1
|
Yang Y, Li Q, Chu LT, Lin X, Chen H, Chen L, Tang J, Zeng T. Autophagy in cholangiocarcinoma: a comprehensive review about roles and regulatory mechanisms. Clin Transl Oncol 2025; 27:2391-2400. [PMID: 39585591 DOI: 10.1007/s12094-024-03797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The role of autophagy in cholangiocarcinogenesis and its development is intricate. Autophagy has a dual role in cholangiocarcinoma, and understanding the function and mechanism of autophagy in cholangiocarcinoma is pivotal in guiding therapeutic approaches to its treatment in clinical settings. Recent studies have revealed that autophagy is involved in the complex biological behavior of cholangiocarcinoma. In this review, we have summarized the genes and drugs that would promote or inhibit autophagy, leading to change in cellular behaviors of cholangiocarcinoma, including apoptosis, proliferation, invasion and migration, and influence its cellular drug resistance. In addition, we concluded the signaling pathways modulating autophagy in cholangiocarcinoma cells, including PI3K/AKT/mTOR,p38MAPK,AMPK/mTOR,LKB1-AMPK, and AKT/WNK1, and ERK signaling pathways, which subsequently impacting apoptosis, death, migration, invasion, and proliferation. In conclusion, we would like that we can provide ideas for future cholangiocarcinoma treatment by comprehensively summarizing the latest studies on the relationship between autophagy and cholangiocarcinoma, including the factors affecting autophagy and related signaling pathways.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Qiuyan Li
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Helian Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Linsong Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Jinjing Tang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China.
| |
Collapse
|
2
|
Ali ML, Roky AH, Azad SAK, Shaikat AH, Meem JN, Hoque E, Ahasan AMF, Islam MM, Arif MSR, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. CANCER PATHOGENESIS AND THERAPY 2024; 2:231-245. [PMID: 39371094 PMCID: PMC11447340 DOI: 10.1016/j.cpt.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 10/08/2024]
Abstract
Skin cancer, a prevalent malignancy worldwide, poses significant health concerns owing to its increasing incidence. Autophagy, a natural cellular process, is a pivotal event in skin cancer and has advantageous and detrimental effects. This duality has prompted extensive investigations into medical interventions targeting autophagy modulation for their substantial therapeutic potential. This systematic review aimed to investigate the relationship between skin cancer and autophagy and the contribution and mechanism of autophagy modulators in skin cancer. We outlined the effectiveness and safety of targeting autophagy as a promising therapeutic strategy for the treatment of skin cancer. This comprehensive review identified a diverse array of autophagy modulators with promising potential for the treatment of skin cancer. Each of these compounds demonstrates efficacy through distinct physiological mechanisms that have been elucidated in detail. Interestingly, findings from a literature search indicated that none of the natural, synthetic, or semisynthetic compounds exhibited notable adverse effects in either human or animal models. Consequently, this review offers novel mechanistic and therapeutic perspectives on the targeted modulation of autophagy in skin cancer.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Amdad Hossain Roky
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - S.M. Asadul Karim Azad
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abdul Halim Shaikat
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Jannatul Naima Meem
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Emtiajul Hoque
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Saifur Rahaman Arif
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh
| | - Md. Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md. Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
3
|
Tang X, Gong J, Ren L, Wang Z, Yang B, Wang W, Wang N. Tanshinone I improves TNBC chemosensitivity by suppressing late-phase autophagy through AKT/p38 MAPK signaling pathway. Biomed Pharmacother 2024; 177:117037. [PMID: 38959602 DOI: 10.1016/j.biopha.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.
