shown to lower HODEs levels in RTT. Statistically significant correlation was demonstrated between the increased plasma HODEs levels and the lipoprotein-associated phospholipase A2 (Lp-PLA2) activity. Collectively, these findings reinforce the concept of the key role played by lipid peroxidation in RTT, and the possible ability of omega-3 polyunsaturated fatty acids supplementation in improving the oxinflammation status in RTT.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Valeria Cordone
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
21
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
22
|
Cordone V, Pecorelli A, Benedusi M, Santini S, Falone S, Hayek J, Amicarelli F, Valacchi G. Antiglycative Activity and RAGE Expression in Rett Syndrome. Cells 2019; 8:cells8020161. [PMID: 30781346 PMCID: PMC6406506 DOI: 10.3390/cells8020161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a human neurodevelopmental disorder, whose pathogenesis has been linked to both oxidative stress and subclinical inflammatory status (OxInflammation). Methylglyoxal (MG), a glycolytic by-product with cytotoxic and pro-oxidant power, is the major precursor in vivo of advanced glycation end products (AGEs), which are known to exert their detrimental effect via receptor- (e.g., RAGE) or non-receptor-mediated mechanisms in several neurological diseases. On this basis, we aimed to compare fibroblasts from healthy subjects (CTR) with fibroblasts from RTT patients (N = 6 per group), by evaluating gene/protein expression patterns, and enzymatic activities of glyoxalases (GLOs), along with the levels of MG-dependent damage in both basal and MG-challenged conditions. Our results revealed that RTT is linked to an alteration of the GLOs system (specifically, increased GLO2 activity), that ensures unchanged MG-dependent damage levels. However, RTT cells underwent more pronounced cell death upon exogenous MG-treatment, as compared to CTR, and displayed lower RAGE levels than CTR, with no alterations following MG-treatment, thus suggesting that an adaptive response to dicarbonyl stress may occur. In conclusion, besides OxInflammation, RTT is associated with reshaping of the major defense systems against dicarbonyl stress, along with an altered cellular stress response towards pro-glycating insults.
Collapse
Affiliation(s)
- Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, 53100 Siena, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
23
|
Müller M. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neurosci Biobehav Rev 2019; 98:154-163. [PMID: 30639673 DOI: 10.1016/j.neubiorev.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder affecting mostly girls. A seemingly normal initial development is followed by developmental stagnation and regression, leading to severe mental impairment with autistic features, motor dysfunction, irregular breathing and epilepsy. Currently, a cure does not exist. Due to the close association of RTT with mitochondrial alterations, cellular redox-impairment and oxidative stress, compounds stabilizing mitochondrial function, cellular redox-homeostasis, and oxidant detoxification are increasingly considered as treatment concepts. Indeed, antioxidants and free-radical scavengers ameliorate certain aspects of the complex and severe clinical presentation of RTT. To further evaluate these strategies, reliable biosensors are needed to quantify redox-conditions in brain and peripheral organs of mouse models or in patient-derived cells. Genetically-encoded redox-sensors meet these requirements. Expressed in transgenic mouse-models such as our unique Rett-redox indicator mice, they will report for any cell type desired the severity of oxidant stress throughout the various disease stages of RTT. Furthermore, these sensors will be crucial to evaluate in vitro and in vivo the outcome of mitochondria- and redox-balance targeted treatments.
Collapse
Affiliation(s)
- Michael Müller
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, D-37073 Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro-und Sinnesphysiologie, Humboldtallee 23, D-37073 Göttingen, Germany.
