1
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Muratsu A, Oda S, Onishi S, Yoshimura J, Matsumoto H, Togami Y, Mitsuyama Y, Ito H, Okuzaki D, Ogura H, Oda J. Bacterial sepsis causes more dramatic pathogenetic changes in the Th1 pathway than does viral (COVID-19) sepsis: a prospective observational study of whole blood transcriptomes. Virol J 2024; 21:190. [PMID: 39160575 PMCID: PMC11334310 DOI: 10.1186/s12985-024-02451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVES This study aimed to comprehensively compare host responses of patients with bacterial sepsis and those with viral (COVID-19) sepsis by analyzing messenger RNA (mRNA) and microRNA (miRNA) profiles to shed light on their distinct pathophysiological mechanisms. DESIGN Prospective observational study. SETTING Whole blood RNA sequencing was used to analyze mRNA and miRNA profiles of patients diagnosed as having bacterial sepsis or viral (COVID-19) sepsis at the Department of Trauma and Emergency Medicine, Osaka University Graduate School of Medicine. PATIENTS Twenty-two bacterial sepsis patients, 35 viral (COVID-19) sepsis patients, and 15 healthy subjects admitted to the department were included. We diagnosed bacterial sepsis patients according to the sepsis-3 criterion that the Sequential Organ Failure Assessment score must increase to 2 points or more among patients with suspected infections. Viral (COVID-19) sepsis patients were diagnosed using SARS-CoV-2 RT-PCR testing, and presence of pneumonia was assessed through chest computed tomography scans. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS For RNA sequencing, 14,500 mRNAs, 1121 miRNAs, and 2556 miRNA-targeted mRNAs were available for analysis in the bacterial sepsis patients. Numbers of genes showing upregulated: downregulated gene expression (false discovery rate < 0.05, |log2 fold change| > 1.5) were 256:2887 for mRNA, 53:5 for miRNA, and 49:2507 for miRNA-targeted mRNA. Similarly, in viral (COVID-19) sepsis patients, 14,500 mRNAs, 1121 miRNAs, and 327 miRNA-targeted mRNAs were analyzed, with numbers of genes exhibiting upregulated: downregulated gene expression of 672:1147 for mRNA, 3:4 for miRNA, and 165:162 for miRNA-targeted mRNA. This analysis revealed significant differences in the numbers of upregulated and downregulated genes expressed and pathways between the bacterial sepsis and viral (COVID-19) sepsis patients. Bacterial sepsis patients showed activation of the PD-1 and PD-L1 cancer immunotherapy signaling pathway and concurrent suppression of Th1 signaling. CONCLUSION Our study illuminated distinct molecular variances between bacterial sepsis and viral (COVID-19) sepsis. Bacterial sepsis patients had a greater number of upregulated and downregulated genes and pathways compared to viral (COVID-19) sepsis patients. Especially, bacterial sepsis caused more dramatic pathogenetic changes in the Th1 pathway than did viral (COVID-19) sepsis.
Collapse
Affiliation(s)
- Arisa Muratsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayaka Oda
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Ghelichli M, Mohtasham N, Mohajertehran F, Farshbaf A, Anvari K, Taghipour A, Pakfetrat A, Ansari AH. Associations between RORγt and T-bet Expressions, clinicopathological indices and survival rate in oral Squamous cell carcinoma patients. Cytokine 2023; 163:156116. [PMID: 36621309 DOI: 10.1016/j.cyto.2022.156116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oral cancers are the sixth most common cancers around the world. According to the pivotal role of immune cells in the pathogenesis of oral squamous cell carcinoma (OSCC), as the frequent form of malignant epithelial neoplasm in the oral cavity, we investigated the association between the expression of RORγt and T-bet genes as two transcription factors, clinicopathologic indices, and survival rate. METHODS AND MATERIALS Forty-two OSCC paraffin embded-blocks tissue samples and their surgical healthy margins (as a control group) were collected. Demographic information like age and gender, and medical history including tumor stage/grade, and following-up time were registered. The RORγt and T-bet expression were assessed by qPCR. The overall survival (OS) and disease free survival (DFS) were analyzed by SPSS V.23 software. RESULTS The expression of RORγt and T-bet genes in OSCC patients were significantly higher than in surgical healthy margins (P < 0.001). Both expression demonstrated a significant difference between surgical healthy margins and tumor tissues related to gender and clinicopathological indices including stage and grade (P < 0.05). The expression of both genes in stage I patients was significant compared to stage IV (P < 0.05). The relation between expressions, OS, and DFS with clinical stage and histological grade of tumors was not statistically significant (P > 0.05). CONCLUSION Overexpression of RORγt and T-bet in OSCC patients with higher grade and stage in compare to surgical healthy margin highlighted their critical role in OSCC pathogenesis including oral epithelial cell differentiation, tumorigenesis process, and malignant transformation. Moreover, both mentioned genes can apply as prognostic biomarkers in OSCC patients. We suggest surgical healthy margin be considered as valuable biological area.
Collapse
Affiliation(s)
- Maryam Ghelichli
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Kazem Anvari
- Department of Radiotherapy Oncology and Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Taghipour
- Department of Epidemiology, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Houshang Ansari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
5
|
Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun 2022; 13:897. [PMID: 35173168 PMCID: PMC8850492 DOI: 10.1038/s41467-022-28438-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The formation of pre-metastatic niche is a key step in the metastatic burden. The pluripotent factor Lin28B is frequently expressed in breast tumors and is particularly upregulated in the triple negative breast cancer subtype. Here, we demonstrate that Lin28B promotes lung metastasis of breast cancer by building an immune-suppressive pre-metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2 neutrophils are then essential for immune suppression in pre-metastatic lung by PD-L2 up-regulation and a dysregulated cytokine milieu. We also identify that breast cancer-released exosomes with low let-7s are a prerequisite for Lin28B-induced immune suppression. Moreover, Lin28B-induced breast cancer stem cells are the main sources of low-let-7s exosomes. Clinical data further verify that high Lin28B and low let-7s in tumors are both indicators for poor prognosis and lung metastasis in breast cancer patients. Together, these data reveal a mechanism by which Lin28B directs the formation of an immune-suppressive pre-metastatic niche. The establishment of a pre-metastatic niche is a key step preceding metastasis formation. Here the authors show that tumor-intrinsic Lin28B, a RNA-binding protein, has an essential role in the formation of an immune-suppressive pre-metastatic niche, promoting lung metastasis of breast cancer.
