1
|
Almeida GG, Costa CM, Costa PAC, Gomes GR, Figueiredo MM, Torres KJ, de Carvalho AF, Valiate BVS, Sampaio JR, Carvalho BC, Pereira DB, Martines A, Tada MS, Soares IS, Ponmattam J, Castro MCD, Golenbock DT, Gazzinelli RT, Antonelli LRDV. Asymptomatic vivax malaria is associated with an IFN-γ-program on adaptive immunity. J Transl Med 2025; 23:351. [PMID: 40108661 PMCID: PMC11921515 DOI: 10.1186/s12967-025-06353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
The adaptive immunity against Plasmodium vivax is thought to be essential to limit parasite growth during asymptomatic malaria, preventing the occurrence of symptoms. However, the mechanisms governing clinical immunity during asymptomatic infections are not understood. Here, we investigated the adaptive cellular compartment in asymptomatic P. vivax-infected individuals (ASY) compared to symptomatic patients (SY) and healthy donors (CTL). Our integrative analysis revealed a TH1-biased immune signature with expanded populations of TH1 CD4+ T cells associated with the asymptomatic infection. In addition, there is an expanded population of proliferating atypical memory B cells that correlate with IgG levels against P. vivax antigens and parasitemia. The absence of systemic inflammation based on a comprehensive panel of soluble markers and the lower expression of some regulatory markers suggests a controlled inflammatory response that can be derived from an effective control of parasite growth. Our findings suggest that ASY maintain a pool of IFN-γ-associated Th cell phenotypes that orchestrate the immune response, limiting parasitemia and preventing clinical malaria.
Collapse
Affiliation(s)
- Gregório Guilherme Almeida
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil
| | - Camila Medeiros Costa
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil
| | - Pedro Augusto Carvalho Costa
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil
| | - Gabriela Ribeiro Gomes
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil
| | - Maria Marta Figueiredo
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil
- Universidade Estadual de Minas Gerais, Divinópolis, Minas Gerais, Brasil
| | - Katherine Jéssica Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alex Fiorini de Carvalho
- CT vacinas, Universidade Federal de Minas Gerais e Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Belo Horizonte, Brasil
| | - Bruno Vinícius Santos Valiate
- Laboratório de Imunopatologia, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, MG, Brasil
- CT vacinas, Universidade Federal de Minas Gerais e Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Belo Horizonte, Brasil
| | - Julia Ramos Sampaio
- Laboratório de Imunopatologia, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, MG, Brasil
- CT vacinas, Universidade Federal de Minas Gerais e Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Belo Horizonte, Brasil
| | - Brener Cunha Carvalho
- Laboratório de Imunopatologia, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, MG, Brasil
| | - Dhelio Batista Pereira
- Ambulatório de Malária, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brazil
| | - Alexia Martines
- Ambulatório de Malária, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brazil
| | - Mauro Shugiro Tada
- Ambulatório de Malária, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brazil
| | - Irene Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Jamie Ponmattam
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Marcia Caldas de Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Douglas Taylor Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, MG, Brasil
- CT vacinas, Universidade Federal de Minas Gerais e Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Belo Horizonte, Brasil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Lis Ribeiro do Valle Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou/Fiocruz Minas, Minas Gerais, Belo Horizonte, Brasil.
| |
Collapse
|
2
|
de Jesus MCS, Cerilo-Filho M, Ramirez ADR, Menezes RAO, Gomes MSM, Cassiano GC, Gurgel RQ, Silva JRS, Moura TR, Pratt-Riccio LR, Baptista ARS, Storti-Melo LM, Machado RLD. Influence of trem-1 gene polymorphisms on cytokine levels during malaria by Plasmodium vivax in a frontier area of the Brazilian Amazon. Cytokine 2023; 169:156264. [PMID: 37327529 DOI: 10.1016/j.cyto.2023.156264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The immunopathology during malaria depends on the level of inflammatory response generated. In this scenario, the TREM-1 has been associated with the severity of infectious diseases and could play an important role in the inflammatory course of malaria. We aimed to describe the allelic and genotypic frequency of four polymorphisms in the trem-1 gene in Plasmodium vivax-infected patients and to verify the association of these polymorphisms with clinical and immunological factors in a frontier area of the Brazilian Amazon. METHODS We included 76 individuals infected with P. vivax and 144 healthy controls living in the municipality of Oiapoque, Amapá, Brazil. The levels of TNF-α, IL-10, IL-2, IL-4, IL-5, and IFN-γ were measured by flow cytometry, while IL-6, sTREM-1, and antibodies against PvMSP-119 were evaluated by ELISA. The SNPs were genotyped by qPCR technique. Polymorphisms analysis, allelic and genotype, frequencies, and HWE calculation were determined by x2 test in R Software. The association between the parasitemia, gametocytes, antibodies, cytokines, and sTREM-1 with the genotypes of malaria and control groups was performed using the Kruskal-Wallis test, these analyzes were conducted in SPSS Software, at 5% significance level. RESULTS All SNPs were successfully genotyped. Allelic and genotypic distribution was in Hardy-Weinberg Equilibrium. Furthermore, several associations were identified between malaria and control groups, with increased levels of IL-5, IL-6, IL-10, TNF-α, and IFN-γ in the infected individuals with rs6910730A, rs2234237T, rs2234246T, rs4711668C alleles compared to the homozygous wild-type and heterozygous genotypes of the controls (p-value < 0.05). No association was found for these SNPs and the levels of IL-2, and sTREM-1. CONCLUSIONS The SNPs on the trem-1 gene are associated with the effector molecules of the innate immunity and may contribute to the identification and effective participation of trem-1 in the modulation of the immune response. This association may be essential for the establishment of immunization strategies against malaria.
Collapse
Affiliation(s)
- Myrela C S de Jesus
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil.