Collapse
Affiliation(s)
- Xinglinzi Tang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaqian Gong
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Ren
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenzhu Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Khazaei MR, Bozorgi M, Khazaei M, Aftabi M, Bozorgi A. Resveratrol Nanoformulation Inhibits Invasive Breast Cancer Cell Growth through Autophagy Induction: An In Vitro Study. CELL JOURNAL 2024; 26:112-120. [PMID: 38459728 PMCID: PMC10924839 DOI: 10.22074/cellj.2024.2016930.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this study was to synthesize chitosan nanoparticles (Cs NPs) for resveratrol (RSV) delivery and assess their effectiveness in inducing autophagy in MDA-MB 231 cells. MATERIALS AND METHODS In this experimental study, Pure and RSV-loaded Cs NPs (RSV. Cs NPs) were prepared via the ionic gelation method, and their physicochemical properties were characterized using standard techniques, and RSV release was measured in vitro. MDA-MB 231 cells were incubated with RSV, Cs NPs, and RSV. Cs NPs and Half-maximal inhibitory concentration (IC50) values were calculated following the MTT test. Cell viability was assessed by lactate dehydrogenase (LDH) assay, and autophagy was evaluated using the real-time polymerase chain reaction (PCR). RESULTS NP formation was confirmed with the analysis of FTIR spectra. Pure and RSV. Cs NPs had 36.7 and 94.07 nm sizes with 18.3 and 27 mV zeta potentials, respectively. Above 60% of RSV entrapped within NPs was released in an initial burst manner followed by a gradual release till 72 hours. Cs and RSV. Cs NPs restrained cell proliferation at lower concentrations. RSV. Cs NPs showed the highest anticancer effect and stimulated autophagy, indicated by increased Beclin-1 ATG5, ATG7, LC3A, and P62 expression. CONCLUSION RSV. Cs NPs show promising effects in inhibiting invasive breast cancer (BC) cells in vitro by inducing autophagy.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Aftabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Zamanian MY, Golmohammadi M, Nili-Ahmadabadi A, Alameri AA, Al-Hassan M, Alshahrani SH, Hasan MS, Ramírez-Coronel AA, Qasim QA, Heidari M, Verma A. Targeting autophagy with tamoxifen in breast cancer: From molecular mechanisms to targeted therapy. Fundam Clin Pharmacol 2023; 37:1092-1108. [PMID: 37402635 DOI: 10.1111/fcp.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | | | - Mohammed Sami Hasan
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research Group in Educational Statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagari, India
| |
Collapse
|
7
|
Safari F, Dadvar F. In vitro evaluation of autophagy and cell death induction in Panc1 pancreatic cancer by secretome of hAMSCs through downregulation of p-AKT/p-mTOR and upregulation of p-AMPK/ULK1 signal transduction pathways. Tissue Cell 2023; 84:102160. [PMID: 37482027 DOI: 10.1016/j.tice.2023.102160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Faezeh Dadvar
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Siatis KE, Giannopoulou E, Manou D, Sarantis P, Karamouzis MV, Raftopoulou S, Fasseas K, Alzahrani FM, Kalofonos HP, Theocharis AD. Resistance to hormone therapy in breast cancer cells promotes autophagy and EGFR signaling pathway. Am J Physiol Cell Physiol 2023; 325:C708-C720. [PMID: 37575061 PMCID: PMC10625825 DOI: 10.1152/ajpcell.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Breast cancer is the leading cause of cancer deaths for women worldwide. Endocrine therapies represent the cornerstone for hormone-dependent breast cancer treatment. However, in many cases, endocrine resistance is induced with poor prognosis for patients. In the current study, we have developed MCF-7 cell lines resistant to fulvestrant (MCF-7Fulv) and tamoxifen (MCF-7Tam) aiming at investigating mechanisms underlying resistance. Both resistant cell lines exerted lower proliferation capacity in two-dimensional (2-D) cultures but retain estrogen receptor α (ERα) expression and proliferate independent of the presence of estrogens. The established cell lines tend to be more aggressive exhibiting advanced capacity to form colonies, increased expression of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and heterodimerization of ERBB family receptors and activation of EGFR downstream pathways like MEK/ERK1/2 and PI3K/AKT. Tyrosine kinase inhibitors tested against resistant MCF-7Fulv and MCF-7Tam cells showed moderate efficacy to inhibit cell proliferation, except for lapatinib, which concomitantly inhibits both EGFR and HER2 receptors and strongly reduced cell proliferation. Furthermore, increased autophagy was observed in resistant MCF-7Fulv and MCF-7Tam cells as shown by the presence of autophagosomes and increased Beclin-1 levels. The increased autophagy in resistant cells is not associated with increased apoptosis, suggesting a cytoprotective role for autophagy that may favor cells' survival and aggressiveness. Thus, by exploiting those underlying mechanisms, new targets could be established to overcome endocrine resistance.NEW & NOTEWORTHY The development of resistance to hormone therapy caused by both fulvestrant and tamoxifen promotes autophagy with concomitant apoptosis evasion, rendering cells capable of surviving and growing. The fact that resistance also triggers ERBB family signaling pathways, which are poorly inhibited by tyrosine kinase inhibitors might attribute to cells' aggressiveness. It is obvious that the development of endocrine therapy resistance involves a complex interplay between deregulated ERBB signaling and autophagy that may be considered in clinical practice.
