1
|
Leow EH, Ganesan I, Chong SL, Yap CJY, Chao SM, Wang F, Ng YH. Adenine phosphoribosyltransferase (APRT) deficiency: an increasingly recognized disease. Int Urol Nephrol 2025:10.1007/s11255-025-04420-6. [PMID: 39982660 DOI: 10.1007/s11255-025-04420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder which causes high urinary 2,8-dihydroxyadenine (2,8-DHA) excretion, resulting in urolithiasis and crystal nephropathy. It is caused by mutations in the APRT gene. Even though it is an inherited kidney stone disease, the varied clinical presentations, even within a family with the same underlying genetic variants, can lead to delayed diagnosis with some only being recognized in adulthood and even, following a kidney transplant. First presentations include symptoms of reddish-brown diaper stains, urinary tract infections, urolithiasis, acute kidney injury from obstructive uropathy and/or intratubular 2,8-DHA crystallization or kidney failure. Siblings of index cases should be screened for APRT deficiency. An early diagnosis and treatment with xanthine oxidoreductase inhibitors (XORi) can preserve kidney function and/or prevent progressive kidney injury and kidney failure. In this review, we will discuss the pathophysiology, clinical presentations, investigations, and management of APRT deficiency.
Collapse
Affiliation(s)
- Esther Huimin Leow
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Indra Ganesan
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Siew Le Chong
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Celeste Jia Ying Yap
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Sing Ming Chao
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Fan Wang
- Nursing Clinical Services, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Hong Ng
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| |
Collapse
|
2
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Yamamura Y, Sakai N, Iwata Y, Lagares D, Hara A, Kitajima S, Toyama T, Miyagawa T, Ogura H, Sato K, Oshima M, Nakagawa S, Tamai A, Horikoshi K, Matsuno T, Yamamoto N, Hayashi D, Toyota Y, Kaikoi D, Shimizu M, Tager AM, Wada T. Myocardin-related transcription factor contributes to renal fibrosis through the regulation of extracellular microenvironment surrounding fibroblasts. FASEB J 2023; 37:e23005. [PMID: 37289107 DOI: 10.1096/fj.202201870r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Fibroblast accumulation and extracellular matrix (ECM) deposition are common critical steps for the progression of organ fibrosis, but the precise molecular mechanisms remain to be fully investigated. We have previously demonstrated that lysophosphatidic acid contributes to organ fibrosis through the production of connective tissue growth factor (CTGF) via actin cytoskeleton-dependent signaling, myocardin-related transcription factor family (MRTF) consisting of MRTF-A and MRTF-B-serum response factor (SRF) pathway. In this study, we investigated the role of the MRTF-SRF pathway in the development of renal fibrosis, focusing on the regulation of ECM-focal adhesions (FA) in renal fibroblasts. Here we showed that both MRTF-A and -B were required for the expressions of ECM-related molecules such as lysyl oxidase family members, type I procollagen and fibronectin in response to transforming growth factor (TGF)-β1 . TGF-β1 -MRTF-SRF pathway induced the expressions of various components of FA such as integrin α subunits (αv , α2 , α11 ) and β subunits (β1 , β3 , β5 ) as well as integrin-linked kinase (ILK). On the other hand, the blockade of ILK suppressed TGF-β1 -induced MRTF-SRF transcriptional activity, indicating a mutual relationship between MRTF-SRF and FA. Myofibroblast differentiation along with CTGF expression was also dependent on MRTF-SRF and FA components. Finally, global MRTF-A deficient and inducible fibroblast-specific MRTF-B deficient mice (MRTF-AKO BiFBKO mice) are protected from renal fibrosis with adenine administration. Renal expressions of ECM-FA components and CTGF as well as myofibroblast accumulation were suppressed in MRTF-AKO BiFBKO mice. These results suggest that the MRTF-SRF pathway might be a therapeutic target for renal fibrosis through the regulation of components forming ECM-FA in fibroblasts.
Collapse
Affiliation(s)
- Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - David Lagares
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akira Tamai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Keisuke Horikoshi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Matsuno
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoki Yamamoto
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hayashi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitada Toyota
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daichi Kaikoi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Oshima Y, Wakino S, Kanda T, Tajima T, Itoh T, Uchiyama K, Yoshimoto K, Sasabe J, Yasui M, Itoh H. Sodium benzoate attenuates 2,8-dihydroxyadenine nephropathy by inhibiting monocyte/macrophage TNF-α expression. Sci Rep 2023; 13:3331. [PMID: 36849798 PMCID: PMC9971245 DOI: 10.1038/s41598-023-30056-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Sodium benzoate (SB), a known D-amino acid oxidase (DAO) enzyme inhibitor, has an anti-inflammatory effect, although its role in renal damage has not been explored. 2,8-dihydroxyadenine crystal induced chronic kidney disease, in which TNF-α is involved in the pathogenesis, was established by oral adenine administration in C57BL/6JJcl mice (AdCKD) with or without SB to investigate its renal protective effects. SB significantly attenuated AdCKD by decreasing serum creatinine and urea nitrogen levels, and kidney interstitial fibrosis and tubular atrophy scores. The survival of AdCKD mice improved 2.6-fold by SB administration. SB significantly decreased the number of infiltrating macrophages observed in the positive F4/80 immunohistochemistry area and reduced the expression of macrophage markers and inflammatory genes, including TNF-α, in the kidneys of AdCKD. Human THP-1 cells stimulated with either lipopolysaccharide or TNF-α showed increased expression of inflammatory genes, although this was significantly reduced by SB, confirming the anti-inflammatory effects of SB. SB exhibited renal protective effects in AdCKD in DAO enzyme deficient mice, suggesting that anti-inflammatory effect of SB was independent of DAO enzyme activity. Moreover, binding to motif DNA sequence, protein level, and mRNA level of NF-κB RelB were significantly inhibited by SB in AdCKD kidneys and lipopolysaccharide treated THP-1 cells, respectively. We report that anti-inflammatory property of SB is independent of DAO enzymatic activity and is associated with down regulated NF-κB RelB as well as its downstream inflammatory genes such as TNF-α in AdCKD.