| | - Marcelo Cerilo-Filho
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Aina D R Ramirez
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Rubens A O Menezes
- Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil; Postgraduate Program in Health Sciences, Federal University of Amapá (UNIFAP), Macapá 68903-419, Amapá, Brazil
| | - Margarete S M Gomes
- Superintendence of Health Surveillance of the State of Amapá, Macapá 68902-865, Amapá, Brazil
| | | | - Ricardo Q Gurgel
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - José R S Silva
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Tatiana R Moura
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Lilian R Pratt-Riccio
- Laboratory for Malaria Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Andrea R S Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Luciane M Storti-Melo
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil; Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Ricardo L D Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil; Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
3
|
Kotepui M, Duangchan T, Mahittikorn A, Mekhora C, Anabire NG, Kotepui KU. Interleukin-5 levels in relation to malaria severity: a systematic review. Malar J 2023; 22:226. [PMID: 37537570 PMCID: PMC10401852 DOI: 10.1186/s12936-023-04659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The role of cytokines such as interleukin-5 (IL-5) in the pathogenesis of malaria remains unclear. This systematic review sought to synthesize variations in IL-5 levels between severe and uncomplicated malaria, as well as between malaria and controls not afflicted with the disease. METHODS This systematic review was registered at the International Prospective Register of Systematic Reviews (PROSPERO; CRD42022368773). Searches for studies that reported IL-5 levels in patients with malaria (any severity) and/or uninfected individuals were performed in Web of Science, PubMed, EMBASE, Scopus, CENTRAL, and MEDLINE, between 1st and 10th October, 2022. The risk of bias among all included studies was minimized using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines for reporting observational studies. The differences in IL-5 levels between malaria and uninfected controls, and between severe and uncomplicated malaria were synthesized by narrative synthesis. RESULTS Among 1177 articles identified in the databases, 23 matched the eligibility criteria and were included in this systematic review. Qualitative syntheses showed the heterogeneity of IL-5 levels between different severities of clinical malaria and uninfected controls. The majority of the included studies (12/15 studies, 80%) found no change in IL-5 levels between malaria cases and uninfected controls. Similarly, most studies found no difference in IL-5 levels between severe (regardless of complications) and uncomplicated malaria (4/8 studies, 50%). The qualitative syntheses revealed that most studies found no difference in IL-5 levels between severe and non-severe malaria. CONCLUSIONS The comprehensive review suggests that IL-5 levels are unchanged in patients with different levels of clinical severity of malaria and uninfected controls. Given the limited number of published studies on IL-5 levels in malaria, there is a need for additional research to determine the function of this cytokine in the pathogenesis of malaria.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Thitinat Duangchan
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Chusana Mekhora
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Nsoh Godwin Anabire
- Department of Biochemistry & Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Ghana
- Department of Biochemistry, Cell & Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kwuntida Uthaisar Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Ammar AI, El-Hefnawy SM, Shehab-Eldeen S, Essa A, ELnaidany SS, Mostafa RG, Alsalman MH, El-Refai SA. Plasmodium falciparum Malaria Susceptibility and Severity: Influence of MyD88-Adaptor-Like Gene (rs8177374) Polymorphism. Infect Drug Resist 2022; 15:6815-6827. [DOI: 10.2147/idr.s387463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022] Open
|
5
|
Tovar Acero C, Ramírez-Montoya J, Velasco MC, Avilés-Vergara PA, Ricardo-Caldera D, Duran-Frigola M, Quintero G, Cantero ME, Rivera-Correa J, Rodriguez A, Fernanda Yasnot-Acosta M. IL-4, IL-10, CCL2 and TGF-β as potential biomarkers for severity in Plasmodium vivax malaria. PLoS Negl Trop Dis 2022; 16:e0010798. [PMID: 36178979 PMCID: PMC9555658 DOI: 10.1371/journal.pntd.0010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/12/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules is thought to contribute to pathogenesis and has been proposed as a possible predictor for disease complications. The objective of this study was to evaluate the cytokine profile of P. vivax malaria patients with different clinical outcomes to identify possible immune biomarkers for severe P. vivax malaria. The study included patients with non-severe (n = 56), or severe (n = 50) P. vivax malaria and healthy controls (n = 50). Patient plasma concentrations of IL-4, IL-2, CXCL10, IL-1β, TNF-α, CCL2, IL-17A, IL-6, IL-10, IFN-γ, IL-12p70, CXCL8 and active TGF-β1 were determined through flow cytometry. The levels of several cytokines and chemokines, CXCL10, IL-10, IL-6, IL-4, CCL2 and IFN-γ were found to be significantly higher in severe, compared to non-severe P. vivax malaria patients. Severe thrombocytopenia was positively correlated with IL-4, CXCL10, IL-6, IL-10 and IFN-γ levels, renal dysfunction was related to an increase in IL-2, IL-1β, IL-17A and IL-8, and hepatic impairment with CXCL10, MCP-1, IL-6 and IFN-γ. A Lasso regression model suggests that IL-4, IL-10, CCL2 and TGF-β might be developed as biomarkers for severity in P. vivax malaria. Severe P. vivax malaria patients present specific cytokine and chemokine profiles that are different from non-severe patients and that could potentially be developed as biomarkers for disease severity. Plasmodium vivax is one of the main species responsible for malaria in the world. The pathogenic mechanisms leading to the development of severe P. vivax malaria are not yet fully understood. Immune system molecules such as cytokines and chemokines actively participate in the control of the infection, however, their uncontrolled production can influence alterations in organs such as the liver, kidneys, among others. In this study we show that there is a differential concentration of some cytokines and chemokines between patients with non-severe malaria and severe P. vivax malaria; and that there are associations between these molecules with manifestations that occur in severe malaria. Four molecules with potential to become biomarkers of severity were identified.
Collapse
Affiliation(s)
- Catalina Tovar Acero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
- Doctorado de Medicina Tropical, SUE Caribe, Universidad de Cartagena, Bolívar, Colombia
- * E-mail: (CTA); (MFYA)
| | - Javier Ramírez-Montoya
- Grupo de Investigación en Estadística, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - María Camila Velasco
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Paula A. Avilés-Vergara
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Gustavo Quintero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Myriam Elena Cantero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Juan Rivera-Correa
- New York University School of Medicine, New York, New York, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, New York, New York, United States of America
| | - María Fernanda Yasnot-Acosta
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
- * E-mail: (CTA); (MFYA)
| |
Collapse
|
6
|
HIV infection increases the risk of acquiring Plasmodium vivax malaria: a 4-year cohort study in the Brazilian Amazon HIV and risk of vivax malaria. Sci Rep 2022; 12:9076. [PMID: 35641592 PMCID: PMC9156757 DOI: 10.1038/s41598-022-13256-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Globally, malaria and human immunodeficiency virus (HIV) are both independently associated with a massive burden of disease and death. While their co-infection has been well studied for Plasmodium falciparum, scarce data exist regarding the association of P. vivax and HIV. In this cohort study, we assessed the effect of HIV on the risk of vivax malaria infection and recurrence during a 4-year follow-up period in an endemic area of the Brazilian Amazon. For the purpose of this study, we obtained clinical information from January 2012 to December 2016 from two databases. HIV screening data were acquired from the clinical information system at the tropical hospital Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD). The National Malaria Surveillance database (SIVEP malaria) was utilized to identify malaria infections during a 4-year follow-up period after diagnosis of HIV. Both datasets were combined via data linkage. Between 2012 and 2016, a total of 42,121 people were screened for HIV, with 1569 testing positive (3.7%). Out of all the patients diagnosed with HIV, 198 had at least one episode of P. vivax malaria in the follow-up. In the HIV-negative group, 711 participants had at least one P. vivax malaria episode. When comparing both groups, HIV patients had a 6.48 [(5.37–7.83); P < 0.0001] (adjusted relative risk) greater chance of acquiring P. vivax malaria. Moreover, being of the male gender [ARR = 1.41 (1.17–1.71); P < 0.0001], Amerindian ethnicity [ARR = 2.77 (1.46–5.28); P < 0.0001], and a resident in a municipality of the Metropolitan region of Manaus [ARR = 1.48 (1.02–2.15); P = 0.038] were independent risk factors associated with an increased risk of clinical malaria. Education ≥ 8 years [ARR = 0.41 (0.26–0.64); P < 0.0001] and living in the urban area [ARR = 0.44 (0.24–0.80); P = 0.007] were associated to a lower risk of P. vivax malaria. A total of 28 (14.1%) and 180 (25.3%) recurrences (at least a second clinical malaria episode) were reported in the HIV-positive and HIV-negative groups, respectively. After adjusting for sex and education, HIV-positive status was associated with a tendency towards protection from P. vivax malaria recurrences [ARR = 0.55 (0.27–1.10); P = 0.090]. HIV status was not associated with hospitalizations due to P. vivax malaria. CD4 + counts and viral load were not associated with recurrences of P. vivax malaria. No significant differences were found in the distribution of parasitemia between HIV-negative and HIV-positive P. vivax malaria patients. Our results suggest that HIV-positive status is a risk factor for vivax malaria infection, which represents an additional challenge that should be addressed during elimination efforts.