| |
Collapse
|
24
|
Mitochondrial Electron Transport Chain Complex Dysfunction in MeCP2 Knock-Down Astrocytes: Protective Effects of Quercetin Hydrate. J Mol Neurosci 2018; 67:16-27. [PMID: 30519865 DOI: 10.1007/s12031-018-1197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022]
Abstract
Astrocytes play the central role in CNS metabolism to support neuronal functions. Mehyl-CpG-binding protein 2 (MeCP2) is the global transcription factor with differential expression in neuronal and non-neuronal cells. MeCP2 mutation and downstream detrimental effects have been reported in astrocytes also in MeCP2-associated neurodevelopmental disorder-Rett syndrome. Several studies have shown mitochondrial impairment linked to ROS production and reduced ATP synthesis in Rett patients and models, but consequences of MeCP2 deficiency on mitochondrial electron transport chain complexes in astrocytes and effect of known antioxidant quercetin aglycone has not yet been reported. The present study aimed to investigate effect of quercetin on mitochondrial functioning in MeCP2-deficient astrocytes. Our data show onefold upregulated Uqcrc1 and Ndufv2 gene expression, subtle change in protein expression, and significantly reduced mitochondrial respiratory chain complex-II and complex-III enzyme activities in MeCP2 knock-down astrocytes. Intracellular calcium robustly increased and mitochondrial membrane potential decreased, while no change in ROS was observed in MeCP2 knock-down astrocytes. Quercetin increased MeCP2 and normalized Uqcrc1 and Ndufv2 gene expression but did not modulate MeCP2 and Ndufv2 proteins expression. Interestingly, quercetin upregulated significantly the mitochondrial respiratory complex-II, complex-III, and complex-IV activities in dose-dependent manner. It also restored intracellular calcium level and mitochondrial membrane potential. In vitro observations suggest the beneficial effect of quercetin in mitochondrial functioning in MeCP2-deficient condition. There are no reports focusing on role of quercetin in mitochondrial function in MeCP2-deficient astrocytes, and these observations serve as preliminary data to evaluate quercetin's effects in vivo.
Collapse
|
25
|
Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a Marker for Human Disease. Adv Clin Chem 2018; 87:141-159. [PMID: 30342710 DOI: 10.1016/bs.acc.2018.07.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione (GSH), often referred to as "the master antioxidant," participates not only in antioxidant defense systems, but many metabolic processes, and therefore its role cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and thus as expected, GSH imbalance is observed in a wide range of pathological conditions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is not surprising that GSH has attracted the attention of biological researchers and pharmacologists alike as a possible target for medical intervention. Here, we discuss the role GSH plays amongst these pathological conditions to illuminate how it can be used as a marker for human disease.
Collapse
Affiliation(s)
- Garrett Teskey
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Rachel Abrahem
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; College of life Sciences, Hebei University, Baoding, China
| | - Karo Gyurjian
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hicret Islamoglu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Mariana Lucero
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Andrew Martinez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Erik Paredes
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Oscar Salaiz
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brittanie Robinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States; Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
26
|
Bacalhau M, Simões M, Rocha MC, Hardy SA, Vincent AE, Durães J, Macário MC, Santos MJ, Rebelo O, Lopes C, Pratas J, Mendes C, Zuzarte M, Rego AC, Girão H, Wong LJC, Taylor RW, Grazina M. Disclosing the functional changes of two genetic alterations in a patient with Chronic Progressive External Ophthalmoplegia: Report of the novel mtDNA m.7486G>A variant. Neuromuscul Disord 2018; 28:350-360. [PMID: 29398297 PMCID: PMC5952895 DOI: 10.1016/j.nmd.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
Chronic Progressive External Ophthalmoplegia (CPEO) is characterized by ptosis and ophthalmoplegia and is usually caused by mitochondrial DNA (mtDNA) deletions or mt-tRNA mutations. The aim of the present work was to clarify the genetic defect in a patient presenting with CPEO and elucidate the underlying pathogenic mechanism. This 62-year-old female first developed ptosis of the right eye at the age of 12 and subsequently the left eye at 45 years, and was found to have external ophthalmoplegia at the age of 55 years. Histopathological abnormalities were detected in the patient's muscle, including ragged-red fibres, a mosaic pattern of COX-deficient muscle fibres and combined deficiency of respiratory chain complexes I and IV. Genetic investigation revealed the "common deletion" in the patient's muscle and fibroblasts. Moreover, a novel, heteroplasmic mt-tRNASer(UCN) variant (m.7486G>A) in the anticodon loop was detected in muscle homogenate (50%), fibroblasts (11%) and blood (4%). Single-fibre analysis showed segregation with COX-deficient fibres for both genetic alterations. Assembly defects of mtDNA-encoded complexes were demonstrated in fibroblasts. Functional analyses showed significant bioenergetic dysfunction, reduction in respiration rate and ATP production and mitochondrial depolarization. Multilamellar bodies were detected by electron microscopy, suggesting disturbance in autophagy. In conclusion, we report a CPEO patient with two possible genetic origins, both segregating with biochemical and histochemical defect. The "common mtDNA deletion" is the most likely cause, yet the potential pathogenic effect of a novel mt-tRNASer(UCN) variant cannot be fully excluded.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Marta Simões