Collapse
Affiliation(s)
- Yoichi Oshima
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University School of Medicine, Tokushima, Japan.
| | - Takeshi Kanda
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaya Tajima
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoaki Itoh
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kiyotaka Uchiyama
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jumpei Sasabe
- grid.26091.3c0000 0004 1936 9959Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Yasui
- grid.26091.3c0000 0004 1936 9959Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Wang K, Guan C, Yu J, Chen X, Shang X, Mei S, Feng X, Zheng L. Systematic Pan-Cancer Analysis and Experimental Verification Identify FOXA1 as an Immunological and Prognostic Biomarker in Epithelial Ovarian Cancer. DISEASE MARKERS 2022; 2022:9328972. [PMID: 36393971 PMCID: PMC9646314 DOI: 10.1155/2022/9328972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/17/2022] [Indexed: 09/08/2024]
Abstract
Background Epithelial ovarian cancer (EOC) has the lowest survival rate among female reproductive cancers present with symptoms of aggressive malignancies, poor prognosis, drug resistance and postoperative recurrence. The majority of patients with EOC are diagnosed at an advanced stage due to the therapeutic challenges including lack of early diagnosis and effective therapeutic targets for EOC. Methods Pan-cancer analyses were performed to explore the features of forkhead-box (FOX) A1 (FOXA1) using data from TCGA and GTEx databases. R package "clusterprofiler" was used to perform the enrichment analysis of FOXA1 in EOC. Data downloaded from Drug Sensitivity in Cancer (GDSC) database were used to evaluate the association between FOXA1 and antitumor drug sensitivity. In experimental verification, FOXA1 expression was detected using qRT-PCR and western blot assays. Western blot, immunofluorescence staining, and Transwell assays were used to assess the influence of FOXA1 silencing on epithelial-mesenchymal transition (EMT) of EOC cells. Results We found that FOXA1 was highly expressed in EOC and predicted poorer survival of EOC patients. We observed that FOXA1 expression was positively correlated EMT-related pathways. Through experimental verification, we found the underlying function of FOXA1 to promote EMT in ovarian cancers. The results from western blot, immunofluorescence staining, and Transwell assays showed that FOXA1 silencing impeded the progression of EMT and invasiveness of the cancer cells. Furthermore, CCK-8 and invasion assays suggested that siRNA-FOXA1 attenuated the ability of cancer cells to metastasize and proliferate. Dual-luciferase reporter assays confirmed the binding activity of FOXA1 to the promoter of connective tissue growth factor (CTGF). In addition, we found that FOXA1 was closely correlated immunosuppressive microenvironment of EOC. High FOXA1 expression may contribute to the resistance of many anticancer drugs. Conclusions Our results predict and validate the function of FOXA1 in promoting EMT and the progression of disease in EOC. Targeting FOXA1 may improve the sensitivity of EOC treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Chenan Guan
- Department of Kidney Internal Medicine, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Junhui Yu
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xianwen Shang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Shuangshuang Mei
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xingjun Feng
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Lingzhi Zheng
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
- Department of Obstetrics and Gynecology, Shaoxing University, Shaoxing, 312000 Zhejiang, China
| |
Collapse
|
6
|
Sylvester MA, Pollow DP, Moffett C, Nunez W, Uhrlaub JL, Nikolich-Zugich J, Brooks HL. Splenocyte transfer from hypertensive donors eliminates premenopausal female protection from ANG II-induced hypertension. Am J Physiol Renal Physiol 2022; 322:F245-F257. [PMID: 35001661 PMCID: PMC8858666 DOI: 10.1152/ajprenal.00369.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Premenopausal females are protected from angiotensin II (ANG II)-induced hypertension following the adoptive transfer of T cells from normotensive donors. For the present study, we hypothesized that the transfer of hypertensive T cells (HT) or splenocytes (HS) from hypertensive donors would eliminate premenopausal protection from hypertension. Premenopausal recombination-activating gene-1 (Rag-1)-/- females received either normotensive (NT) or hypertensive cells 3 wk before ANG II infusion (14 days, 490 ng/kg/min). Contrary to our hypothesis, no increase in ANG II-induced blood pressure was observed in the NT/ANG or HT/ANG groups. Flow cytometry demonstrated that renal FoxP3+ T regulatory cells were significantly decreased, and immunohistochemistry showed an increase in renal F4/80+ macrophages in the HT/ANG group, suggesting a shift in the renal inflammatory environment despite no change in blood pressure. Renal mRNA expression of macrophage chemoattractant protein-1 (MCP-1), endothelin-1 (ET-1), and G protein-coupled estrogen receptor-1 (GPER-1) was significantly decreased in the HT/ANG group. The adoptive