Collapse
|
7
|
Mbani Mpega Ntigui CN, Oyegue‐Liabagui SL, Kouna LC, Imboumy KR, Tsafack Tegomo NP, Okouga AP, Ontoua S, Lekana‐Douki J. Inflammatory cytokine responses in children with asymptomatic malaria infection living in rural, semi-urban and urban areas in south-eastern Gabon. Clin Exp Immunol 2021; 206:395-409. [PMID: 34363699 PMCID: PMC8561699 DOI: 10.1111/cei.13653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Cytokines are soluble mediators of the immune response, and their evolution influences the disease outcome. Gaining knowledge on cytokines has become important, as they can constitute biomarkers allowing the diagnosis of malaria and preventing severe forms of the disease. Here, we investigated 10 cytokines and their circulating levels in asymptomatic Gabonese children with Plasmodium falciparum infection living in urban, semi-urban and rural areas. Blood samples were collected from 273 schoolchildren (153 uninfected and 120 infected) aged 6 to 192 months. Hematological parameters were determined and P. falciparum diagnosis was performed using a rapid diagnosis test, microscopy and nested polymerase chain reaction (PCR). Plasma pro- [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12p70, IL-17A and IL-22] and anti-inflammatory [IL-10, IL-4, IL-13 and transforming growth factor (TGF)-β] cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA) and compared between asymptomatic-infected and uninfected children. Results revealed that without distinction of area, IL-10 and IL-6 levels were higher in infected compared to uninfected children; however, the pro- and anti-inflammatory ratios (IL-6/IL-10 and TNF-α/IL-10) were similar. Furthermore, with area distinction significantly elevated levels of IL-10 in these asymptomatic children were always accompanied by either significantly low or high levels of a proinflammatory cytokine. Also, comparison between asymptomatic-infected children from the three areas showed significantly lower IL-17A, IL-22 and TGF-β levels in urban area compared to semi-urban and rural areas. These results suggest that asymptomatic malaria infections induce significantly high inflammatory cytokine levels without modifying the balanced between pro- and anti-inflammatory cytokines and underline the higher exposure to infections of children in rural areas.
Collapse
Affiliation(s)
- Chérone Nancy Mbani Mpega Ntigui
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
- Ecole Doctorale Régionale d’Afrique Centrale en Infectiologie Tropicale (ECODRAC)Université des Sciences et Techniques de MasukuFrancevilleGabon
| | - Sandrine Lydie Oyegue‐Liabagui
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
- Ecole Doctorale Régionale d’Afrique Centrale en Infectiologie Tropicale (ECODRAC)Université des Sciences et Techniques de MasukuFrancevilleGabon
| | - Lady Charlene Kouna
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
| | - Karl Roméo Imboumy
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
| | - Nathalie Pernelle Tsafack Tegomo
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
| | - Alain Prince Okouga
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
| | - Seinnat Ontoua
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
| | - Jean‐Bernard Lekana‐Douki
- Unité d’Evolution Epidémiologie et Résistances Parasitaires (UNEEREP)Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF)FrancevilleGabon
- Département de Parasitologie‐MycologieUniversité des Sciences de la Santé (USS)LibrevilleGabon
| |
Collapse
|
8
|
Wellmann IAM, Ibiapina HNS, Sachett JAG, Sartim MA, Silva IM, Oliveira SS, Tarragô AM, Moura-da-Silva AM, Lacerda MVG, Ferreira LCDL, Malheiro A, Monteiro WM, Costa AG. Correlating Fibrinogen Consumption and Profiles of Inflammatory Molecules in Human Envenomation's by Bothrops atrox in the Brazilian Amazon. Front Immunol 2020; 11:1874. [PMID: 32973773 PMCID: PMC7468254 DOI: 10.3389/fimmu.2020.01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.
Collapse
Affiliation(s)
- Irmgardt Alicia María Wellmann
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Iran Mendonça Silva
- Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Sâmella Silva Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Ana Maria Moura-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisas Leônidas e Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| |
Collapse
|
9
|
Costa AG, Chaves YO, Teixeira-Carvalho A, Ramasawmy R, Antonelli LRV, Barbosa L, Balieiro A, Monteiro WM, Mourão MP, Lacerda MVG, Martins-Filho OA, Costa FTM, Malheiro A, Nogueira PA. Increased platelet distribution width and reduced IL-2 and IL-12 are associated with thrombocytopenia in Plasmodium vivax malaria. Mem Inst Oswaldo Cruz 2020; 115:e200080. [PMID: 32696915 PMCID: PMC7367212 DOI: 10.1590/0074-02760200080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Thrombocytopenia in malaria involves platelet destruction and consumption; however, the cellular response underlying this phenomenon has still not been elucidated. OBJECTIVE To find associations between platelet indices and unbalanced Th1/Th2/Th17 cytokines as a response to thrombocytopenia in Plasmodium vivax infected (Pv-MAL) patients. METHODS Platelet counts and quantification of Th1/Th2/Th17 cytokine levels were compared in 77 patients with uncomplicated P. vivax malaria and 37 healthy donors from the same area (endemic control group - ENCG). FINDINGS Thrombocytopenia was the main manifestation in 55 patients, but was not associated with parasitaemia. The Pv-MAL patients showed increases in the mean platelet volume (MPV), which may be consistent with larger or megaplatelets. Contrary to the findings regarding the endemic control group, MPV and platelet distribution width (PDW) did not show an inverse correlation, due the increase in the heterogeneity of platelet width. In addition, the Pv-MAL patients presented increased IL-1β and reduced IL-12p70 and IL-2 serum concentrations. Furthermore, the reduction of these cytokines was associated with PDW values. MAIN CONCLUSIONS Our data demonstrate that an increase in MPV and the association between reductions of IL-2 and IL-12 and PDW values may be an immune response to thrombocytopenia in uncomplicated P. vivax malaria.