Collapse
|
6
|
Huang C, Bi J. Expression Regulation and Function of T-Bet in NK Cells. Front Immunol 2021; 12:761920. [PMID: 34675939 PMCID: PMC8524037 DOI: 10.3389/fimmu.2021.761920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Role of differentiated embryo-chondrocyte expressed gene 1 (DEC1) in immunity. Int Immunopharmacol 2021; 102:107892. [PMID: 34215553 DOI: 10.1016/j.intimp.2021.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Differentiated embryo-chondrocyte expressed gene 1 (DEC1) belongs to the family of basic helix-loop-helix (bHLH)-type transcription factors. DEC1 is expressed in various mammalian cells, but early studies focused on its roles outside the immune system. In recent years, relevant studies have found that DEC1 plays an important role in the immunotherapy of tumors, the functional regulation of the immune system, and the onset of autoimmune diseases. DEC1 promotes interferon (IFN)-γand granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion through the production of CD4+ T cells, which promotes inflammatory defense responses and autoimmune diseases. Additionally, DEC1 can inhibit the expression of interleukin (IL)-10 to further strengthen the immune response. In this review, we summarized recent advances in our understanding of the roles of DEC1 in animal models and human cells, including regulating immune cell differentiation, controlling cytokine production, and maintaining the balance of pro- and anti-inflammatory signals.
Collapse
|
8
|
Ding R, Liu S, Wang S, Chen H, Wang F, Xu Q, Zhu L, Dong X, Gu Y, Zhang X, Chao CC, Gao Q. Single-cell transcriptome analysis of the heterogeneous effects of differential expression of tumor PD-L1 on responding TCR-T cells. Theranostics 2021; 11:4957-4974. [PMID: 33754038 PMCID: PMC7978322 DOI: 10.7150/thno.55075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
Rationale: TCR-T cell therapy plays a critical role in the treatment of malignant cancers. However, it is unclear how TCR-T cells are affected by PD-L1 molecule in the tumor environment. We performed an in-depth evaluation on how differential expressions of tumor PD-L1 can affect the functionality of T cells. Methods: We used MART-1-specific TCR-T cells (TCR-TMART-1), stimulated with MART-127-35 peptide-loaded MEL-526 tumor cells, expressing different proportions of PD-L1, to perform cellular assays and high-throughput single-cell RNA sequencing. Results: Different clusters of activated or cytotoxic TCR-TMART-1 responded divergently when stimulated with tumor cells expressing different percentages of PD-L1 expression. Compared to control T cells, TCR-TMART-1 were more sensitive to exhaustion, and secreted not only pro-inflammatory cytokines but also anti-inflammatory cytokines with increasing proportions of PD-L1+ tumor cells. The gene profiles of chemokines were modified by increased expression of tumor PD-L1, which concurrently downregulated pro-inflammatory and anti-inflammatory transcription factors. Furthermore, increased expression of tumor PD-L1 showed distinct effects on different inhibitory checkpoint molecules (ICMs). In addition, there was a limited correlation between the enrichment of cell death signaling in tumor cells and T cells and increased tumor PD-L1 expression. Conclusion: Overall, though the effector functionality of TCR-T cells was suppressed by increased expression percentages of tumor PD-L1 in vitro, scRNA-seq profiles revealed that both the anti-inflammatory and pro-inflammatory responses were triggered by a higher expression of tumor PD-L1. This suggests that the sole blockade of tumor PD-L1 might inhibit not only the anti-inflammatory response but also the pro-inflammatory response in the complicated tumor microenvironment. Thus, the outcome of PD-L1 intervention may depend on the final balance among the highly dynamic and heterogeneous immune regulatory circuits.