transfer of hypertensive splenocytes before ANG II infusion (HS/ANG) eliminated premenopausal protection from hypertension and significantly decreased splenic FoxP3+ T regulatory cells compared with females that received normotensive splenocytes (NS/ANG). Expression of macrophage inflammatory protein 1α/chemokine (C-C motif) ligand 3 (MCP-1/CCL3), a potent macrophage chemokine, was elevated in the HS/ANG group; however, no increase in renal macrophage infiltration occurred. Together, these data show that in premenopausal females, T cells from hypertensive donors are not sufficient to induce robust ANG II-mediated hypertension; in contrast, transfer of hypertensive splenocytes (consisting of T/B lymphocytes, dendritic cells, and macrophages) is sufficient. Further work is needed to understand how innate and adaptive immune cells and estrogen signaling coordinate to cause differential hypertensive outcomes in premenopausal females.NEW & NOTEWORTHY Our study is the first to explore the role of hypertensive T cells versus hypertensive splenocytes in premenopausal protection from ANG II-induced hypertension. We show that the hypertensive status of T cell donors does not impact blood pressure in the recipient female. However, splenocytes, when transferred from hypertensive donors, significantly increased premenopausal recipient blood pressure following ANG II infusion, highlighting the importance of further investigation into estrogen signaling and immune cell activation in females.
Collapse
Affiliation(s)
| | - Dennis P Pollow
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Caitlin Moffett
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Wendy Nunez
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Zhu S, Wu L, Zhang J, Miao Y, Zhao Y, Zeng M, Li D, Wu H. Collagen Hydrolysate Corrects Anemia in Chronic Kidney Disease via Anti-Inflammatory Renoprotection and HIF-2α-Dependent Erythropoietin and Hepcidin Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11726-11734. [PMID: 32981311 DOI: 10.1021/acs.jafc.0c04459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anemia is a common chronic kidney disease (CKD) complication contributing to increased morbidity and mortality. Collagen-based traditional Chinese nutraceuticals have long been used in antianemic therapies. This study aims to investigate the therapeutic effectiveness of porcine collagen hydrolysate (CH) and its underlying mechanism in the treatment of renal anemia by using adenine-induced CKD mice, RAW264.7 macrophages, and HepG2 hepatoma cells, with prolyl-hydroxyproline as a reference compound for collagen-derived hydroxyproline-containing di-/tripeptides. CH was found to alleviate renal filtering dysfunction, systemic and kidney inflammation, liver hepcidin overproduction and anemia and to increase erythropoietin production and hypoxia inducible factor (HIF)-2α stability in liver and kidney in CKD mice. Prolyl-hydroxyproline exerted direct anti-inflammatory effects on lipopolysaccharide-activated macrophages and elicited stimulating and inhibiting activities on erythropoietin expression and hepcidin overproduction, respectively, in HepG2 cells by HIF-2α activation. Overall, CH was effective in correcting renal anemia via anti-inflammatory renoprotection and HIF-2α-dependent erythropoietin and hepcidin regulation.
Collapse
Affiliation(s)
- Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingyu Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Duo Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
8
|
Klimontov VV, Korbut AI, Orlov NB, Dashkin MV, Konenkov VI. Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-AlbuminuricDiabetic Kidney Disease. J Clin Med 2020; 9:3006. [PMID: 32961903 PMCID: PMC7565054 DOI: 10.3390/jcm9093006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
A panel of cytokines and growth factors, mediating low-grade inflammation and fibrosis, was assessed in patients with type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). Patients with long-term T2D (N = 130) were classified into four groups: no signs of CKD; estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 without albuminuria; albuminuria and eGFR ≥60 mL/min/1.73 m2; albuminuria and eGFR <60 mL/min/1.73 m2. Thirty healthy subjects were acted as control. Twenty-seven cytokines and growth factors were assessed in serum by multiplex bead array assay. Serum hs-CRP, urinary nephrin, podocine, and WFDC2 were measured by ELISA. Patients with T2D showed elevated IL-1Ra, IL-6, IL-17A, G-CSF, IP-10, MIP-1α, and bFGF levels; concentrations of IL-4, IL-12, IL-15, INF-γ, and VEGF were decreased. IL-6, IL-17A, G-CSF, MIP-1α, and bFGF correlated negatively with eGFR; IL-10 and VEGF demonstrated negative associations with WFDC2; no relationships with podocyte markers were found. Adjusted IL-17A and MIP-1α were predictors of non-albuminuric CKD, IL-13 predicted albuminuria with preserved renal function, meanwhile, IL-6 and hsCRP were predictors of albuminuria with eGFR decline. Therefore, albuminuric and non-albuminuric CKD in T2D patients are associated with different pro-inflammatory shifts in the panel of circulating cytokines.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia; (A.I.K.); (N.B.O.); (M.V.D.); (V.I.K.)