Collapse
Affiliation(s)
- Allyson Guimarães Costa
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil.,Universidade do Estado do Amazonas, Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - Yury Oliveira Chaves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Parasitária, Rio de Janeiro, RJ, Brasil
| | - Andréa Teixeira-Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brasil
| | - Rajendranath Ramasawmy
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil.,Universidade Nilton Lins, Faculdade de Medicina, Manaus, AM, Brasil
| | - Lis Ribeiro Valle Antonelli
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, MG, Brasil
| | - Lucas Barbosa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Manaus, AM, Brasil
| | - Antonio Balieiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Manaus, AM, Brasil
| | - Wuelton Marcelo Monteiro
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Maria Paula Mourão
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Marcus Vinicius Guimarães Lacerda
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Universidade do Estado do Amazonas, Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Manaus, AM, Brasil
| | - Olindo Assis Martins-Filho
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brasil
| | | | - Adriana Malheiro
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil.,Universidade do Estado do Amazonas, Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - Paulo Afonso Nogueira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Manaus, AM, Brasil
| |
Collapse
|
10
|
Santos JHA, Bührer-Sékula S, Melo GC, Cordeiro-Santos M, Pimentel JPD, Gomes-Silva A, Costa AG, Saraceni V, Da-Cruz AM, Lacerda MVG. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev Soc Bras Med Trop 2019; 52:e20190315. [PMID: 31800922 DOI: 10.1590/0037-8682-0315-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Immunological control of Mycobacterium tuberculosis infection is dependent on the cellular immune response, mediated predominantly by Th1 type CD4+ T cells. Polarization of the immune response to Th2 can inhibit the host immune protection against pathogens. Patients with tuberculosis coinfected with helminths demonstrate more severe pulmonary symptoms, a deficiency in the immune response against tuberculosis, and an impaired response to anti-tuberculosis therapy. METHODS We evaluated the cellular immune response and the impact of the presence of Ascaris lumbricoides on the immune and clinical response in pulmonary tuberculosis patients. Ninety-one individuals were included in the study: 38 tuberculosis patients, 11 tuberculosis patients coinfected with Ascaris lumbricoides and other helminths, 10 Ascaris lumbricoides patients, and 34 non-infected control individuals. Clinical evolution of pulmonary tuberculosis was studied on 0, 30, 60, and 90 days post-diagnosis of Mycobacterium tuberculosis and Ascaris lumbricoides. Furthermore, immune cells and plasma cytokine profiles were examined in mono/coinfection by Mycobacterium tuberculosis and Ascaris lumbricoides using flow cytometry. RESULTS There were no statistical differences in any of the evaluated parameters and the results indicated that Ascaris lumbricoides infection does not lead to significant clinical repercussions in the presentation and evolution of pulmonary tuberculosis. CONCLUSIONS The association with Ascaris lumbricoides did not influence the Th1, Th2, and Th17 type responses, or the proportions of T lymphocyte subpopulations. However, higher serum levels of IL-6 in tuberculosis patients may explain the pulmonary parenchymal damage.
Collapse
Affiliation(s)
- João Hugo Abdalla Santos
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Samira Bührer-Sékula
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, GO, Brasil
| | - Gisely Cardoso Melo
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Marcelo Cordeiro-Santos
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - João Paulo Diniz Pimentel
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretora de Ensino e Pesquisa, Manaus, AM, Brasil
| | - Adriano Gomes-Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Allyson Guimarães Costa
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretora de Ensino e Pesquisa, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - Valeria Saraceni
- Prefeitura da Cidade do Rio de Janeiro, Secretaria Municipal de Saúde, Rio de Janeiro, RJ, Brasil
| | - Alda Maria Da-Cruz
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Marcus Vinícius Guimarães Lacerda
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Oswaldo Cruz, Instituto de Pesquisas Leônidas & Maria Deane, Manaus, AM, Brasil
| |
Collapse
|
11
|
Nsubuga J, Kato CD, Nanteza A, Matovu E, Alibu VP. Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co-infection in North Eastern Uganda. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:63. [PMID: 31687034 PMCID: PMC6820921 DOI: 10.1186/s13223-019-0377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.
Collapse
Affiliation(s)
- Julius Nsubuga
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Charles Drago Kato
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | | |
Collapse
|
12
|
Abreu-Filho PG, Tarragô AM, Costa AG, Monteiro WM, Meielles AFG, Costa TCC, Silva JS, Zambuzi FA, Gardinassi LG, Moraes LAB, Lacerda MVG, Sorgi CA, Faccioli LH, Malheiro A. Plasma Eicosanoid Profile in Plasmodium vivax Malaria: Clinical Analysis and Impacts of Self-Medication. Front Immunol 2019; 10:2141. [PMID: 31620120 PMCID: PMC6760468 DOI: 10.3389/fimmu.2019.02141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The participation of cytokines and chemokines in Plasmodium vivax malaria (Pv-malaria) activates the immune response and thus causes the production of several inflammatory mediators. This process is already well-established, but little is known about eicosanoids in malaria physiopathology, especially in regards to inflammation and immunity. Malaria is an acute febrile syndrome similar to any other less important infectious disease and people may self-medicate with any anti-inflammatory drugs in order to cease the recurrent symptoms of the disease. Based on this information, the study describes the eicosanoid profile and its possible influence on the production of cytokines and chemokines in P. vivax infections. In addition, we investigated the influence of self-medication with anti-inflammatory drugs in this immune profile. Twenty-three patients were included in the study, with or without self-medication by anti-inflammatory drugs prior to diagnosis. A total 12 individuals were selected for the control group. Eicosanoid profiles were quantified by HPLC-MS/MS, and cytokines and chemokines by flow cytometry and ELISA. The Pv-malaria infection significantly reduces the production of several lipid mediators, and its action is increased by self-medication. We observed that the eicosanoids we found derive from the lipoxygenase and cyclooxygenase pathways, and present positive and negative correlations with chemokines and cytokines in the follow-up of patients. Our data suggest that self-medication may interfere in the immunological characteristics in P. vivax infection and may modify the follow-up of the disease.
Collapse
Affiliation(s)
- Péricles Gama Abreu-Filho
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Biociência e Biotecnologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Alyne Fávero Galvão Meielles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Programa de Pós-Graduação da Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Thainá Cristina Cardoso Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Jéssica Santos Silva
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabiana Albani Zambuzi
- Programa de Pós-Graduação em Biociência e Biotecnologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Carlos Arterio Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| |
Collapse
|
13
|
Ibiapina HNS, Costa AG, Sachett JAG, Silva IM, Tarragô AM, Neves JCF, Kerr MWA, Santana MF, Martins-Filho OA, Lacerda MVG, Ferreira LCL, Malheiro A, Monteiro WM. An Immunological Stairway to Severe Tissue Complication Assembly in Bothrops atrox Snakebites. Front Immunol 2019; 10:1882. [PMID: 31474982 PMCID: PMC6705225 DOI: 10.3389/fimmu.2019.01882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023] Open
Abstract
Snakebites are a serious public health problem and, in the Amazon, the Bothrops atrox snake is the most frequent cause of envenomation. B. atrox venom (BaV) causes pathophysiological changes with intense, local inflammatory processes, such as severe tissue complication (STC). However, mechanisms associated with the inflammatory process in humans are still poorly understood. Thus, in this study, we sought to describe the profile of local and systemic immunological soluble molecules in Bothrops envenomation patients treated at a specialist tertiary healthcare unit in the Brazilian Amazon. An analytical and prospective study was performed with patients who had snakebites with different clinical outcomes (STC and Mild Tissue Complication-MTC) using venous blood and blister exudate in order to measure immunological soluble molecules present in the response process. Twenty STC patients and 20 MTC patients were eligible for the study. In addition, 20 healthy donors (HD) who had never been bitten by a snake were used as controls. The biomarkers CXCL-8, CCL-5, CXCL-9, CCL-2 and CXCL-10; C3a, C4a, and C5a; IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, TNF, IFN-γ and IL-17A were quantified using flow cytometry and ELISA. The circulating response profile differs between the studied groups, with MTC patients presenting a mixed profile and STC patients presenting a more polarized profile for Th1 response. In addition, individuals who develop STC have a more intense local immune response, because the tissue response differs from the circulating immunological soluble molecules and presents Th1/Th2/Th17 response polarization. Furthermore, these results suggest that CCL-2 and CXCL-10 are biomarkers for STC and the response profile they assume against Bothrops snakebite should reflect in the clinical practice for the patient.