Collapse
Affiliation(s)
- Renpeng Ding
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Shang Liu
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Shanshan Wang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | | | - Fei Wang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics
| | - Linnan Zhu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics
| | | | - Qianqian Gao
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
9
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
10
|
Hernandez R, Toomer KH, Põder J, Santos Savio A, Hsiung S, Malek TR. Sustained IL-2R signaling of limited duration by high-dose mIL-2/mCD25 fusion protein amplifies tumor-reactive CD8 + T cells to enhance antitumor immunity. Cancer Immunol Immunother 2020; 70:909-921. [PMID: 33037893 DOI: 10.1007/s00262-020-02722-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-dose IL-2 induces cancer regression but its therapeutic use is limited due to high toxicities resulting from its broad cell targeting. In one strategy to overcome this limitation, IL-2 has been modified to selectively target the intermediate affinity IL-2R that broadly activates memory-phenotypic CD8+ T and NK cells, while minimizing Treg-associated tolerance. In this study, we modeled an alternative strategy to amplify tumor antigen-specific TCR transgenic CD8+ T cells through limited application of a long-acting IL-2 fusion protein, mIL-2/mCD25, which selectively targets the high-affinity IL-2R. Here, mice were vaccinated with a tumor antigen and high-dose mIL-2/mCD25 was applied to coincide with the induction of the high affinity IL-2R on tumor-specific T cells. A single high dose of mIL-2/mCD25, but not an equivalent amount of IL-2, amplified the frequency and function of tumor-reactive CD8+ T effector (Teff) and memory cells. These mIL-2/mCD25-dependent effects relied on distinctive requirements for TLR signals during priming of CD8+ tumor-specific T cells. The mIL-2/mCD25-amplified tumor-reactive effector and memory T cells supported long-lasting antitumor responses to B16-F10 melanoma. This regimen only transiently increased Tregs, yielding a favorable Teff-Treg ratio within the tumor microenvironment. Notably, mIL-2/mCD25 did not increase non-tumor-specific Teff or NK cells within tumors, further substantiating the specificity of mIL-2/mCD25 for tumor antigen-activated T cells. Thus, the selectivity and persistence of mIL-2/mCD25 in conjunction with a tumor vaccine supports antitumor immunity through a mechanism that is distinct from recombinant IL-2 or IL-2-based biologics that target the intermediate affinity IL-2R.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alicia Santos Savio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Is the secret of VDAC Isoforms in their gene regulation? Characterization of human VDAC genes expression profile, promoter activity, and transcriptional regulators. Int J Mol Sci 2020; 21:ijms21197388. [PMID: 33036380 PMCID: PMC7582299 DOI: 10.3390/ijms21197388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
VDACs (voltage-dependent anion-selective channels) are pore-forming proteins of the outer mitochondrial membrane, whose permeability is primarily due to VDACs’ presence. In higher eukaryotes, three isoforms are raised during the evolution: they have the same exon–intron organization, and the proteins show the same channel-forming activity. We provide a comprehensive analysis of the three human VDAC genes (VDAC1–3), their expression profiles, promoter activity, and potential transcriptional regulators. VDAC isoforms are broadly but also specifically expressed in various human tissues at different levels, with a predominance of VDAC1 and VDAC2 over VDAC3. However, an RNA-seq cap analysis gene expression (CAGE) approach revealed a higher level of transcription activation of VDAC3 gene. We experimentally confirmed this information by reporter assay of VDACs promoter activity. Transcription factor binding sites (TFBSs) distribution in the promoters were investigated. The main regulators common to the three VDAC genes were identified as E2F-myc activator/cell cycle (E2FF), Nuclear respiratory factor 1 (NRF1), Krueppel-like transcription factors (KLFS), E-box binding factors (EBOX) transcription factor family members. All of them are involved in cell cycle and growth, proliferation, differentiation, apoptosis, and metabolism. More transcription factors specific for each VDAC gene isoform were identified, supporting the results in the literature, indicating a general role of VDAC1, as an actor of apoptosis for VDAC2, and the involvement in sex determination and development of VDAC3. For the first time, we propose a comparative analysis of human VDAC promoters to investigate their specific biological functions. Bioinformatics and experimental results confirm the essential role of the VDAC protein family in mitochondrial functionality. Moreover, insights about a specialized function and different regulation mechanisms arise for the three isoform gene.
Collapse
|
12
|
Saavedra F, Garrido JL, Fuentes-Villalobos F, Calvo M, Riquelme R, Rioseco ML, Chahín C, Ferreira L, Alvarez R, Nova-Lamperti E, Barria MI. Differential CD4 T Regulatory Cell Phenotype Induced by Andes Hantavirus Glycoprotein. Front Cell Infect Microbiol 2020; 10:430. [PMID: 32984065 PMCID: PMC7477076 DOI: 10.3389/fcimb.2020.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Hantavirus cardiopulmonary syndrome (HCPS) caused by Andes orthohantavirus (ANDV) in South America is a public health threat due to the significant rate of mortality and the lack of a specific treatment. Interestingly, the virus does not produce cytopathic effect, thereby the strong antiviral immune response is suspected to contribute to pathogenesis, hence is important to understand the balance between protective and harmfully immunity. CD4+ T regulatory cells (Treg) are essential to control an exacerbated immune response. In human ANDV infection, little is known about CD4+ Treg cells, which may be involved in control immunopathology associated to the infection. In this report, we characterize the phenotype of memory CD4+ Tregs in a HCPS survivor's cohort. Based on the expression of CXCR3, CCR4, and CCR6, we identified different Th-like Treg populations in ANDV survival's PBMCs. In addition, the effect of ANDV-glycoprotein virus like particles (VLP) was determined. We demonstrated that memory CD4+ Treg from HCPS present a specific phenotype, showing higher frequency of PD-1 compared to healthy donors (HD). In addition, it was observed a decrease in the frequency of Th1-like memory CD4+ Treg in HCPS, important to highlight that this signature could be preserved even years after resolution of infection. Moreover, to gain insight in the mechanism involved, we evaluated whether ANDV-glycoprotein (GP) VLP could modulate CD4+ Treg. Interestingly, ANDV-GP VLP induced a decrease in the frequency of CXCR3 (Th1-like) and an increase in CCR4 (Th2-like) memory CD4+ Treg in both HD and HCPS PBMCs, indicating that ANDV-GP could specifically act over CXCR3 and CCR4 in CD4+ Treg. This report contributes to the study of human CD4+ Treg cells in ANDV infection.
Collapse
Affiliation(s)
- Farides Saavedra
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Jose L Garrido
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile.,Ichor Biologics LLC, New York, NY, United States
| | - Francisco Fuentes-Villalobos
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Mario Calvo
- Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Raúl Riquelme
- Hospital Puerto Montt Dr. Eduardo Schoütz Schroeder, Puerto Montt, Chile
| | | | - Carolina Chahín
- Hospital Regional Temuco Dr. Hernán Henríquez Aravena, Temuco, Chile
| | - Leonila Ferreira
- Hospital Clínico Regional Guillermo Grant Benavente, Concepción, Chile
| | | | - Estefania Nova-Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Maria Ines Barria
- Department of Microbiology, Faculty of Biological Science, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
13
|
Pritchard GH, Kedl RM, Hunter CA. The evolving role of T-bet in resistance to infection. Nat Rev Immunol 2020; 19:398-410. [PMID: 30846856 DOI: 10.1038/s41577-019-0145-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of T-bet as a key transcription factor associated with the development of IFNγ-producing CD4+ T cells predicted a crucial role for T-bet in cell-mediated immunity and in resistance to many intracellular infections. This idea was reinforced by initial reports showing that T-bet-deficient mice were more susceptible to pathogens that survived within the lysosomal system of macrophages. However, subsequent studies revealed IFNγ-dependent, T-bet-independent pathways of resistance to diverse classes of microorganisms that occupy other intracellular niches. Consequently, a more complex picture has emerged of how T-bet and the related transcription factor eomesodermin (EOMES) coordinate many facets of the immune response to bona fide pathogens as well as commensals. This article provides an overview of the discovery and evolutionary relationship between T-bet and EOMES and highlights the studies that have uncovered broader functions of T-bet in innate and adaptive immunity and in the development of the effector and memory T cell populations that mediate long-term resistance to infection.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Kong D, Wan Q, Li J, Zuo S, Liu G, Liu Q, Wang C, Bai P, Duan SZ, Zhou B, Gounari F, Lyu A, Lazarus M, Breyer RM, Yu Y. DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. Circulation 2020; 141:655-666. [PMID: 31893939 DOI: 10.1161/circulationaha.119.042532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.