Collapse
Affiliation(s)
- Konstantinos E Siatis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Rio, Greece
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Rio, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Raftopoulou
- Electron Microscopy Laboratory, Faculty of Crop Production, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Fasseas
- Electron Microscopy Laboratory, Faculty of Crop Production, Agricultural University of Athens, Athens, Greece
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haralabos P Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Rio, Greece
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Zhang J, Xiang Q, Wu M, Lao YZ, Xian YF, Xu HX, Lin ZX. Autophagy Regulators in Cancer. Int J Mol Sci 2023; 24:10944. [PMID: 37446120 PMCID: PMC10341480 DOI: 10.3390/ijms241310944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy plays a complex impact role in tumor initiation and development. It serves as a double-edged sword by supporting cell survival in certain situations while also triggering autophagic cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to adapt to and survive unfavorable conditions by recycling cellular components. However, excessive or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for cancer therapy.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Qian Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Dasatinib enhances curcumin-induced cytotoxicity, apoptosis and protective autophagy in human schwannoma cells HEI-193: The role of Akt/mTOR/p70S6K signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:403-414. [PMID: 36651538 DOI: 10.2478/acph-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/26/2023]
Abstract
The present study was carried out in human schwannoma cells (HEI-193) to determine the combined anti-cancer effect of curcumin and dasatinib. Cells were treated with curcumin only, dasatinib only, or the combination of curcumin and dasatinib for 24 hours. Cellular toxicity, cell proliferation, and cell death were determined by LDH, MTT, and trypan blue dye assays, respectively. ELISA based kit was used to determine apoptotic cell death. Western blotting was used to determine the expression of apoptotic and autophagy-associated protein markers. Similarly, expression levels of Akt/mTOR/p70S6K signalling pathway-related proteins were studied using Western blotting. Cell death and apoptosis were significantly higher in HEI-193 cells treated with curcumin and dasatinib combination compared to individual controls. The combination of curcumin and dasatinib significantly enhances autophagy markers compared to individual controls. Furthermore, the combination of curcumin and dasatinib significantly activates Akt/mTOR/p70S6K signalling pathway compared to individual controls. In conclusion, our results suggest that the combination of curcumin and dasatinib significantly enhances cytotoxicity, apoptosis, and protective autophagy in HEI-193 cells through Akt/mTOR/p70S6K signalling pathway.
Collapse
|
11
|
The cross-talk of autophagy and apoptosis in breast carcinoma: implications for novel therapies? Biochem J 2022; 479:1581-1608. [PMID: 35904454 DOI: 10.1042/bcj20210676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is still the most common cancer in women worldwide. Resistance to drugs and recurrence of the disease are two leading causes of failure in treatment. For a more efficient treatment of patients, the development of novel therapeutic regimes is needed. Recent studies indicate that modulation of autophagy in concert with apoptosis induction may provide a promising novel strategy in breast cancer treatment. Apoptosis and autophagy are two tightly regulated distinct cellular processes. To maintain tissue homeostasis abnormal cells are disposed largely by means of apoptosis. Autophagy, however, contributes to tissue homeostasis and cell fitness by scavenging of damaged organelles, lipids, proteins, and DNA. Defects in autophagy promote tumorigenesis, whereas upon tumor formation rapidly proliferating cancer cells may rely on autophagy to survive. Given that evasion of apoptosis is one of the characteristic hallmarks of cancer cells, inhibiting autophagy and promoting apoptosis can negatively influence cancer cell survival and increase cell death. Hence, combination of antiautophagic agents with the enhancement of apoptosis may restore apoptosis and provide a therapeutic advantage against breast cancer. In this review, we discuss the cross-talk of autophagy and apoptosis and the diverse facets of autophagy in breast cancer cells leading to novel models for more effective therapeutic strategies.