| | | | | | | | | |
Collapse
|
9
|
Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020; 24:655-670. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The current therapeutic armamentarium to prevent chronic kidney disease (CKD) progression is limited to the control of blood pressure and in diabetic patients, the strict control of glucose levels. Current research is primarily focused on the reduction of inflammation and fibrosis at different levels. AREAS COVERED This article examines the latest progress in this field and places an emphasis on inflammation, oxidative stress, and fibrosis. New therapeutic targets are described and evidence from experimental and clinical studies is summarized. We performed a search in Medline for articles published over the last 10 years. EXPERT OPINION The search for therapeutic targets of renal inflammation is hindered by an incomplete understanding of the pathophysiology. The determination of the specific inducers of inflammation in the kidney is an area of heightened potential. Prevention of the progression of renal fibrosis by blocking TGF-β signaling has been unsuccessful, but the investigation of signaling pathways involved in late stages of fibrosis progression could yield improved results. Preventive strategies such as the modification of microbiota-inducers of uremic toxins involved in CKD progression is a promising field because of the interaction between the gut microbiota and the renal system.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| | - Jose M Valdivielso
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| |
Collapse
|
10
|
Makhloufi C, Crescence L, Darbousset R, McKay N, Massy ZA, Dubois C, Panicot-Dubois L, Burtey S, Poitevin S. Assessment of Thrombotic and Bleeding Tendency in Two Mouse Models of Chronic Kidney Disease: Adenine-Diet and 5/6th Nephrectomy. TH OPEN 2020; 4:e66-e76. [PMID: 32309772 PMCID: PMC7162676 DOI: 10.1055/s-0040-1705138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of bleeding and thrombosis in patients with chronic kidney disease (CKD) is frequent and poorly understood. Mouse models are essential to understand complications of CKD and to develop new therapeutic approaches improving the health of patients. We evaluated the hemostasis in two models of renal insufficiency: adenine-diet and 5/6th nephrectomy (5/6Nx). Compared with 5/6Nx mice, mice fed with 0.25% adenine had more severe renal insufficiency and so higher levels of prothrombotic uremic toxins like indoxyl sulfate. More severe renal inflammation and fibrosis were observed in the adenine group, as demonstrated by histological and reverse transcription quantitative polymerase chain reaction experiments. Liver fibrinogen γ chain expression and level of plasma fibrinogen were increased only in adenine mice. In both CKD mouse models, tissue factor (TF) expression was increased in kidney and aorta extracts. Immunochemistry analysis of kidney sections showed that TF is localized in the vascular walls. Thrombin–antithrombin complexes were significantly increased in plasma from both adenine and 5/6Nx mice. Tail bleeding time increased significantly only in adenine mice, whereas platelet count was not significant altered. Finally, results obtained by intravital microscopy after laser-induced endothelial injury showed impaired platelet function in adenine mice and an increase in fibrin generation in 5/6Nx mice. To summarize, adenine diet causes a more severe renal insufficiency compared with 5/6Nx. The TF upregulation and the hypercoagulable state were observed in both CKD models. Bleeding tendency was observed only in the adenine model of CKD that recapitulates the whole spectrum of hemostasis abnormalities observed in advanced human CKD.
Collapse
Affiliation(s)
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Roxane Darbousset
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Nathalie McKay
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, Villejuif, France.,Department of Nephrology, Ambroise Paré University Hospital, Boulogne Billancourt/Paris, France
| | | | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France.,Centre de Néphrologie et Transplantation Rénale, APHM, Marseille, France
| | | |
Collapse
|
11
|
Female AhR Knockout Mice Develop a Minor Renal Insufficiency in an Adenine-Diet Model of Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21072483. [PMID: 32260098 PMCID: PMC7177716 DOI: 10.3390/ijms21072483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular complications observed in chronic kidney disease (CKD) are associated with aryl hydrocarbon receptor (AhR) activation by tryptophan-derived uremic toxins-mainly indoxyl sulfate (IS). AhR is a ligand-activated transcription factor originally characterized as a receptor of xenobiotics involved in detoxification. The aim of this study was to determine the role of AhR in a CKD mouse model based on an adenine diet. Wild-type (WT) and AhR-/- mice were fed by alternating an adenine-enriched diet and a regular diet for 6 weeks. Our results showed an increased mortality rate of AhR-/- males. AhR-/- females survived and developed a less severe renal insufficiency that WT mice, reflected by urea, creatinine, and IS measurement in serum. The protective effect was related to a decrease of pro-inflammatory and pro-fibrotic gene expression, an attenuation of tubular injury, and a decrease of 2,8-dihydroxyadenine crystal deposition in the kidneys of AhR-/- mice. These mice expressed low levels of xanthine dehydrogenase, which oxidizes adenine into 2,8-dihydroxyadenine, and low levels of the IS metabolism enzymes. In conclusion, the CKD model of adenine diet is not suitable for AhR knockout mice when studying the role of this transcription factor in cardiovascular complications, as observed in human CKD.