Collapse
Affiliation(s)
- Deping Kong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Juanjuan Li
- Department of Gastroenterology (J.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shengkai Zuo
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Guizhu Liu
- National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| | - Qian Liu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Chenchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Peiyuan Bai
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.-Z.D.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (B.Z.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Fotini Gounari
- Division of Rheumatology and Knapp Center for Lupus and Immunology Research, University of Chicago, IL (F.G.)
| | - Ankang Lyu
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.)
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (R.M.B.)
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.).,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.,National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| |
Collapse
|
15
|
Zhu X, Wang X, Wang Y, Zhao Y. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis. Mol Immunol 2019; 118:30-39. [PMID: 31841965 DOI: 10.1016/j.molimm.2019.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The imbalance of helper T cell (Th) 1/Th2 differentiation is involved in the development of allergic rhinitis (AR). Recent studies reveal the regulatory function of exosomes on Th1/Th2 differentiation. However, the key mediator in exosomes that modulate such response remains unclear. In this study, the expression of long-noncoding RNA GAS5 (LncGAS5) was detected in exosomes which were isolated from AR patient nasal mucus (AR-EXO) and ovalbumin (OVA)-stimulated nasal epithelial cells (OVA-EXO). Th1/Th2 differentiation was induced in naïve CD4+ T cells, and the percentage of IFN-γ expressing cells (Th1 cells) and IL-4 expressing cells (Th2 cells) was detected using flow cytometry. The result showed that LncGAS5 was upregulated in AR epithelial samples, AR-EXO, and OVA-EXO. The coincubation of AR-EXO and CD4+ T cells suppressed Th1 differentiation and promoted Th2 differentiation, which is mediated by LncGAS5 in AR-EXO. The LncGAS5 in AR-EXO inhibited transcription and expression of EZH2, and it also inhibited T-bet expression at mRNA and protein levels. The gain-of-function and loss-of-function experiments suggested that LncGAS5 mediates Th1/Th2 differentiation partly through downregulating T-bet and EZH2. In summary, our findings demonstrated that LncGAS5 in AR epithelium-derived exosomes is the key mediator in Th1/Th2 differentiation, providing a possible therapeutic target of AR.
Collapse
Affiliation(s)
- Xiaoyuan Zhu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xueping Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Host and Mycobacterium tuberculosis interaction; expression of iNOS and Tbet genes from the host and virulence factors of the bacteria. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wang M, Zhang P, Yu S, Zhou G, Lv J, Nallapothula D, Guo C, Wang Q, Singh RR. Heparin and aspirin combination therapy restores T-cell phenotype in pregnant patients with antiphospholipid syndrome-related recurrent pregnancy loss. Clin Immunol 2019; 208:108259. [DOI: 10.1016/j.clim.2019.108259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022]
|
18
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
19
|
Zhang W, Li L, Zheng Y, Xue F, Yu M, Ma Y, Dong L, Shan Z, Feng D, Wang T, Wang X. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice. J Cell Mol Med 2019; 23:7819-7829. [PMID: 31496071 PMCID: PMC6815837 DOI: 10.1111/jcmm.14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Helminths and their products can shape immune responses by modulating immune cells, which are dysfunctional in inflammatory diseases such as asthma. We previously identified SJMHE1, a small molecule peptide from the HSP60 protein of Schistosoma japonicum. SJMHE1 can inhibit delayed-type hypersensitivity and collagen-induced arthritis in mice. In the present study, we evaluated this peptide's potential intervention effect and mechanism on ovalbumin-induced asthma in mice. SJMHE1 treatment suppressed airway inflammation in allergic mice, decreased the infiltrating inflammatory cells in the lungs and bronchoalveolar lavage fluid, modulated the production of pro-inflammatory and anti-inflammatory cytokines in the splenocytes and lungs of allergic mice, reduced the percentage of Th2 cells and increased the proportion of Th1 and regulatory T cells (Tregs). At the same time, Foxp3 and T-bet expression increased, and GATA3 and RORγt decreased in the lungs of allergic mice. We proved that SJMHE1 can interrupt the development of asthma by diminishing airway inflammation in mice. The down-regulation of Th2 response and the up-regulation of Th1 and Tregs response may contribute to the protection induced by SJMHE1 in allergic mice. SJMHE1 can serve as a novel therapy for asthma and other allergic or inflammatory diseases.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengzhu Yu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Haybar H, Rezaeeyan H, Shahjahani M, Shirzad R, Saki N. T‐bet transcription factor in cardiovascular disease: Attenuation or inflammation factor? J Cell Physiol 2018; 234:7915-7922. [DOI: 10.1002/jcp.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
21
|
Abstract
Chimeric antigen receptor (CAR) therapy has shown promise against B cell malignancies in the clinic. However, limited success in patients with solid tumors has prompted the development of new CAR strategies. In this study, a B7H6-specific CAR was combined with different variants of T-bet, a transcription factor that acts as the master regulator to induce a Th1 phenotype in CD4+ T cells, to create more effective CAR T cells. Skewing CD4+ CAR T cells into a Th1 improved CAR T cell functional activity while promoting a robust proinflammatory response against B7H6-expressing tumors. The expression of T-bet with the B7H6-specific CAR in CD4+ T cells conferred higher expression of the CAR, elevated secretion of Th1 and proinflammatory cytokines, and improved cellular cytotoxicity against B7H6-expressing tumor cells. In vivo, CD4+ T cells co-expressing a B7H6-specific CAR and T-bet improved the survival of RMA-B7H6 lymphoma-bearing mice. Thus, CD4+ CAR T cells with increased T-bet expression have the potential to modify the tumor microenvironment and the immune response to better treat solid and hematologic cancers.