Collapse
|
12
|
Önder GÖ, Sezer G, Özdamar S, Yay A. Melatonin has an inhibitory effect on MCF‐7 and MDA‐MB‐231 human breast cancer cell lines by inducing autophagy and apoptosis. Fundam Clin Pharmacol 2022; 36:1038-1056. [DOI: 10.1111/fcp.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Gözde Özge Önder
- Faculty of Medicine, Department of Histology and Embryology Erciyes University Kayseri Turkey
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
| | - Gülay Sezer
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
- Faculty of Medicine, Department of Pharmacology Erciyes University Kayseri Turkey
| | - Saim Özdamar
- Faculty of Medicine, Department of Histology and Embryology Pamukkale University Denizli Turkey
| | - Arzu Yay
- Faculty of Medicine, Department of Histology and Embryology Erciyes University Kayseri Turkey
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
| |
Collapse
|
13
|
Arif A, Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Dichotomous role of autophagy in cancer. ASIAN BIOMED 2022; 16:111-120. [PMID: 37551378 PMCID: PMC10321184 DOI: 10.2478/abm-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that plays physiological and pathological roles in a cell. Its effect on cellular metabolism, the proteome, and the number and quality of organelles, diversely holds the potential to alter cellular functions. It acts paradoxically in cancer as a tumor inhibitor as well as a tumor promoter. In the early stage of tumorigenesis, it prevents tumor initiation by the so-called "quality control mechanism" and suppresses cancer progression. For late-staged tumors that are exposed to stress, it acts as a vibrant process of degradation and recycling that promotes cancer by facilitating metastasis. Despite this dichotomy, the crucial role of autophagy is evident in cancer, and associated with mammalian targets of rapamycin (mTOR), p53, and Ras-derived major cancer networks. Irrespective of the controversy regarding autophagic manipulation, promotion and suppression of autophagy act as potential therapeutic targets in cancer treatment and may provide various anticancer therapies.
Collapse
Affiliation(s)
- Amin Arif
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muhammad Babar Khawar
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Narowal, Narowal51750, Pakistan
| | - Rabia Mehmood
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Okara, Okara56130, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| |
Collapse
|
14
|
Wang J, Gong M, Fan X, Huang D, Zhang J, Huang C. Autophagy-related signaling pathways in non-small cell lung cancer. Mol Cell Biochem 2022; 477:385-393. [PMID: 34757567 DOI: 10.1007/s11010-021-04280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is one of the most prevalent causes of morbidity and mortality in both men and women across the globe. The disease has a quiet phenotype at first, which leads to chronic tumor development. Non-small cell lung cancer (NSCLC) is the most common kind of lung cancer, accounting for 85 percent of all lung malignancies. Autophagy has been described as an intracellular "recycle bin" where damaged proteins and molecules are degraded. Autophagy regulation is mainly dependent on signaling pathways such as phosphoinositide 3-kinases (PI3K), AKT, and the mammalian target of rapamycin (mTOR). In the context of NSCLC, studies on these signaling pathways are inconsistent, but our literature review suggests that the inhibition of mTOR, PI3K/AKT, and epidermal growth factor receptor signaling pathways by different medications can active autophagy and inhibit NSCLC progression. In conclusion, signaling pathways related to autophagy are effective therapeutic approaches for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Mei Gong
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Xirong Fan
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Dalu Huang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Jinshu Zhang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China
| | - Cheng Huang
- Department of Cancer Center, Fujian Medical University Xiamen Humanity Hospital, Xiamen City, 361006, Fujian Province, China.