Collapse
|
12
|
Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Câmara NOS. Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019; 10:1192. [PMID: 31649546 PMCID: PMC6792167 DOI: 10.3389/fphar.2019.01192] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation, a process intimately linked to renal disease, can be defined as a complex network of interactions between renal parenchymal cells and resident immune cells, such as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated molecules, these receptors can set in motion major innate immunity pathways such as nuclear factor ĸB (NF-ĸB) and NLRP3 inflammasome, causing metabolic reprogramming and phenotype changes of immune and parenchymal cells and triggering the secretion of a number of inflammatory mediators that can cause irreversible tissue damage and functional loss. Growing evidence suggests that this response can be deeply impacted by the crosstalk between the kidneys and other organs, such as the gut. Changes in the composition and/or metabolite production of the gut microbiota can influence inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively manipulate the composition and/or functionality of gut microbiota and, consequentially, ameliorate deleterious consequences of renal diseases. In this review, we summarize the most recent evidence that renal inflammation can be ameliorated by interfering with the gut microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition to these innovative approaches, we address the recent discovery of new targets for drugs long in use in clinical practice. Angiotensin II receptor antagonists, NF-ĸB inhibitors, thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and slow down the progression of renal disease by mechanisms independent of those usually attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. So far, these protective effects have been shown in experimental studies only. Clinical studies will establish whether these novel strategies can be incorporated into the arsenal of treatments intended to prevent the progression of human disease.
Collapse
Affiliation(s)
- Vinicius Andrade-Oliveira
- Bernardo's Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil.,Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ingrid Kazue Mizuno Watanabe
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Schley G, Klanke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Struebe M, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C. Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int 2019; 96:378-396. [DOI: 10.1016/j.kint.2019.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
14
|
Felizardo RJF, de Almeida DC, Pereira RL, Watanabe IKM, Doimo NTS, Ribeiro WR, Cenedeze MA, Hiyane MI, Amano MT, Braga TT, Ferreira CM, Parmigiani RB, Andrade-Oliveira V, Volpini RA, Vinolo MAR, Mariño E, Robert R, Mackay CR, Camara NOS. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J 2019; 33:11894-11908. [PMID: 31366236 DOI: 10.1096/fj.201901080r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Butyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a. We produced an mAb to mouse GPR109a and found high expression on podocytes in the kidney. Wild-type and Gpr109a-/- mice were induced to develop nephropathy by a single injection of Adriamycin and treated with sodium butyrate or high butyrate-releasing high-amylose maize starch diet. Butyrate improved proteinuria by preserving podocyte at glomerular basement membrane and attenuated glomerulosclerosis and tissue inflammation. This protective phenotype was associated with increased podocyte-related proteins and a normalized pattern of acetylation and methylation at promoter sites of genes essential for podocyte function. We found that GPR109a is expressed by podocytes, and the use of Gpr109a-/- mice showed that the protective effects of butyrate depended on GPR109a expression. A prebiotic diet that releases high amounts of butyrate also proved highly effective for protection against kidney disease. Butyrate and GPR109a play a role in the pathogenesis of kidney disease and provide one of the important molecular connections between diet, the gut microbiota, and kidney disease.-Felizardo, R. J. F., de Almeida, D. C., Pereira, R. L., Watanabe, I. K. M., Doimo, N. T. S., Ribeiro, W. R., Cenedeze, M. A., Hiyane, M. I., Amano, M. T., Braga, T. T., Ferreira, C. M., Parmigiani, R. B., Andrade-Oliveira, V., Volpini, R. A., Vinolo, M. A. R., Mariño, E., Robert, R., Mackay, C. R., Camara, N. O. S. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.
Collapse
Affiliation(s)
- Raphael J F Felizardo
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil.,Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Danilo C de Almeida
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael L Pereira
- Department of Physiology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ingrid K M Watanabe
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Nayara T S Doimo
- Center for Molecular Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Marcos A Cenedeze
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Meire I Hiyane
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane T Amano
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil.,Center for Molecular Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tárcio T Braga
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Vinicius Andrade-Oliveira
- Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| | - Rildo A Volpini
- Laboratório de Investigação Médica 12 (LIM12), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Aurélio R Vinolo
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Remy Robert
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Department of Biochemistry and Molecular Biology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Niels O S Camara
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences IV, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Anemoside B4 Protects Rat Kidney from Adenine-Induced Injury by Attenuating Inflammation and Fibrosis and Enhancing Podocin and Nephrin Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8031039. [PMID: 31275420 PMCID: PMC6582884 DOI: 10.1155/2019/8031039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/24/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Anemoside B4 (B4) isolated from Radix Pulsatilla has anti-inflammatory activities in the colon and antitumor effects. However, its role in the prevention and treatment of kidney injury has not been reported. Here, we reported the effects of B4 on chronic kidney injury (CKI) and studied its related mechanism based on an adenine-induced kidney injury model in rats. The results showed that serum BUN (blood urea nitrogen), Crea (creatinine), and urinary proteins increased significantly after oral administration of adenine. Meanwhile, the adenine contents in both renal tissue and urine increased markedly compared with those of normal rats. Moreover, IL-1β, IL-6, TNFα, and NFκB expression was upregulated in the kidney. Simultaneously, the expression of NLRP3 (the nucleotide-binding and oligomerization domain–like receptor, leucine-rich repeat and pyrin domain–containing 3) in the inflammasome, which consists of Caspase 1, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), and IL-18, was significantly upregulated. B4 could significantly decrease BUN and Crea; reduce urinary proteins in rats; suppress the expression of IL-6, IL-1β, NFκB, NLRP3, Caspase 1, ASC, and IL-18; and increase urinary adenine contents and promote its excretion. In addition, B4 also upregulated the expression of podocin and nephrin, two major podocyte proteins, and reduced the fiber collagen in the renal interstitial, suggesting that B4 could protect the glomerular matrix from adenine injury in addition to its anti-inflammatory effects. The results of this study show new perspective of B4 as a potential drug against adenine-induced renal injury.