Collapse
Affiliation(s)
- Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Iran Mendonça Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juliana Costa Ferreira Neves
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marllon Wendell Athaydes Kerr
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Monique Freire Santana
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Luiz Carlos Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| |
Collapse
|
14
|
Cruz LAB, Moraes MOA, Queiroga-Barros MR, Fukutani KF, Barral-Netto M, Andrade BB. Chronic hepatitis B virus infection drives changes in systemic immune activation profile in patients coinfected with Plasmodium vivax malaria. PLoS Negl Trop Dis 2019; 13:e0007535. [PMID: 31233500 PMCID: PMC6611654 DOI: 10.1371/journal.pntd.0007535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/05/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Plasmodium vivax and Hepatitis B virus (HBV) are globally outspread in similar geographic regions. The concurrence of both infections and its association with some degree of protection against symptomatic and/or severe vivax malaria has been already described. Nevertheless, data on how host response to both pathogens undermines the natural progression of the malarial infection are scarce. Here, a large cohort of vivax malaria and HBV patients is retrospectively analyzed in an attempt to depict how inflammatory characteristics could be potentially related to the protection to severe malaria in coinfection. METHODS A retrospective analysis of a databank containing 601 individuals from the Brazilian Amazon, including 179 symptomatic P. vivax monoinfected patients, 145 individuals with asymptomatic P. vivax monoinfection, 28 P. vivax-HBV coinfected patients, 29 HBV monoinfected subjects and 165 healthy controls, was performed. Data on plasma levels of multiple chemokines, cytokines, acute phase proteins, hepatic enzymes, bilirubin and creatinine were analyzed to describe and compare biochemical profiles associated to each type of infection. RESULTS Coinfected individuals predominantly presented asymptomatic malaria, referred increased number of previous malaria episodes than symptomatic vivax-monoinfected patients, and were predominantly younger than asymptomatic vivax-monoinfected individuals. Coinfection was hallmarked by substantially elevated concentrations of interleukin (IL)-10 and heightened levels of C-C motif chemokine ligand (CCL)2. Correlation matrices showed that coinfected individuals presented a distinct biomarker profile when compared to asymptomatic or symptomatic P. vivax patients, or HBV-monoinfected individuals. Parasitemia could distinguish coinfected from symptomatic or asymptomatic P. vivax-monoinfected patients. HBV viremia was associated to distinct inflammatory profiles in HBV-monoinfected and coinfected patients. CONCLUSION The findings demonstrate a distinct inflammatory profile in coinfected patients, with characteristics associated with immune responses to both pathogens. These host responses to P. vivax and HBV, in conjunction, could be potentially associated, if not mainly responsible, for the protection against symptomatic vivax malaria.
Collapse
Affiliation(s)
- Luís A. B. Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
| | - Marina O. A. Moraes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Matheus R. Queiroga-Barros
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia, Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
15
|
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarragô AM, Garcia NP, Heckmann MIO, Monteiro WM, Malheiro A, Lacerda MVG. Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria. Cytokine 2018; 110:374-380. [DOI: 10.1016/j.cyto.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023]
|
16
|
Costa AG, Sadahiro A, Monteiro Tarragô A, Pessoa FAC, Pires Loiola B, Malheiro A, Medeiros JF. Immune response in Mansonella ozzardi infection modulated by IL-6/IL-10 axis in Amazon region of Brazil. Cytokine 2018; 104:98-103. [DOI: 10.1016/j.cyto.2017.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/27/2023]
|
17
|
Patankar S, Sharma S, Rathod PK, Duraisingh MT. Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax. Proteomics Clin Appl 2018; 12:e1700024. [PMID: 29193853 DOI: 10.1002/prca.201700024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Plasmodium vivax is a protozoan parasite that is one of the causative agents of human malaria. Due to several occult features of its life cycle, P. vivax threatens to be a problem for the recent efforts toward elimination of malaria globally. With an emphasis on malaria elimination goals, the authors summarize the major gaps in P. vivax diagnosis and describe how proteomics technologies have begun to contribute toward the discovery of antigens that could be used for various technology platforms and applications. The authors suggest areas where, in the future, proteomics technologies could fill in gaps in P. vivax diagnosis that have proved difficult. The discovery of new parasite antigens, host responses, and immune signatures using proteomics technologies will be a key part of the global malaria elimination efforts.
Collapse
Affiliation(s)
- Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
18
|
Menezes RADO, Gomes MDSM, Mendes AM, Couto ÁARDA, Nacher M, Pimenta TS, de Sousa ACP, Baptista ARDS, de Jesus MI, Enk MJ, Cunha MG, Machado RLD. Enteroparasite and vivax malaria co-infection on the Brazil-French Guiana border: Epidemiological, haematological and immunological aspects. PLoS One 2018; 13:e0189958. [PMID: 29293589 PMCID: PMC5749708 DOI: 10.1371/journal.pone.0189958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Malaria-enteroparasitic co-infections are known for their endemicity. Although they are prevalent, little is known about their epidemiology and effect on the immune response. This study evaluated the effect of enteroparasite co-infections with malaria caused by Plasmodium vivax in a border area between Brazil and French Guiana. The cross sectional study took place in Oiapoque, a municipality of Amapá, on the Amazon border. Malaria was diagnosed using thick blood smears, haemoglobin dosage by an automated method and coproparasitology by the Hoffman and Faust methods. The anti-PvMSP-119 IgG antibodies in the plasma were evaluated using ELISA and Th1 (IFN-γ, TNF-α and IL-2), and Th2 (IL-4, IL-5 and IL-10) cytokine counts were performed by flow cytometry. The participants were grouped into those that were monoinfected with vivax malaria (M), vivax malaria-enteroparasite co-infected (CI), monoinfected with enteroparasite (E) and endemic controls (EC), who were negative for both diseases. 441 individuals were included and grouped according to their infection status: [M 6.9% (30/441)], [Cl 26.5% (117/441)], [E 32.4% (143/441)] and [EC 34.2% (151/441)]. Males prevailed among the (M) 77% (23/30) and (CI) 60% (70/117) groups. There was a difference in haemoglobin levels among the different groups under study for [EC-E], [EC-Cl], [E-M] and [Cl-M], with (p < 0.01). Anaemia was expressed as a percentage between individuals [CI-EC (p < 0.05)]. In terms of parasitaemia, there were differences for the groups [CI-M (p < 0.05)]. Anti-PvMSP-119 antibodies were detected in 51.2% (226/441) of the population. The level of cytokines evaluation revealed a large variation in TNF-α and IL-10 concentrations in the co-infected group. In this study we did not observe any influence of coinfection on the acquisition of IgG antibodies against PvMSP119, as well as on the profile of the cytokines that characterize the Th1 and Th2 patterns. However, co-infection increased TNF-α and IL-10 levels.