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Mariana C Rocha
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Steven A Hardy
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - João Durães
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Maria C Macário
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Maria João Santos
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Carla Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Pratas
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Cândida Mendes
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lee-Jun C Wong
- Mitochondrial Diagnostic Laboratory, Baylor College of Medicine, Houston, USA
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Manuela Grazina
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Arezzini B, Vecchio D, Signorini C, Stringa B, Gardi C. F 2-isoprostanes can mediate bleomycin-induced lung fibrosis. Free Radic Biol Med 2018; 115:1-9. [PMID: 29129520 DOI: 10.1016/j.freeradbiomed.2017.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
F2-isoprostanes (F2-IsoPs) have been considered markers of oxidative stress in various pulmonary diseases, but little is known about their possible role in pulmonary fibrosis. In this study, we have investigated the potential key role of F2-IsoPs as markers and mediators of bleomycin (BLM)-induced pulmonary fibrosis in rats. During the in vivo study, plasma F2-IsoPs showed a peak at 7 days and remained elevated for the entire experimental period. Lung F2-IsoP content nearly tripled 7 days following the intratracheal instillation of BLM, and by 28 days, the value increased about fivefold compared to the controls. Collagen deposition correlated with F2-IsoP content in the lung. Furthermore, from day 21 onwards, lung sections from BLM-treated animals showed α-smooth muscle actin (α-SMA) positive cells, which were mostly evident at 28 days. In vitro studies performed in rat lung fibroblasts (RLF) demonstrated that either BLM or F2-IsoPs stimulated both cell proliferation and collagen synthesis. Moreover, RLF treated with F2-IsoPs showed a significant increase of α-SMA expression compared to control, indicating that F2-IsoPs can readily activate fibroblasts to myofibroblasts. Our data demonstrated that F2-IsoPs can be mediators of key events for the onset and development of lung fibrosis, such as cell proliferation, collagen synthesis and fibroblast activation. Immunocytochemistry analysis, inhibition and binding studies demonstrated the presence of the thromboxane A2 receptor (TP receptor) on lung fibroblasts and suggested that the observed effects may be elicited through the binding to this receptor. Our data added a new perspective on the role of F2-IsoPs in lung fibrosis by providing evidence of a profibrotic role for these mediators in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Beatrice Arezzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Vecchio
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Blerta Stringa
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
28
|
Valacchi G, Pecorelli A, Cervellati C, Hayek J. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation. Free Radic Biol Med 2017; 111:270-280. [PMID: 28063942 DOI: 10.1016/j.freeradbiomed.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients..
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Viale Mario Bracci, 53100 Siena, Italy
| |
Collapse
|
29
|
Sbardella D, Tundo GR, Campagnolo L, Valacchi G, Orlandi A, Curatolo P, Borsellino G, D'Esposito M, Ciaccio C, Cesare SD, Pierro DD, Galasso C, Santarone ME, Hayek J, Coletta M, Marini S. Retention of Mitochondria in Mature Human Red Blood Cells as the Result of Autophagy Impairment in Rett Syndrome. Sci Rep 2017; 7:12297. [PMID: 28951555 PMCID: PMC5614985 DOI: 10.1038/s41598-017-12069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Rett Syndrome (RTT), which affects approximately 1:10.000 live births, is a X-linked pervasive neuro-developmental disorder which is caused, in the vast majority of cases, by a sporadic mutation in the Methyl-CpG-binding protein-2 (MeCP2) gene. This is a transcriptional activator/repressor with presumed pleiotropic activities. The broad tissue expression of MeCP2 suggests that it may be involved in several metabolic pathways, but the molecular mechanisms which provoke the onset and progression of the syndrome are largely unknown. In this paper, we report that primary fibroblasts that have been isolated from RTT patients display a defective formation of autophagosomes under conditions of nutrient starvation and that the mature Red Blood Cells of some RTT patients retain mitochondria. Moreover, we provide evidence regarding the accumulation of the p62/SQSTM1 protein and ubiquitin-aggregated structures in the cerebellum of Mecp2 knockout mouse model (Mecp2−/y) during transition from the non-symptomatic to the symptomatic stage of the disease. Hence, we propose that a defective autophagy could be involved in the RTT clinical phenotype, which introduces new molecular perspectives in the pathogenesis of the syndrome.