Collapse
|
16
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
17
|
Riggs JL, Pace CE, Ward HH, Gonzalez Bosc LV, Rios L, Barrera A, Kanagy NL. Intermittent hypoxia exacerbates increased blood pressure in rats with chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F927-F941. [PMID: 29897288 DOI: 10.1152/ajprenal.00420.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney injury and sleep apnea (SA) are independent risk factors for hypertension. Exposing rats to intermittent hypoxia (IH) to simulate SA increases blood pressure whereas adenine feeding causes persistent kidney damage to model chronic kidney disease (CKD). We hypothesized that exposing CKD rats to IH would exacerbate the development of hypertension and renal failure. Male Sprague-Dawley rats were fed a 0.2% adenine diet or control diet (Control) until blood urea nitrogen was >120 mg/dl in adenine-fed rats (14 ± 4 days, mean ± SE). After 2 wk of recovery on normal chow, rats were exposed to IH (20 exposures/h of 5% O2-5% CO2 7 h/day) or control conditions (Air) for 6 wk. Mean arterial pressure (MAP) was monitored with telemeters, and plasma and urine samples were collected weekly to calculate creatinine clearance as an index of glomerular filtration rate (GFR). Prior to IH, adenine-fed rats had higher blood pressure than rats on control diet. IH treatment increased MAP in both groups, and after 6 wk, MAP levels in the CKD/IH rats were greater than those in the CKD/Air and Control/IH rats. MAP levels in the Control/Air rats were lower than those in the other three groups. Kidney histology revealed crystalline deposits, tubule dilation, and interstitial fibrosis in both CKD groups. IH caused no additional kidney damage. Plasma creatinine was similarly increased in both CKD groups throughout whereas IH alone increased plasma creatinine. IH increases blood pressure further in CKD rats without augmenting declines in GFR but appears to impair GFR in healthy rats. We speculate that treating SA might decrease hypertension development in CKD patients and protect renal function in SA patients.
Collapse
Affiliation(s)
- Jennifer L Riggs
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Carolyn E Pace
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Heather H Ward
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Lynnette Rios
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Adelaeda Barrera
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
18
|
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23:5-11. [PMID: 29030945 DOI: 10.1111/nep.13180] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 12/24/2022]
Abstract
Many animal models have been developed to study the causes and treatments of chronic kidney disease (CKD) in humans, an insidious disease resulting from kidney injury and characterized by persistent functional decline for more than 3 months, with or without evidence of structural deficit. The eventual outcome of CKD may be end-stage kidney disease (ESKD), where patients need dialysis or transplantation to survive. Cardiovascular disease is accelerated in patients with CKD and contributes to increased mortality, with the relationship between CKD and cardiovascular disease being bi-directional. Most animal models do not mimic the complexity of the human disease as many do not develop CKD-associated cardiovascular disease. The adenine diet model of CKD in rodents is an exception. The original adenine diet model produced rapid-onset kidney disease with extensive tubulointerstitial fibrosis, tubular atrophy, crystal formation and marked vessel calcification. Since then, lower adenine intake in rats has been found to induce slowly progressive kidney damage and cardiovascular disease. These chronic adenine diet models allow the characterization of relatively stable kidney and cardiovascular disease, similar to CKD in humans. In addition, interventions for reversal can be tested. Here the key features of the adenine diet model of CKD are noted, along with some limitations of other available models. In summary, the data presented here support the use of chronic low-dose adenine diet in rats as an easy and effective model for understanding human CKD, especially the links with cardiovascular disease, and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Vishal Diwan
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, The University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Glenda C Gobe
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,NHMRC Centre for Research Excellence, Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 2017; 13:226-240. [DOI: 10.1038/nrneph.2017.10] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Transfusion of CD206 + M2 Macrophages Ameliorates Antibody-Mediated Glomerulonephritis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3176-3188. [PMID: 27855848 DOI: 10.1016/j.ajpath.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 01/04/2023]
Abstract
Macrophages are multifunctional immune cells that may either drive or modulate disease pathogenesis, depending on the activated phenotype. In this study, we investigated the protective effects of CD206+ M2 macrophages against nephrotoxic serum nephritis in mice. We found that these immunosuppressive macrophages, derived from bone marrow and stimulated with IL-4/IL-13 [CD206+ M2 bone marrow-derived macrophages (M2BMMs)], protected against renal injury, decreased proteinuria, and diminished the infiltration of CD68+ macrophages, neutrophils, and T cells into glomerular tissue. Comparable therapeutic results were obtained with CD206+ M2 cells derived from induced pluripotent stem cells. Notably, CD206+ M2BMMs, which retained an M2 signature, could elicit a switch of M1 to M2 phenotype in co-cultured macrophages. Moreover, these cells were found to induce the production of regulatory T cells in the spleen and renal draining lymph node. Accordingly, mRNA expression of the T helper 1 cytokines tumor necrosis factor-α, interferon-β, interferon-γ, and IL-12 was significantly reduced in kidneys from mice treated with CD206+ M2BMMs. Taken together, the data suggest that CD206+ M2 may have therapeutic potential against antibody-mediated glomerular injury and presents its therapeutic value for the treatment of crescentic nephritis in humans.