Collapse
Affiliation(s)
- Rubens Alex de Oliveira Menezes
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of morphofunctional and parasitic studies with impact on health (LEMPIS), Federal University of Amapá (UNIFAP), Macapa, Amapá State, Brazil
- * E-mail:
| | | | - Anapaula Martins Mendes
- UNIFAP/Oiapoque Binational Campus, Federal University of Amapá, Oiapoque, Amapá State, Brazil
| | | | - Mathieu Nacher
- Centre d’Investigation Clinique, CIC INSERM 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Tamirys Simão Pimenta
- Postgraduate Program in Neuroscience and Cell Biology, UFPA, Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Aline Collares Pinheiro de Sousa
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | | | - Maria Izabel de Jesus
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Martin Johannes Enk
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Maristela Gomes Cunha
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Pará State, Brazil
| | - Ricardo Luiz Dantas Machado
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
- Fluminense Federal University, Niterói, Rio de Janeiro State, Brazil
| |
Collapse
|
19
|
Costa AG, Ramasawmy R, Ibiapina HNS, Sampaio VS, Xábregas LA, Brasil LW, Tarragô AM, Almeida ACG, Kuehn A, Vitor-Silva S, Melo GC, Siqueira AM, Monteiro WM, Lacerda MVG, Malheiro A. Association of TLR variants with susceptibility to Plasmodium vivax malaria and parasitemia in the Amazon region of Brazil. PLoS One 2017; 12:e0183840. [PMID: 28850598 PMCID: PMC5574562 DOI: 10.1371/journal.pone.0183840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria (Pv-malaria) is still considered a neglected disease despite an alarming number of individuals being infected annually. Malaria pathogenesis occurs with the onset of the vector-parasite-host interaction through the binding of pathogen-associated molecular patterns (PAMPs) and receptors of innate immunity, such as toll-like receptors (TLRs). The triggering of the signaling cascade produces an elevated inflammatory response. Genetic polymorphisms in TLRs are involved in susceptibility or resistance to infection, and the identification of genes involved with Pv-malaria response is important to elucidate the pathogenesis of the disease and may contribute to the formulation of control and elimination tools. METHODOLOGY/PRINCIPAL FINDINGS A retrospective case-control study was conducted in an intense transmission area of Pv-malaria in the state of Amazonas, Brazil. Genetic polymorphisms (SNPs) in different TLRs, TIRAP, and CD14 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 325 patients infected with P. vivax and 274 healthy individuals without malaria history in the prior 12 months from the same endemic area. Parasite load was determined by qPCR. Simple and multiple logistic/linear regressions were performed to investigate association between the polymorphisms and the occurrence of Pv-malaria and parasitemia. The C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T) genotypes appear to be risk factors for infection by P. vivax (TLR5: C/C vs. C/T [OR: 2.116, 95% CI: 1.054-4.452, p = 0.031]; TLR9: C/C vs. T/T [OR: 1.919, 95% CI: 1.159-3.177, p = 0.010]; respectively). Fever (COEF = 7599.46, 95% CI = 3063.80-12135.12, p = 0.001) and the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95% CI = 3472.83-30540.44, p = 0.014) were independently associated with increased parasitemia in patients with Pv-malaria. CONCLUSIONS Variants of TLRs may predispose individuals to infection by P. vivax. The TLR5 R392StopCodon and TLR9 -1486C/T variants are associated with susceptibility to Pv-malaria. Furthermore, the TLR9 variant -1237C/C correlates with high parasitemia.
Collapse
Affiliation(s)
- Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Nilton Lins (UNINILTONLINS), Manaus, AM, Brasil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Vanderson Souza Sampaio
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Lilyane Amorim Xábregas
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Larissa Wanderley Brasil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Anne Cristine Gomes Almeida
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andrea Kuehn
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Barcelona Centre for International Health Research (CRESIB), Barcelona Global Health Institute (ISGLOBAL), Barcelona, Spain
| | - Sheila Vitor-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Gisely Cardoso Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - André Machado Siqueira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ-Amazônia, Manaus, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
20
|
Maneerattanasak S, Gosi P, Krudsood S, Chimma P, Tongshoob J, Mahakunkijcharoen Y, Sukasem C, Imwong M, Snounou G, Khusmith S. Molecular and immunological analyses of confirmed Plasmodium vivax relapse episodes. Malar J 2017; 16:228. [PMID: 28558712 PMCID: PMC5450361 DOI: 10.1186/s12936-017-1877-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Background Relapse infections resulting from the activation hypnozoites produced by Plasmodium vivax and Plasmodium ovale represent an important obstacle to the successful control of these species. A single licensed drug, primaquine is available to eliminate these liver dormant forms. To date, investigations of vivax relapse infections have been few in number. Results Genotyping, based on polymorphic regions of two genes (Pvmsp1F3 and Pvcsp) and four microsatellite markers (MS3.27, MS3.502, MS6 and MS8), of 12 paired admission and relapse samples from P. vivax-infected patients were treated with primaquine, revealed that in eight of the parasite populations in the admission and relapse samples were homologous, and heterologous in the remaining four patients. The patients’ CYP2D6 genotypes did not suggest that any were poor metabolisers of primaquine. Parasitaemia tended to be higher in the heterologous as compared to the homologous relapse episodes as was the IgG3 response. For the twelve pro- and anti-inflammatory cytokine levels measured for all samples, only those of IL-6 and IL-10 tended to be higher in patients with heterologous as compared to homologous relapses in both admission and relapse episodes. Conclusions The data from this limited number of patients with confirmed relapse episodes mirror previous observations of a significant proportion of heterologous parasites in relapses of P. vivax infections in Thailand. Failure of the primaquine treatment that the patients received is unlikely to be due to poor drug metabolism, and could indicate the presence of P. vivax populations in Thailand with poor susceptibility to 8-aminoquinolines. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1877-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarunya Maneerattanasak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science-United States Army Military Component, Bangkok, Thailand
| | - Srivicha Krudsood
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pattamawan Chimma
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Yuvadee Mahakunkijcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Georges Snounou
- UPMC Univ Paris 06, Inserm (Institut National de la Santé et de la Recherche Medicale), Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, ERL CNRS 8255 (Centre National de la Recherche Scientifique), Sorbonne Universités, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Srisin Khusmith
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Hojo-Souza NS, Pereira DB, de Souza FSH, de Oliveira Mendes TA, Cardoso MS, Tada MS, Zanini GM, Bartholomeu DC, Fujiwara RT, Bueno LL. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J 2017; 16:42. [PMID: 28118834 PMCID: PMC5260126 DOI: 10.1186/s12936-017-1683-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background The clinical outcome of malaria depends on the delicate balance between pro-inflammatory and immunomodulatory cytokine responses triggered during infection. Despite the numerous reports on characterization of plasma levels of cytokines/chemokines, there is no consensus on the profile of these mediators during blood stage malaria. The identification of acute phase biomarkers might contribute to a better understanding of the disease, allowing the use of more effective therapeutic approaches to prevent the progression towards severe disease. In the present study, the plasma levels of cytokines and chemokines and their association with parasitaemia and number of previous malaria episodes were evaluated in Plasmodium vivax-infected patients during acute and convalescence phase, as well as in healthy donors. Methods Samples of plasma were obtained from peripheral blood samples from four different groups: P. vivax-infected, P. vivax-treated, endemic control and malaria-naïve control. The cytokine (IL-6, IL-10, IL-17, IL-27, TGF-β, IFN-γ and TNF) and chemokine (MCP-1/CCL2, IP-10/CXCL10 and RANTES/CCL5) plasma levels were measured by CBA or ELISA. The network analysis was performed using Spearman correlation coefficient. Results Plasmodium vivax infection induced a pro-inflammatory response driven by IL-6 and IL-17 associated with an immunomodulatory profile mediated by IL-10 and TGF-β. In addition, a reduction was observed of IFN-γ plasma levels in P. vivax group. A lower level of IL-27 was observed in endemic control group in comparison to malaria-naïve control group. No significant results were found for IL-12p40 and TNF. It was also observed that P. vivax infection promoted higher levels of MCP-1/CCL2 and IP-10/CXCL10 and lower levels of RANTES/CCL5. The plasma level of IL-10 was elevated in patients with high parasitaemia and with more than five previous malaria episodes. Furthermore, association profile between cytokine and chemokine levels were observed by correlation network analysis indicating signature patterns associated with different parasitaemia levels. Conclusions The P. vivax infection triggers a balanced immune response mediated by IL-6 and MCP-1/CCL2, which is modulated by IL-10. In addition, the results indicated that IL-10 plasma levels are influenced by parasitaemia and number of previous malaria episodes.