Collapse
Affiliation(s)
- Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Curatolo
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A.Buzzati Traverso", Naples, Italy.,IRCCS Neuromed, Pozzuoli, (Is), Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- University Department of Pediatrics, Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
30
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
31
|
Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease-Implications for Therapy. J Clin Med 2017; 6:jcm6050050. [PMID: 28467362 PMCID: PMC5447941 DOI: 10.3390/jcm6050050] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023] Open
Abstract
Technical advances in the ability to measure mitochondrial dysfunction are providing new insights into mitochondrial disease pathogenesis, along with new tools to objectively evaluate the clinical status of mitochondrial disease patients. Glutathione (l-ϒ-glutamyl-l-cysteinylglycine) is the most abundant intracellular thiol, and the intracellular redox state, as reflected by levels of oxidized (GSSG) and reduced (GSH) glutathione, as well as the GSH/GSSG ratio, is considered to be an important indication of cellular health. The ability to quantify mitochondrial dysfunction in an affected patient will not only help with routine care, but also improve rational clinical trial design aimed at developing new therapies. Indeed, because multiple disorders have been associated with either primary or secondary deficiency of the mitochondrial electron transport chain and redox imbalance, developing mitochondrial therapies that have the potential to improve the intracellular glutathione status has been a focus of several clinical trials over the past few years. This review will also discuss potential therapies to increase intracellular glutathione with a focus on EPI-743 (α-tocotrienol quinone), a compound that appears to have the ability to modulate the activity of oxidoreductases, in particular NAD(P)H:quinone oxidoreductase 1.
Collapse
Affiliation(s)
- Gregory M Enns
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| | - Tina M Cowan
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| |
Collapse
|
32
|
Shulyakova N, Andreazza AC, Mills LR, Eubanks JH. Mitochondrial Dysfunction in the Pathogenesis of Rett Syndrome: Implications for Mitochondria-Targeted Therapies. Front Cell Neurosci 2017; 11:58. [PMID: 28352216 PMCID: PMC5348512 DOI: 10.3389/fncel.2017.00058] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
First described over 50 years ago, Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. RTT affects predominantly females, and has a prevalence of roughly 1 in every 10,000 female births. Prior to the discovery that mutations of MECP2 are the leading cause of RTT, there were suggestions that RTT could be a mitochondrial disease. In fact, several reports documented altered mitochondrial structure, and deficiencies in mitochondrial enzyme activity in different cells or tissues derived from RTT patients. With the identification of MECP2 as the causal gene, interest largely shifted toward defining the normal function of MeCP2 in the brain, and how its absence affects the neurodevelopment and neurophysiology. Recently, though, interest in studying mitochondrial function in RTT has been reignited, at least in part due to observations suggesting systemic oxidative stress does play a contributing role in RTT pathogenesis. Here we review data relating to mitochondrial alterations at the structural and functional levels in RTT patients and model systems, and present a hypothesis for how the absence of MeCP2 could lead to altered mitochondrial function and elevated levels of cellular oxidative stress. Finally, we discuss the prospects for treating RTT using interventions that target specific aspects of mitochondrial dysfunction and/or oxidative stress.