Collapse
|
22
|
Wang X, Che Y, Chen B, Zhang Y, Nakagawa M, Wang X. Evaluation of immune responses induced by a novel human papillomavirus type 16 E7 peptide-based vaccine with Candida skin test reagent as an adjuvant in C57BL/6 mice. Int Immunopharmacol 2018; 56:249-260. [PMID: 29414659 DOI: 10.1016/j.intimp.2018.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
Cell mediated immune (CMI) responses are crucial for the clearance of human papillomavirus (HPV) infection and HPV-associated lesions. Activated CD8 T cells are critical effector cells in recognizing and killing HPV-infected or HPV-transformed cells. CD4 T cells provide help for priming the generation and maintenance of CD8 T cells as well as for tumors immunity. An ideal therapeutic HPV peptide-based vaccine should induce both a robust CD8 T-cell response as well as a CD4 T-cell response for ensuring their efficiency. Candida skin test reagent was demonstrated to be able to induce the secretion of IL-12 by Langerhans cells and T-cell proliferation in vitro by our group, which indicated the potential of Candida to enhance CMI response. In this current study, we designed a novel HPV peptide-based vaccine which includes HPV16 E7 peptides and Candida as an adjuvant. The immune responses induced by the vaccine were comprehensively evaluated. The results showed that the vaccine induced significant HPV-specific CD8 T-cell and Th1 CD4 T-cell responses as well as humoral immune response. It is interesting that Candida alone induced a significant polarization of Th1 response an production of IFN-γ, which indicated Candida alone may be used as a potential immunotherapeutic reagent not only for HPV-associated lesions but also for other viral infection or even cancers.
Collapse
Affiliation(s)
- Xingxuan Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bingnan Chen
- The 3rd Clinical Department, China Medical University, Shenyang, China
| | - Yao Zhang
- The 3rd Clinical Department, China Medical University, Shenyang, China
| | - Mayumi Nakagawa
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Yao K, Peng C, Zhang Y, Zykova TA, Lee MH, Lee SY, Rao E, Chen H, Ryu J, Wang L, Zhang Y, Gao G, He W, Ma WY, Liu K, Bode AM, Dong Z, Li B, Dong Z. RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth. Proc Natl Acad Sci U S A 2017; 114:12791-12796. [PMID: 29133416 PMCID: PMC5715759 DOI: 10.1073/pnas.1710756114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Cong Peng
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuwen Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | | | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Enyu Rao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Lei Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Yi Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei He
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Kangdong Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Li
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| |
Collapse
|
24
|
14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in T C2 and CD8 + lymphocytes from patients with scleroderma. J Allergy Clin Immunol 2017; 142:109-119.e6. [PMID: 29155097 DOI: 10.1016/j.jaci.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13-producing CD8+ T cells have been implicated in the pathogenesis of type 2-driven inflammatory human conditions. We have shown that CD8+IL-13+ cells play a critical role in cutaneous fibrosis, the most characteristic feature of systemic sclerosis (SSc; scleroderma). However, the molecular mechanisms underlying production of IL-13 and other type 2 cytokines by CD8+ T cells remain unclear. OBJECTIVE We sought to establish the molecular basis of IL-13 overproduction by CD8+ T cells from patients with SSc, focusing on T-bet modulation of GATA-3 activity, which we showed to underlie IL-13 overproduction in CD8+IL-13+ cells from patients with SSc. METHODS Biochemical and biophysical methods were used to determine the expression and association of T-bet, GATA-3, and regulatory factors in CD8+ T cells isolated from the blood and lesional skin of patients with SSc with severe skin thickening. Chromatin immunoprecipitation analysis determined GATA-3 binding to the IL-13 promoter. ImageStream analysis and confocal microscopy visualized the subcellular localization of T-bet and GATA-3. Transcript levels were decreased by small interfering RNAs. RESULTS Interaction of T-bet with the adaptor protein 14-3-3z in the cytosol of CD8+ T cells from patients with SSc reduces T-bet translocation into the nucleus and its ability to associate with GATA-3, allowing more GATA-3 to bind to the IL-13 promoter and inducing IL-13 upregulation. Strikingly, we show that this mechanism is also found during type 2 polarization of CD8+ T cells (TC2) from healthy donors. CONCLUSIONS We identified a novel molecular mechanism underlying type 2 cytokine production by CD8+ T cells, revealing a more complete picture of the complex pathway leading to SSc disease pathogenesis.