Collapse
Affiliation(s)
- Natália Satchiko Hojo-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernanda Sumika Hojo de Souza
- Departamento de Ciência da Computação, Universidade Federal de São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | | | - Mariana Santos Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Graziela Maria Zanini
- Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Chaves YO, da Costa AG, Pereira MLM, de Lacerda MVG, Coelho-Dos-Reis JG, Martins-Filho OA, Teixeira-Carvalho A, Malheiro A, Monteiro WM, Orlandi PP, Marinho CRF, Nogueira PA. Immune response pattern in recurrent Plasmodium vivax malaria. Malar J 2016; 15:445. [PMID: 27581163 PMCID: PMC5007810 DOI: 10.1186/s12936-016-1501-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Background Plasmodium vivax is the causative agent of human malaria of large geographic distribution, with 35 million cases annually. In Brazil, it is the most prevalent species, being responsible by around 70 % of the malaria cases. Methods A cross-sectional study was performed in Manaus (Amazonas, Brazil), including 36 adult patients with primary malaria, 19 with recurrent malaria, and 20 endemic controls. The ex vivo phenotypic features of circulating leukocyte subsets (CD4+ T-cells, CD8+ T-cells, NK, NKT, B, B1 and Treg cells) as well as the plasmatic cytokine profile (IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ) were assessed, aiming at establishing patterns of immune response characteristic of primary malaria vs recurrent malaria as compared to endemic controls. Results The proportion of subjects with high levels of WBC was reduced in malaria patients as compared to the endemic control. Monocytes were diminished particularly in patients with primary malaria. The proportion of subjects with high levels of all lymphocyte subsets was decreased in all malaria groups, regardless their clinical status. Decreased proportion of subjects with high levels of CD4+ and CD8+ T-cells was found especially in the group of patients with recurrent malaria. Data analysis indicated significant increase in the proportion of the subjects with high plasmatic cytokine levels in both malaria groups, characterizing a typical cytokine storm. Recurrent malaria patients displayed the highest plasmatic IL-10 levels, that correlated directly with the CD4+/CD8+ T-cells ratio and the number of malaria episodes. Conclusion The findings confirm that the infection by the P. vivax causes a decrease in peripheral blood lymphocyte subsets, which is intensified in the cases of “recurrent malaria”. The unbalanced CD4+/CD8+ T-cells ratio, as well as increased IL-10 levels were correlated with the number of recurrent malaria episodes. These results suggest that the gradual remodelling of the immune response is dependent on the repeated exposure to the parasite, which involves a strict control of the immune response mediated by the CD4+/CD8+ T-cell unbalance and exacerbated IL-10 secretion. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1501-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Marcelo Luís Monteiro Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Jordana Grazziela Coelho-Dos-Reis
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Adriana Malheiro
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | | | - Claudio Romero Farias Marinho
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Paulo Afonso Nogueira
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil.
| |
Collapse
|
23
|
Scherer EF, Cantarini DG, Siqueira R, Ribeiro EB, Braga ÉM, Honório-França AC, França EL. Cytokine modulation of human blood viscosity from vivax malaria patients. Acta Trop 2016; 158:139-147. [PMID: 26948901 DOI: 10.1016/j.actatropica.2016.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022]
Abstract
Malaria is a major infectious disease in several countries and is caused by protozoa of the genus Plasmodium. In vivax malaria patients, inflammatory processes occur, as well as changes in cytokines and blood flow. The present study analyzed the cytokine modulation of blood viscosity from patients infected with Plasmodium vivax (P. vivax). Blood samples were collected from 42 non-infected individuals (control group) and 37 individuals infected with P. vivax. The IL-2, IL-4, IL-6, IL-10, TNFα, TGF-β and IL-17 cytokine concentrations in the serum were assessed, and the blood rheological properties were determined. The analysis of blood viscosity for shear rates revealed that the blood viscosity of the infected patients was significantly greater than that of the non-infected individuals. The viscosity of the blood was greater in the infected individuals than in the non-infected subjects. The serum from individuals with P. vivax infections exhibited higher IFN-γ and IL-17 concentrations and lower TGF-β levels. Incubation of the blood from infected individuals with IL-17 or IL-17 associated with IFN-γ reduced the viscosity to rates equivalent to the blood from non-infected individuals. Independently of cytokine modulation, no correlation was found between the parasitemia and blood viscosity of the infected patients. These data suggest that the alterations of blood viscosity are relevant as an auxiliary tool for the clinical diagnosis of disease. In malaria, erythrocytes are more sensitive to osmotic shock, and the reduction of viscosity by IL-17 may be related to a possible immunomodulator agent during infection.