Collapse
Affiliation(s)
- Natalya Shulyakova
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Linda R Mills
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada; Institute of Medical Sciences, University of TorontoToronto, ON, Canada; Department of Surgery (Neurosurgery), University of TorontoToronto, ON, Canada
| |
Collapse
|
33
|
Yu Q, Wang B, Zhao T, Zhang X, Tao L, Shi J, Sun X, Ding Q. NaHS Protects against the Impairments Induced by Oxygen-Glucose Deprivation in Different Ages of Primary Hippocampal Neurons. Front Cell Neurosci 2017; 11:67. [PMID: 28326019 PMCID: PMC5339257 DOI: 10.3389/fncel.2017.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
Brain ischemia leads to poor oxygen supply, and is one of the leading causes of brain damage and/or death. Neuroprotective agents are thus in great need for treatment purpose. Using both young and aged primary cultured hippocampal neurons as in vitro models, we investigated the effect of sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, on oxygen-glucose deprivation (OGD) damaged neurons that mimick focal cerebral ischemia/reperfusion (I/R) induced brain injury. NaHS treatment (250 μM) protected both young and aged hippocampal neurons, as indicated by restoring number of primary dendrites by 43.9 and 68.7%, number of dendritic end tips by 59.8 and 101.1%, neurite length by 36.8 and 66.7%, and spine density by 38.0 and 58.5% in the OGD-damaged young and aged neurons, respectively. NaHS treatment inhibited growth-associated protein 43 downregulation, oxidative stress in both young and aged hippocampal neurons following OGD damage. Further studies revealed that NaHS treatment could restore ERK1/2 activation, which was inhibited by OGD-induced protein phosphatase 2 (PP2A) upregulation. Our results demonstrated that NaHS has potent protective effects against neuron injury induced by OGD in both young and aged hippocampal neurons.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Binrong Wang
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Xiangnan Zhang
- Division of Scientific Research, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Lei Tao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Jinshan Shi
- Department of Anesthesiology, Guizhou Provincial People's Hospital Guiyang, China
| | - Xude Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Qian Ding
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
34
|
Ciaccio C, Di Pierro D, Sbardella D, Tundo GR, Curatolo P, Galasso C, Santarone ME, Casasco M, Cozza P, Cortelazzo A, Rossi M, De Felice C, Hayek J, Coletta M, Marini S. Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations. Mol Cell Biochem 2017; 426:205-213. [PMID: 28063007 DOI: 10.1007/s11010-016-2893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, mainly affecting females, which is associated to a mutation on the methyl-CpG-binding protein 2 gene. In the pathogenesis and progression of classic RTT, red blood cell (RBC) morphology has been shown to be an important biosensor for redox imbalance and chronic hypoxemia. Here we have evaluated the impact of oxidation and redox imbalance on several functional properties of RTT erythrocytes. In particular, we report for the first time a stopped-flow measurement of the kinetics of oxygen release by RBCs and the analysis of the intrinsic affinity of the hemoglobin (Hb). According to our experimental approach, RBCs from RTT patients do not show any intrinsic difference with respect to those from healthy controls neither in Hb's oxygen-binding affinity nor in O2 exchange processes at 37 °C. Therefore, these factors do not contribute to the observed alteration of the respiratory function in RTT patients. Moreover, the energy metabolism of RBCs, from both RTT patients and controls, was evaluated by ion-pairing HPLC method and related to the level of malondialdehyde and to the oxidative radical scavenging capacity of red cells. Results have clearly confirmed significant alterations in antioxidant defense capability, adding important informations concerning the high-energy compound levels in RBCs of RTT subjects, underlying possible correlations with inflammatory tissue alterations.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paolo Curatolo
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Marta Elena Santarone
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | | | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alessio Cortelazzo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, AOUS, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
35
|
Burger BJ, Rose S, Bennuri SC, Gill PS, Tippett ML, Delhey L, Melnyk S, Frye RE. Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction. Front Pediatr 2017; 5:219. [PMID: 29075622 PMCID: PMC5643424 DOI: 10.3389/fped.2017.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment. In this case study, we report siblings with ASD who had similar initial phenotypic presentations. Whole exome sequencing (WES) revealed a novel c.795delT mutation in the WDR45 gene affecting the girl, which was consistent with her eventual progression to a Rett-like syndrome phenotype including seizures along with a stereotypical cyclic breathing pattern. Interestingly, WES identified that the brother harbored a novel heterozygous Y1546H variant in the DEP domain-containing protein 5 (DEPDC5) gene, consistent with his presentation. Both siblings underwent a metabolic workup that demonstrated different patterns of mitochondrial dysfunction. The girl demonstrated statistically significant elevations in mitochondrial activity of complex I + III in both muscle and fibroblasts and increased respiration in peripheral blood mononuclear cells (PBMCs) on Seahorse Extracellular Flux analysis. The boy demonstrates a statistically significant decrease in complex IV activity in buccal epithelium and decreased respiration in PBMCs. These cases highlight the differences in genetic abnormalities even in siblings with ASD phenotypes as well as highlights the individual role of novel mutations in the WDR45 and DEPDC5 genes. These cases demonstrate the importance of advanced genetic testing combined with metabolic evaluations in the workup of children with ASD.