Collapse
|
22
|
Pinheiro NM, Santana FPR, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, Câmara NOS, Wensing LA, Prado VF, Tibério IFLC, Prado MAM, Prado CM. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J 2016; 31:320-332. [PMID: 27729414 DOI: 10.1096/fj.201600431r] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
Nicotinic α-7 acetylcholine receptor (nAChRα7) is a critical regulator of cholinergic anti-inflammatory actions in several diseases, including acute respiratory distress syndrome (ARDS). Given the potential importance of α7nAChR as a therapeutic target, we evaluated whether PNU-282987, an α7nAChR agonist, is effective in protecting the lung against inflammation. We performed intratracheal instillation of LPS to generate acute lung injury (ALI) in C57BL/6 mice. PNU-282987 treatment, either before or after ALI induction, reduced neutrophil recruitment and IL-1β, TNF-α, IL-6, keratinocyte chemoattractant (KC), and IL-10 cytokine levels in the bronchoalveolar lavage fluid (P < 0.05). In addition, lung NF-κB phosphorylation decreased, along with collagen fiber deposition and the number of matrix metalloproteinase-9+ and -2+ cells, whereas the number of tissue inhibitor of metalloproteinase-1+ cells increased (P < 0.05). PNU-282987 treatment also reduced lung mRNA levels and the frequency of M1 macrophages, whereas cells expressing the M2-related markers CD206 and IL-10 increased, suggesting changes in the macrophage profile. Finally, PNU-282987 improved lung function in LPS-treated animals. The collective results suggest that PNU-282987, an agonist of α7nAChR, reduces LPS-induced experimental ALI, thus supporting the notion that drugs that act on α7nAChRs should be explored for ARDS treatment in humans.-Pinheiro, N. M., Santana, F. P. R., Almeida, R. R., Guerreiro, M., Martins, M. A., Caperuto, L. C., Câmara, N. O. S., Wensing, L. A., Prado, V. F., Tibério, I. F. L. C., Prado, M. A. M., Prado, C. M. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile.
Collapse
Affiliation(s)
- Nathalia M Pinheiro
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda P R Santana
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil.,Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Marina Guerreiro
- Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Niels O S Câmara
- Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | | | - Vânia F Prado
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; and
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antônio M Prado
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; and
| | - Carla M Prado
- Department of Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil; .,Department of Bioscience, Federal University of São Paulo, Campus Baixada Santista, Santos, Brazil
| |
Collapse
|
23
|
The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunology 2016; 5:e86. [PMID: 27757226 PMCID: PMC5067952 DOI: 10.1038/cti.2016.36] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recent findings regarding the influence of the microbiota in many inflammatory processes have provided a new way to treat diseases. Now, one may hypothesize that the origin of a plethora of diseases is related to the health of the gut microbiota and its delicate, although complex, interface with the epithelial and immune systems. The ‘westernization' of diets, for example, is associated with alterations in the gut microbiota. Such alterations have been found to correlate directly with the increased incidence of diabetes and hypertension, the main causes of chronic kidney diseases (CKDs), which, in turn, have a high estimated prevalence. Indeed, data have arisen showing that the progression of kidney diseases is strictly related to the composition of the microbiota. Alterations in the gut microbiota diversity during CKDs do not only have the potential to exacerbate renal injury but may also contribute to the development of associated comorbidities, such as cardiovascular diseases and insulin resistance. In this review, we discuss how dysbiosis through alterations in the gut barrier and the consequent activation of immune system could intensify the progression of CKD and vice versa, how CKDs can modify the gut microbiota diversity and abundance.
Collapse
|
24
|
Inhibition of Macrophage Migration Inhibitory Factor Protects against Inflammation and Matrix Deposition in Kidney Tissues after Injury. Mediators Inflamm 2016; 2016:2174682. [PMID: 27313397 PMCID: PMC4893598 DOI: 10.1155/2016/2174682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Macrophage migration inhibitory factor (MIF) is an important immunoregulatory cytokine involved in inflammation, which may be one important reason resulting in matrix deposition in renal tissues after injury. However, the underlying mechanisms have not yet been elucidated. Methods and Results. We uncovered a crucial role of MIF in inflammation and collagen deposition in vivo and in vitro. In rats, ureteral obstruction induced tubular injury, matrix accumulation, and inflammatory cell infiltration. Additionally, enhanced MIF levels in the obstructed kidneys were closely related to the increasing numbers of CD68-positive macrophages. These obstruction-induced injuries can be relieved by recanalization, consequently resulting in downregulated expression of MIF and its receptor CD74. Similarly, ischemia reperfusion induced renal injury, and it was accompanied by elevated MIF levels and macrophages infiltration. In cultured tubular epithelial cells (TECs), aristolochic acid (AA) promoted matrix production and increased MIF expression, as well as the release of macrophage-related factors. Inhibition of MIF with an antagonist ISO-1 resulted in the abolishment of these genotypes in AA-treated TECs. Conclusion. MIF plays an important role in macrophage-related inflammation and matrix deposition in kidney tissues following injury. MIF as a specific inhibitor may have therapeutic potential for patients with inflammatory and fibrotic kidney diseases.