Collapse
Affiliation(s)
- Edson Fredulin Scherer
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Déborah Giovanna Cantarini
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| | - Renan Siqueira
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| | - Elton Brito Ribeiro
- Institute of Health Science, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Érika Martins Braga
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| |
Collapse
|
24
|
Dieye Y, Mbengue B, Dagamajalu S, Fall MM, Loke MF, Nguer CM, Thiam A, Vadivelu J, Dieye A. Cytokine response during non-cerebral and cerebral malaria: evidence of a failure to control inflammation as a cause of death in African adults. PeerJ 2016; 4:e1965. [PMID: 27168977 PMCID: PMC4860323 DOI: 10.7717/peerj.1965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/02/2016] [Indexed: 01/21/2023] Open
Abstract
Background. With 214 million cases and 438,000 deaths in 2015, malaria remains one of the deadliest infectious diseases in tropical countries. Several species of the protozoan Plasmodium cause malaria. However, almost all the fatalities are due to Plasmodium falciparum, a species responsible for the severest cases including cerebral malaria. Immune response to Plasmodium falciparum infection is mediated by the production of pro-inflammatory cytokines, chemokines and growth factors whose actions are crucial for the control of the parasites. Following this response, the induction of anti-inflammatory immune mediators downregulates the inflammation thus preventing its adverse effects such as damages to various organs and death. Methods. We performed a retrospective, nonprobability sampling study using clinical data and sera samples from patients, mainly adults, suffering of non-cerebral or cerebral malaria in Dakar, Sénégal. Healthy individuals residing in the same area were included as controls. We measured the serum levels of 29 biomarkers including growth factors, chemokines, inflammatory and anti-inflammatory cytokines. Results. We found an induction of both pro- and anti-inflammatory immune mediators during malaria. The levels of pro-inflammatory biomarkers were higher in the cerebral malaria than in the non-cerebral malaria patients. In contrast, the concentrations of anti-inflammatory cytokines were comparable in these two groups or lower in CM patients. Additionally, four pro-inflammatory biomarkers were significantly increased in the deceased of cerebral malaria compared to the survivors. Regarding organ damage, kidney failure was significantly associated with death in adults suffering of cerebral malaria. Conclusions. Our results suggest that a poorly controlled inflammatory response determines a bad outcome in African adults suffering of cerebral malaria.
Collapse
Affiliation(s)
- Yakhya Dieye
- Vice-Chancellor's Office, University of Malaya , Kuala Lumpur , Malaysia
| | - Babacar Mbengue
- Département d'Immunologie, Faculté de Médicine, de Pharmacie et d'Odontostomatologie, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal; Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Shobha Dagamajalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Cheikh Momar Nguer
- Département Génie Chimique et Biologie Appliquée, École Supérieure Polytechnique, Université Cheikh Anta Diop de Dakar , Dakar , Sénégal
| | - Alassane Thiam
- Unité d'Immunogénétique, Institut Pasteur de Dakar , Dakar , Sénégal
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Alioune Dieye
- Département d'Immunologie, Faculté de Médicine, de Pharmacie et d'Odontostomatologie, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal; Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
25
|
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:4. [PMID: 26807135 PMCID: PMC4722787 DOI: 10.1186/s13223-016-0113-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
Collapse
Affiliation(s)
- Charles D. Kato
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Enock Matovu
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Claire. M. Mugasa
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Ann Nanteza
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Vincent P. Alibu
- />College of Natural Sciences, Makerere University, P.O. BOX 7062, Kampala, Uganda
| |
Collapse
|
26
|
Kato CD, Alibu VP, Nanteza A, Mugasa CM, Matovu E. Interleukin (IL)-6 and IL-10 Are Up Regulated in Late Stage Trypanosoma brucei rhodesiense Sleeping Sickness. PLoS Negl Trop Dis 2015; 9:e0003835. [PMID: 26090964 PMCID: PMC4474433 DOI: 10.1371/journal.pntd.0003835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/17/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sleeping sickness due to Trypanosoma brucei rhodesiense has a wide spectrum of clinical presentations coupled with differences in disease progression and severity across East and Southern Africa. The disease progresses from an early (hemo-lymphatic) stage to the late (meningoencephalitic) stage characterized by presence of parasites in the central nervous system. We hypothesized that disease progression and severity of the neurological response is modulated by cytokines. METHODS A total of 55 sleeping sickness cases and 41 healthy controls were recruited passively at Lwala hospital, in Northern Uganda. A panel of six cytokines (IFN-γ, IL1-β, TNF-α, IL-6, TGF-β and IL-10) were assayed from paired plasma and cerebrospinal fluid (CSF) samples. Cytokine concentrations were analyzed in relation to disease progression, clinical presentation and severity of neurological responses. RESULTS Median plasma levels (pg/ml) of IFN-γ (46.3), IL-6 (61.7), TGF-β (8755) and IL-10 (256.6) were significantly higher in cases compared to controls (p< 0.0001). When early stage and late stage CSF cytokines were compared, IL-10 and IL-6 were up regulated in late stage patients and were associated with a reduction in tremors and cranioneuropathy. IL-10 had a higher staging accuracy with a sensitivity of 85.7% (95% CI, 63.7%-97%) and a specificity of 100% (95% CI, 39.8%-100%) while for IL-6, a specificity of 100% (95% CI, 47.8%-100%) gave a sensitivity of 83.3% (95% CI, 62.2%-95.3%). CONCLUSION Our study demonstrates the role of host inflammatory cytokines in modulating the progression and severity of neurological responses in sleeping sickness. We demonstrate here an up-regulation of IL-6 and IL-10 during the late stage with a potential as adjunct stage biomarkers. Given that both cytokines could potentially be elevated by other CNS infections, our findings should be further validated in a large cohort of patients including those with other inflammatory diseases such as cerebral malaria.
Collapse
Affiliation(s)
- Charles D. Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Vincent P. Alibu
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Claire M. Mugasa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| |
Collapse
|
27
|
Zhu WM, Zhu JB. Effect of Xiangsha Liujunzi decoction on gastrointestinal dysfunction in patients with multiple organ dysfunction syndrome. Shijie Huaren Xiaohua Zazhi 2014; 22:2498-2502. [DOI: 10.11569/wcjd.v22.i17.2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effect of Xiangsha Liujunzi decoction on gastrointestinal dysfunction in patients with multiple organ dysfunction syndrome.
METHODS: Patients with multiple organ dysfunction syndrome who had gastrointestinal dysfunction and were treated at our hospital in the past three years were divided into either a control group (n = 52) or an observation group (n = 52) based on clinical treatment received. All patients received conventional Western medicine treatment, while the observation group was additionally given Xiangsha Liujunzi on the basis of conventional Western medicine treatment. Improvement of gastric pH, motilin, interleukin-6 (IL-6) and other indicators and clinical symptoms were observed and compared.
RESULTS: Before treatment, the differences in symptom score, gastric pH, motilin, IL-6 and other indicators between the two groups were not statistically significant (P > 0.05). On the 3rd day of the treatment, gastric pH, motilin, IL-6 and other indicators were improved significantly (P < 0.05). On day 7, the symptom score, gastric pH, motilin, IL-6 and other indicators were significantly better than those before treatment and on day 3 (P < 0.05). On day 3, the indicators showed no significant differences between the two groups (P < 0.05), although a better positive trend could be seen for each indicator in the observation group than in the control group. On day 7, all indicators in the observation group were significantly better than those in the control group (10.8 ± 0.8 vs 13.0 ± 1.0, 49.8 pg/mL ± 6.7 pg/mL vs 61.4 pg/mL ± 8.8 pg/mL, 333.9 pg/mL ± 12.9 pg/mL vs 277.1 pg/mL ± 13.1 pg/mL, 7.37 ± 0.02 vs 7.32 ± 0.03, P < 0.05).
CONCLUSION: Xiangsha Liujunzi decoction can effectively improve gastric pH, motilin, IL-6 and other indicators as well as clinical symptoms of gastrointestinal dysfunction in patients with multiple organ dysfunction syndrome.
Collapse
|