Collapse
Affiliation(s)
- Barrett J Burger
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shannon Rose
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Marie L Tippett
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stepan Melnyk
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
36
|
Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Pecorelli A, Scalabrì F, Madonna M, Filosa S, Della Giovampaola C, Capone A, Durand T, Mirasole C, Zolla L, Valacchi G, Ciccoli L, Guy J, D’Esposito M, Hayek J. Abnormal N-glycosylation pattern for brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome. Neurosci Res 2016; 105:28-34. [DOI: 10.1016/j.neures.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 02/02/2023]
|
37
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
38
|
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disease, previously included into the autistic spectrum disorders, affecting almost exclusively females (frequency 1:10,000). RTT leads to intellective deficit, purposeful hands use loss and late major motor impairment besides featuring breathing disorders, epilepsy and increased risk of sudden death. The condition is caused in up to 95% of the cases by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Our group has shown a number of previously unrecognized features, such as systemic redox imbalance, chronic inflammatory status, respiratory bronchiolitis-associated interstitial lung disease-like lung disease, and erythrocyte morphology changes. While evidence on an intimate involvement of MeCP2 in the immune response is cumulating, we have recently shown a cytokine dysregulation in RTT. Increasing evidence on the relationship between MeCP2 and an immune dysfunction is reported, with, apparently, a link between MECP2 gene polymorphisms and autoimmune diseases, including primary Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis. Antineuronal (i.e., brain proteins) antibodies have been shown in RTT. Recently, high levels of anti-N-glucosylation (N-Glc) IgM serum autoantibodies [i.e., anti-CSF114(N-Glc) IgMs] have been detected by our group in a statistically significant number of RTT patients. In the current review, the Authors explore the current evidence, either in favor or against, the presence of an autoimmune component in RTT.
Collapse
|
39
|
Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radic Biol Med 2015; 88:81-90. [PMID: 25960047 DOI: 10.1016/j.freeradbiomed.2015.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/27/2023]
Abstract
Rett syndrome (RTT, MIM 312750) is a rare and orphan progressive neurodevelopmental disorder affecting girls almost exclusively, with a frequency of 1/15,000 live births of girls. The disease is characterized by a period of 6 to 18 months of apparently normal neurodevelopment, followed by early neurological regression, with a progressive loss of acquired cognitive, social, and motor skills. RTT is known to be caused in 95% of the cases by sporadic de novo loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene encoding methyl-CpG binding protein 2 (MeCP2), a nuclear protein able to regulate gene expression. Despite almost two decades of research into the functions and role of MeCP2, little is known about the mechanisms leading from MECP2 mutation to the disease. Oxidative stress (OS) is involved in the pathogenic mechanisms of several neurodevelopmental and neurodegenerative disorders, although in many cases it is not clear whether OS is a cause or a consequence of the pathology. Fairly recently, the presence of a systemic OS has been demonstrated in RTT patients with a strong correlation with the patients' clinical status. The link between MECP2 mutation and the redox imbalance found in RTT is not clear. Animal studies have suggested a possible direct correlation between Mecp2 mutation and increased OS levels. In addition, the restoration of Mecp2 function in astrocytes significantly improves the developmental outcome of Mecp2-null mice and reexpression of Mecp2 gene in the brain of null mice restored oxidative damage, suggesting that Mecp2 loss of function can be involved in oxidative brain damage. Starting from the evidence that oxidative damage in the brain of Mecp2-null mice precedes the onset of symptoms, we evaluated whether, based on the current literature, the dysfunctions described in RTT could be a consequence or, in contrast, could be caused by OS. We also analyzed whether therapies that at least partially treated some RTT symptoms can play a role in defense against OS. At this stage we can propose that OS could be one of the main causes of the dysfunctions observed in RTT. In addition, the major part of the therapies recommended to alleviate RTT symptoms have been shown to interfere with oxidative homeostasis, suggesting that MeCP2 could somehow be involved in the protection of the brain from OS.