Collapse
|
25
|
Electro-acupuncture at Acupoint ST36 Ameliorates Inflammation and Regulates Th1/Th2 Balance in Delayed-Type Hypersensitivity. Inflammation 2017; 40:422-434. [PMID: 27966183 DOI: 10.1007/s10753-016-0487-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence indicates anti-allergic and anti-inflammatory effects of electro-acupuncture (EA) therapy. However, its underlying mechanism on delayed-type hypersensitivity (DTH), a classic allergic inflammatory disease, still remains unclear. In this study, we aimed to explore the immunomodulatory mechanism of EA intervention in a mouse model of ovalbumin (OVA)-induced DTH. Mice were randomly divided into four groups: Control, OVA-DTH, DTH + EA, DTH + Sham. "Zusanli" acupoint (ST36) was used for DTH + EA, whereas a non-acupoint (localized 5 mm below the "Zusanli" acupoint) was selected for DTH + Sham. Footpad thickness was checked, and the infiltration of inflammatory cells was estimated by hematoxylin and eosin staining. Levels of IgG and IgE in serum of different groups and inflammatory cytokines in the supernatants from homogenized footpads, including IFN-γ, TNF-α, IL-4, and IL-5, were determined by ELISA. Cell proliferation of spleen lymphocytes was assayed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT). The frequency of CD4+IFN-γ+ and CD4+IL-4+ T cells was analyzed with flow cytometry. In addition, the mRNA and protein expression of T-bet and GATA-3 were evaluated by real-time PCR and Western blotting, respectively. Our data showed EA treatment at acupoint ST36 relieved the pathological progression of DTH responses via reduction in footpad swelling, infiltration of inflammatory cells, levels of IgG and IgE as well as decreased production of IFN-γ and TNF-α in homogenized footpad tissue. Moreover, detailed studies were performed revealing that EA attenuated the percentage of CD4+IFN-γ+ T cells and prevented Th cells differentiation into Th1 cells, and this results from inhibiting secretion of IFN-γ and suppressing expression of T-bet, an IFN-γ transcription factor. The results indicated that EA treatment improved Th1-mediated allergic skin inflammation via restoring Th1/Th2 balance by curbing Th1 differentiation. These findings suggested that EA at acupoint ST36 might be a useful and promising therapeutic for allergic inflammatory as well as Th1-mediated inflammation response.
Collapse
|
26
|
Chornoguz O, Hagan RS, Haile A, Arwood ML, Gamper CJ, Banerjee A, Powell JD. mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 198:3939-3948. [PMID: 28424242 DOI: 10.4049/jimmunol.1601078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022]
Abstract
CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287.,Janssen Research and Development, Department of Biologics Research, Spring House, PA 19477
| | - Robert S Hagan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Azeb Haile
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Matthew L Arwood
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Christopher J Gamper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Arnob Banerjee
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201; and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287; .,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| |
Collapse
|
27
|
Shao YY, Zhou YM, Hu M, Li JZ, Chen CJ, Wang YJ, Shi XY, Wang WJ, Zhang TT. The Anti-Allergic Rhinitis Effect of Traditional Chinese Medicine of Shenqi by Regulating Mast Cell Degranulation and Th1/Th2 Cytokine Balance. Molecules 2017; 22:molecules22030504. [PMID: 28327534 PMCID: PMC6155389 DOI: 10.3390/molecules22030504] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.
Collapse
Affiliation(s)
- Yang-Yang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yi-Ming Zhou
- Department of Liver disease, Army General Hospital of PLA, Beijing 100700, China.
| | - Min Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jin-Ze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Cheng-Juan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yong-Jiang Wang
- Department of Pharmacy, Changji Vocational and Technical College, Changji 831100, China.
| | - Xiao-Yun Shi
- Xinjiang Jinshikang Pharmaceutical Co., Ltd., Urumchi 830000, China.
| | - Wen-Jie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
28
|
Novel benzoxazole derivatives DCPAB and HPAB attenuate Th1 cell-mediated inflammation through T-bet suppression. Sci Rep 2017; 7:42144. [PMID: 28169371 PMCID: PMC5294415 DOI: 10.1038/srep42144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Interferon-γ (IFN-γ), a critical inflammatory cytokine, is primarily produced by T helper 1 (Th1) cells and accelerates the pathogenesis of inflammatory colitis. Pharmacological suppression of IFN-γ production attenuates dysregulated inflammatory responses and may be beneficial for treating inflammatory disease. In this study, we aimed to discover potent anti-inflammatory compounds that suppress IFN-γ production and found that the novel benzoxazole derivatives, 2-((3,4-dichlorophenyl) amino) benzo[d]xazol-5-ol (DCPAB) and 2-((3,4-hydroxyphenyl) amino) benzo[d]xazol-5-ol (HPAB), suppressed IFN-γ production by T cells. Treatment of CD4+ T cells with DCPAB and HPAB selectively inhibited Th1 cell development, and DCPAB more potently suppressed IFN-γ than HPAB did. Interestingly, DCPAB and HPAB significantly suppressed the expression of T-box containing protein expressed in T cells (T-bet) that activates IFN-γ gene transcription. DCPAB additionally suppressed transcriptional activity of T-bet on IFN-γ gene promoter, whereas HPAB had no effect on T-bet activity. IFN-γ suppressive activity of DCPAB and HPAB was impaired in the absence of T-bet but was retrieved by the restoration of T-bet in T-bet-deficient T cells. Furthermore, DCPAB and HPAB attenuated inflammatory colitis development that was induced by CD4+ T cells in vivo. We suggest that the novel benzoxazole derivatives, DCPAB and HPAB, may have therapeutic effects on inflammatory colitis.