Collapse
|
25
|
Djudjaj S, Papasotiriou M, Bülow RD, Wagnerova A, Lindenmeyer MT, Cohen CD, Strnad P, Goumenos DS, Floege J, Boor P. Keratins are novel markers of renal epithelial cell injury. Kidney Int 2016; 89:792-808. [PMID: 26924053 DOI: 10.1016/j.kint.2015.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Keratins, the intermediate filaments of the epithelial cell cytoskeleton, are up-regulated and post-translationally modified in stress situations. Renal tubular epithelial cell stress is a common finding in progressive kidney diseases, but little is known about keratin expression and phosphorylation. Here, we comprehensively describe keratin expression in healthy and diseased kidneys. In healthy mice, the major renal keratins, K7, K8, K18, and K19, were expressed in the collecting ducts and K8, K18 in the glomerular parietal epithelial cells. Tubular expression of all 4 keratins increased by 20- to 40-fold in 5 different models of renal tubular injury as assessed by immunohistochemistry, Western blot, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The up-regulation became significant early after disease induction, increased with disease progression, was found de novo in distal tubules and was accompanied by altered subcellular localization. Phosphorylation of K8 and K18 increased under stress. In humans, injured tubules also exhibited increased keratin expression. Urinary K18 was only detected in mice and patients with tubular cell injury. Keratins labeled glomerular parietal epithelial cells forming crescents in patients and animals. Thus, all 4 major renal keratins are significantly, early, and progressively up-regulated upon tubular injury regardless of the underlying disease and may be novel sensitive markers of renal tubular cell stress.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Marios Papasotiriou
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Nephrology, University Hospital of Patras, Patras, Greece
| | - Roman D Bülow
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alexandra Wagnerova
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Pavel Strnad
- Department of Internal Medicine 3 and Interdisziplinäres Zentrum für Klinische Forschung, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
26
|
Au L, Meisch JP, Das LM, Binko AM, Boxer RS, Wen AM, Steinmetz NF, Lu KQ. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury. J Invest Dermatol 2015; 135:2971-2981. [PMID: 26288355 PMCID: PMC4648631 DOI: 10.1038/jid.2015.322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/04/2015] [Accepted: 06/23/2015] [Indexed: 11/08/2022]
Abstract
DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitric oxide synthase (iNOS)-dependent manner. Subsequently these activated dermal macrophages reappear in the bone marrow to aid in disruption of hematopoiesis and contribute ultimately to mortality in an experimental mouse model of topical NM exposure. Intervention with a single dose of 25-hydroxyvitamin D3 (25(OH)D) is capable of suppressing macrophage-mediated iNOS production resulting in mitigation of local skin destruction, enhanced tissue repair, protection from marrow depletion, and rescue from severe precipitous wasting. These protective effects are recapitulated experimentally using pharmacological inhibitors of iNOS or by compounds that locally deplete skin macrophages. Taken together, these data highlight a critical unappreciated role of the host innate immune system in exacerbating injury following exposure to NM and support the translation of 25(OH)D in the therapeutic use against these chemical agents.
Collapse
Affiliation(s)
- Liemin Au
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeffrey P Meisch
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lopa M Das
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy M Binko
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rebecca S Boxer
- Department of Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA; Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Material Science and Engineering, Case Western Reserve University, Cleveland, Ohio, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kurt Q Lu
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
27
|
Singh SP, Tao S, Fields TA, Webb S, Harris RC, Rao R. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech 2015; 8:931-40. [PMID: 26092126 PMCID: PMC4527294 DOI: 10.1242/dmm.020511] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. Summary: GSK3 promotes renal fibrosis by activation of TGF-β signaling, and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.
Collapse
Affiliation(s)
- Shailendra P Singh
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Shixin Tao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Timothy A Fields
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Sydney Webb
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reena Rao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| |
Collapse
|
28
|
Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP. miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 2015; 15:361-74. [PMID: 25660955 DOI: 10.1586/14737159.2015.1009449] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are short non-coding RNAs that control post-transcriptional regulation of gene expression. They are found ubiquitously in tissue and body fluids and participate in the pathogenesis of many diseases. Due to these characteristics and their stability, miRNAs could serve as biomarkers of different pathologies of the kidney. Urine is a non-invasive reservoir of molecules, especially indicative of the urinary system. In this review, we focus on urinary miRNAs and their potential to serve as biomarkers in kidney disease. Past studies show that urinary miRNAs correlate with renal dysfunctions and with processes involved in the pathophysiology. However, these studies also stress the need for future research focusing on large-scale studies to confirm the usability of urinary miRNAs as diagnostic and/or prognostic markers of different kidney diseases in clinical practice.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulhès, B.P. 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|