Collapse
Affiliation(s)
- Stefania Filosa
- Institute of Biosciences and BioResources-CNR, UOS Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Joussef Hajek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
40
|
Yoshida A, Shiotsu-Ogura Y, Wada-Takahashi S, Takahashi SS, Toyama T, Yoshino F. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:48-53. [DOI: 10.1016/j.jphotobiol.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
41
|
Cervellati C, Sticozzi C, Romani A, Belmonte G, De Rasmo D, Signorile A, Cervellati F, Milanese C, Mastroberardino PG, Pecorelli A, Savelli V, Forman HJ, Hayek J, Valacchi G. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2066-74. [DOI: 10.1016/j.bbadis.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022]
|
42
|
Jiang J, Wang K, Nice EC, Zhang T, Huang C. High-throughput screening of cellular redox sensors using modern redox proteomics approaches. Expert Rev Proteomics 2015; 12:543-55. [PMID: 26184698 DOI: 10.1586/14789450.2015.1069189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cells are characterized by higher levels of intracellular reactive oxygen species (ROS) due to metabolic aberrations. ROS are widely accepted as second messengers triggering pivotal signaling pathways involved in the process of cell metabolism, cell cycle, apoptosis, and autophagy. However, the underlying cellular mechanisms remain largely unknown. Recently, accumulating evidence has demonstrated that ROS initiate redox signaling through direct oxidative modification of the cysteines of key redox-sensitive proteins (termed redox sensors). Uncovering the functional changes underlying redox regulation of redox sensors is urgently required, and the role of different redox sensors in distinct disease states still remains to be identified. To assist this, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for cancer treatment. Highlighted here are recent advances in redox proteomics approaches and their applications in identifying redox sensors involved in tumor development.
Collapse
Affiliation(s)
- Jingwen Jiang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.,b 2 Hainan Medical University, Haikou, 571199, PR China
| | - Kui Wang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- c 3 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tao Zhang
- d 4 School of Biomedical Sciences, Chengdu Medical College, Chengdu 610500, PR China
| | - Canhua Huang
- a 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.,b 2 Hainan Medical University, Haikou, 571199, PR China
| |
Collapse
|
43
|
Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:421624. [PMID: 26236424 PMCID: PMC4510261 DOI: 10.1155/2015/421624] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.
Collapse
|
44
|
De Felice C, Signorini C, Leoncini S, Durand T, Ciccoli L, Hayek J. Oxidative stress: a hallmark of Rett syndrome. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico “S. M. alle Scotte”, I-53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Silvia Leoncini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247- CNRS-UM -ENSCM, BP 14491, 34093, Montpellier, Cedex 5, France
| | - Lucia Ciccoli
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| |
Collapse
|
45
|
Millucci L, Giorgetti G, Viti C, Ghezzi L, Gambassi S, Braconi D, Marzocchi B, Paffetti A, Lupetti P, Bernardini G, Orlandini M, Santucci A. Chondroptosis in alkaptonuric cartilage. J Cell Physiol 2015; 230:1148-57. [PMID: 25336110 PMCID: PMC5024069 DOI: 10.1002/jcp.24850] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/14/2014] [Indexed: 01/16/2023]
Abstract
Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.
Collapse
Affiliation(s)
- Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|