Collapse
|
29
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, Corchete LA, San Miguel JF, Del Cañizo C, Blanco B. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol 2016; 9:113. [PMID: 27765055 PMCID: PMC5072323 DOI: 10.1186/s13045-016-0343-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
Collapse
Affiliation(s)
- Mª Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura San Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Luis Antonio Corchete
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
30
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
The Expression of T Cell FOXP3 and T-Bet Is Upregulated in Severe but Not Euthyroid Hashimoto's Thyroiditis. Mediators Inflamm 2016; 2016:3687420. [PMID: 27478306 PMCID: PMC4949338 DOI: 10.1155/2016/3687420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disorder characterized by progressive thyroid failure. Th1 and Treg subset of CD4+ cells have been implicated in the pathogenesis; however, less is known about their respective roles across the spectrum of HT clinical presentations. To shed more light on CD4+ subsets role in HT, we investigated the mRNA expression levels of several Th1/Treg-associated transcription factors (T-bet/ETS1, HIF1α/BLIMP1/FOXP3) in peripheral blood T cells of 10 hypothyroid, untreated HT patients, 10 hypothyroid patients undergoing hormone replacement therapy, 12 euthyroid HT subjects, and 11 healthy controls by the qRT-PCR. Compared to euthyroid HT patients and controls, both hypothyroid (2.34-fold difference versus controls, P < 0.01) and thyroxine-supplemented patients (2.5-fold, P < 0.001) showed an increased FOXP3 mRNA expression in T cells. Similarly, mRNA expression levels of T-bet were upregulated in severely affected but not in euthyroid HT subjects (2.37-fold and 3.2-fold, hypothyroid and thyroxine-supplemented HT patients versus controls, resp., P < 0.01). By contrast, no differences in mRNA expression levels of ETS1, BLIMP1, and HIF1α were observed across the study groups. In summary, severe but not euthyroid HT was associated with robust upregulation of T-bet and FOXP3 mRNA in peripheral T cells, independent of the thyroid hormone status but proportional to disease activity.
Collapse
|
32
|
Bahria-Sediki IB, Yousfi N, Paul C, Chebil M, Cherif M, Zermani R, El Gaaied ABA, Bettaieb A. Clinical significance of T-bet, GATA-3, and Bcl-6 transcription factor expression in bladder carcinoma. J Transl Med 2016; 14:144. [PMID: 27237631 PMCID: PMC4885121 DOI: 10.1186/s12967-016-0891-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background The aim of this study was to investigate the clinical significance of three immune cell-related transcription factors, T-bet, GATA-3 and Bcl-6 in bladder cancer in Tunisian patients. Methods Expression of T-bet, GATA-3 and Bcl-6 genes was assessed using RT-qPCR in 65 bladder cancers from patients: 32 being diagnosed as low- and medium-grade, 31 as high-grade, 25 as muscle invasive stage and 39 as non-muscle invasive stage. Gene expression was statistically correlated according to the grade, the stage, tobacco consumption, the BCG response and disease severity. Results T-bet levels in patients with high-grade bladder cancer were significantly elevated compared to patients with low- or medium-grade bladder cancer (p = 0.005). In invasive carcinoma (T2–T4), the T-bet levels were significantly higher than in superficial non-invasive bladder tumors (Tis, Ta, and T1) (p = 0.02). However, T-bet is predictive of the response to BCG. Its expression is high in good responders to BCG (p = 0.02). In contrast, the expression of GATA-3 and Bcl-6 in non-invasive carcinoma (p = 0.008 and p = 0.0003) and in patients with low- and medium-grade cancers (p = 0.001 and p < 0.0001) is significantly higher than in invasive bladder tumors and in patients with high-grade bladder carcinoma, respectively. In addition, heavy smokers, whose tumors express low levels of GATA-3 and Bcl-6, are poor responders to BCG (p = 0.01 and p = 0.03). Finally, better patient survival correlated with GATA-3 (p = 0.04) and Bcl-6 (p = 0.04) but not T-bet expression. Conclusions Our results suggest that T-bet expression in bladder tumors could be a positive prognostic indicator of BCG therapy, even if high levels are found in high-grade and stage of the disease. However, GATA-3 and Bcl-6 expression could be considered as predictive factors for good patient survival.
Collapse
Affiliation(s)
- Islem Ben Bahria-Sediki
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75014, Paris, France.,Université Bourgogne Franche-Comté, EA7269, 21000, Dijon, France.,Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté de Sciences Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Nadhir Yousfi
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75014, Paris, France.,Université Bourgogne Franche-Comté, EA7269, 21000, Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75014, Paris, France.,Université Bourgogne Franche-Comté, EA7269, 21000, Dijon, France
| | | | | | | | - Amel Ben Ammar El Gaaied
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté de Sciences Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EPHE, PSL Research University, 75014, Paris, France. .,Université Bourgogne Franche-Comté, EA7269, 21000, Dijon, France. .,UFR des Sciences de Santé, 7 boulevard Jeanne d'Arc, BP 87900, 21079, Dijon, France.
| |
Collapse
|
33
|
Clark MP, Leaman DW, Hazelhurst LA, Hwang ES, Quinn A. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis. Int Immunopharmacol 2016; 31:74-87. [DOI: 10.1016/j.intimp.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
34
|
Goyvaerts C, Broos K, Escors D, Heirman C, Raes G, De Baetselier P, Thielemans K, Breckpot K. The transduction pattern of IL-12-encoding lentiviral vectors shapes the immunological outcome. Eur J Immunol 2015; 45:3351-61. [PMID: 26377033 DOI: 10.1002/eji.201545559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 01/31/2023]
Abstract
In situ modification of antigen-presenting cells garnered interest in cancer immunotherapy. Therefore, we developed APC-targeted lentiviral vectors (LVs). Unexpectedly, these LVs were inferior vaccines to broad tropism LVs. Since IL-12 is a potent mediator of antitumor immunity, we evaluated whether this proinflammatory cytokine could enhance antitumor immunity of an APC-targeted LV-based vaccine. Therefore, we compared subcutaneous administration of broad tropism LVs (VSV-G-LV) with APC-targeted LVs (DC2.1-LV)-encoding enhanced GFP and ovalbumin, or IL-12 and ovalbumin in mice. We show that codelivery of IL-12 by VSV-G-LVs or DC2.1-LVs augments CD4(+) or CD8(+) T-cell proliferation, respectively. Furthermore, we demonstrate that codelivery of IL-12 enhances the CD4(+) TH 1 profile irrespective of its delivery mode, while an increase in cytotoxic and therapeutic CD8(+) T cells was only induced upon VSV-G-LV injection. While codelivery of IL-12 by DC2.1-LVs did not enhance CD8(+) T-cell performance, it increased expression of inhibitory checkpoint markers Lag3, Tim3, and PD-1. Finally, the discrepancy between CD4(+) T-cell stimulation with and without functional CD8(+) T-cell stimulation by VSV-G- and DC2.1-LVs is partly explained by the observation that IL-12 relieves CD8(+) T cells from CD4(+) T-cell help, implying that a T(H)1 profile is of minor importance for antitumor immunotherapy if IL-12 is exogenously delivered.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrijn Broos
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Escors
- Navarrabiomed-Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Nagato AC, Bezerra FS, Talvani A, Aarestrup BJ, Aarestrup FM. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype. Immun Inflamm Dis 2015; 3:321-37. [PMID: 26417446 PMCID: PMC4578530 DOI: 10.1002/iid3.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or treating asthmatic patients that require oxygen supplementation to reverse the hypoxemia.
Collapse
Affiliation(s)
- Akinori C Nagato
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | | | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP) Ouro Preto, Minas Gerais, Brazil
| | - Beatriz J Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | - Fernando M Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
36
|
Oh YJ, Shin JH, Won HY, Hwang ES. Anti-proliferative Activity of T-bet. Immune Netw 2015; 15:199-205. [PMID: 26330806 PMCID: PMC4553258 DOI: 10.4110/in.2015.15.4.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/01/2022] Open
Abstract
T-bet is a critical transcription factor that regulates differentiation of Th1 cells from CD4(+) precursor cells. Since T-bet directly binds to the promoter of the IFN-γ gene and activates its transcription, T-bet deficiency impairs IFN-γ production in Th1 cells. Interestingly, T-bet-deficient Th cells also display substantially augmented the production of IL-2, a T cell growth factor. Exogenous expression of T-bet in T-bet deficient Th cells rescued the IFN-γ production and suppressed IL-2 expression. IFN-γ and IL-2 reciprocally regulate Th cell proliferation following TCR stimulation. Therefore, we examined the effect of T-bet on Th cell proliferation and found that T-bet deficiency significantly enhanced Th cell proliferation under non-skewing, Th1-skewing, and Th2-skewing conditions. By using IFN-γ-null mice to eliminate the anti-proliferative effect of IFN-γ, T-bet deficiency still enhanced Th cell proliferation under both Th1- and Th2-skewing conditions. Since the anti-proliferative activity of T-bet may be influenced by IL-2 suppression in Th cells, we examined whether T-bet modulates IL-2-independent cell proliferation in a non-T cell population. We demonstrated that T-bet expression induced by ecdysone treatment in human embryonic kidney (HEK) cells increased IFN-γ promoter activity in a dose dependent manner, and sustained T-bet expression considerably decreased cell proliferation in HEK cells. Although the molecular mechanisms underlying anti-proliferative activity of T-bet remain to be elucidated, T-bet may directly suppress cell proliferation in an IFN-γ- or an IL-2-independent manner.
Collapse
Affiliation(s)
- Yeon Ji Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
37
|
Huang Q, Ma X, Zhu DL, Chen L, Jiang Y, Zhou L, Cen L, Pi R, Chen X. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2015; 284:67-73. [PMID: 26025060 DOI: 10.1016/j.jneuroim.2015.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Abstract
Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Qiling Huang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Dong Liang Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Li Chen
- Medical Examination Center, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Linli Zhou
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Lei Cen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
38
|
Dynamic control of Th2 cell responses by STAT3 during allergic lung inflammation in mice. Int Immunopharmacol 2015; 28:846-53. [PMID: 25871878 DOI: 10.1016/j.intimp.2015.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
Abstract
Signal transducer and activator of transcription (STAT) family molecules play essential roles during the differentiation of helper T cells from naïve precursors. Although the role of STAT3 in driving Th17 cell polarization has been well established, its role on Th2 responses to allergens remains incompletely understood. By employing T cell-specific STAT3 deficient mice, we demonstrate that STAT3 in T cells plays diverse role on Th2 cells depending on their locations in an animal model of allergic asthma. In the bronchial lymph nodes, STAT3-deficient T cells produced significantly reduced levels of Th2 cytokines. The frequencies of Th2 cells among CD4(+) T cells in the lung were comparable between STAT3-sufficient and STAT3-deficient T cells. By contrast, STAT3-deficient T cells in the airway exhibited significantly enhanced production of Th2 cell cytokines compared to STAT3-sufficient T cells. Interestingly, a major population of IL-4/5 producers among STAT3-deficient T cells in the airway co-produced IFNγ. The frequency of Th17 cells was significantly diminished whereas that of Th1 cells was increased in all the lung-associated tissues. Our results demonstrate the dynamic and opposing roles of STAT3 during the development of Th2 cells from bronchial lymph nodes to the airway and propose the need of careful consideration on STAT3-targeting approaches for the treatment of lung diseases.
Collapse
|
39
|
Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg Nutr 2015; 3:386-406. [PMID: 25568862 DOI: 10.3978/j.issn.2304-3881.2014.11.06] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family are potent regulatory cytokines that affect multiple cell types of the immune system mediating pro-inflammatory or anti-inflammatory responses. In the liver, TGF-β is produced by a multitude of non-parenchymal liver cells including hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), and dendritic cells (DCs) as well as natural killer (NK) T cells among other hepatic lymphocytes. The effect of TGF-β on other cells is highly versatile. In concert with other soluble factors, it controls the maturation, differentiation and activity of various T cell subsets that either prevent or actuate infections, graft-versus-host reactions, immune diseases, and cancer formation. During the last decades, it became evident that some TGFB1 polymorphisms are associated with the pathogenesis of hepatic disease and that plasma TGF-β is a suitable biomarker to detect liver lesions. Moreover, since TGF-β has capacity to influence the quantity and quality of T cell subsets as well as their activity, it is obvious that a well-balanced TGF-β activity is essential for liver homeostasis. In the present review, we highlight some pivotal functions of TGF-β in hepatic immunobiology. We discuss its regulatory function on adaptive immunity, the impact on differentiation of various T cell subsets, its crosstalk with Toll like receptor signaling, and its contribution to functional impairment of the liver.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|