| |
Collapse
|
15
|
Zhu L, Wang Y, Lv W, Wu X, Sheng H, He C, Hu J. Schizandrin A can inhibit non‑small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy. Int J Mol Med 2021; 48:214. [PMID: 34643254 PMCID: PMC8522958 DOI: 10.3892/ijmm.2021.5047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non‑small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter‑Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle‑related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage‑related protein SOX4 were detected by western blot analysis. Annexin V‑FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC‑1 and DCFH‑DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis‑related proteins caspase‑3, cleaved caspase‑3, poly(ADP‑ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase‑9 and cleaved caspas‑9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy‑related proteins LC3‑I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3‑methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10‑20 µM) mainly induced G1/S‑phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20‑50 µM), cells underwent apoptosis and G2/M‑phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20‑50 µM). In addition, the mRNA and protein expression levels of Bcl‑like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3‑II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3‑methyladenine exerted no notable effects on SchA‑induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Wang Z, Zhou C, Yang S. The roles, controversies, and combination therapies of autophagy in lung cancer. Cell Biol Int 2021; 46:3-11. [PMID: 34546599 DOI: 10.1002/cbin.11704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is one of the leading causes of death among men and women worldwide. The disease initially has a silent phenotype, which leads to the progression of the disease and ultimately the lack of proper response to routine treatments. Autophagy, known as an intracellular "recycle bin" for the degradation of defective proteins and molecules, is one of the mechanisms that has been considered in the context of cancer in recent years. This study aims to provide a comprehensive review of published articles on autophagy in the context of lung cancer to have a complete view of the role of autophagy in lung cancer and its possible treatments. PubMed, Scopus, and Google Scholar were searched until June 15 to find related articles. No specific search filters or restrictions were applied. The results were entered into reference management software for aggregation and management. The full text of all articles was screened and studied. In conclusion, studies on the exact function of autophagy in lung cancer are contradictory, but what can be concluded from a review of literature on lung cancer is that targeting autophagy combined with traditional routine therapies such as chemotherapy, especially in advanced stages of lung cancer, can be an effective anticancer approach.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Chunyang Zhou
- Department of Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.,Department of Clinical Medicine, Shandong University, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengjie Yang
- Department of Phase I Clinical Trial Center, Capital Medical University, Beijing Shijitan Hospital, Beijing, China
| |
Collapse
|
17
|
Woo J, Kim JB, Cho T, Yoo EH, Moon BI, Kwon H, Lim W. Selenium inhibits growth of trastuzumab-resistant human breast cancer cells via downregulation of Akt and beclin-1. PLoS One 2021; 16:e0257298. [PMID: 34525121 PMCID: PMC8443054 DOI: 10.1371/journal.pone.0257298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
The response rate to treatment with trastuzumab (Tz), a recombinant humanized anti-HER2 monoclonal antibody, is only 12–34% despite demonstrated effectiveness on improving the survival of patients with HER2-positive breast cancers. Selenium has an antitumor effect against cancer cells and can play a cytoprotective role on normal cells. This study investigated the effect of selenium on HER2-positive breast cancer cells and the mechanism in relation to the response of the cells to Tz. HER2-positive breast cancer cell lines, SK-BR-3 as trastuzumab-sensitive cells, and JIMT-1 as Tz-resistant cells were treated with Tz and sodium selenite (selenite). Cell survival rates and expression of Her2, Akt, and autophagy-related proteins, including LC3B and beclin 1, in both cell lines 72 h after treatment were evaluated. Significant cell death was induced at different concentrations of selenite in both cell lines. A combined effect of selenite and Tz at 72 h was similar to or significantly greater than each drug alone. The expression of phosphorylated Akt (p-Akt) was decreased in JIMT-1 after combination treatment compared to that after only Tz treatment, while p-Akt expression was increased in SK-BR-3. The expression of beclin1 increased particularly in JIMT-1 after only Tz treatment and was downregulated by combination treatment. These results showed that combination of Tz and selenite had an antitumor effect in Tz-resistant breast cancer cells through downregulation of phosphorylated Akt and beclin1-related autophagy. Selenite might be a potent drug to treat Tz-resistant breast cancer by several mechanisms.
Collapse
Affiliation(s)
- Joohyun Woo
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jong Bin Kim
- Ewha Institute of Convergence Medicine, Seoul, South Korea
| | - Taeeun Cho
- Ewha Institute of Convergence Medicine, Seoul, South Korea
| | - Eun Hye Yoo
- Ewha Institute of Convergence Medicine, Seoul, South Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
18
|
Jilishitz I, Quiñones JL, Patel P, Chen G, Pasetsky J, VanInwegen A, Schoninger S, Jogalekar MP, Tsiperson V, Yan L, Wu Y, Gottesman SRS, Somma J, Blain SW. NP-ALT, a Liposomal:Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Mol Cancer Res 2021; 19:1929-1945. [PMID: 34446542 DOI: 10.1158/1541-7786.mcr-21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Resistance to cyclin D-CDK4/6 inhibitors (CDK4/6i) represents an unmet clinical need and is frequently caused by compensatory CDK2 activity. Here we describe a novel strategy to prevent CDK4i resistance by using a therapeutic liposomal:peptide formulation, NP-ALT, to inhibit the tyrosine phosphorylation of p27Kip1(CDKN1B), which in turn inhibits both CDK4/6 and CDK2. We find that NP-ALT blocks proliferation in HR+ breast cancer cells, as well as CDK4i-resistant cell types, including triple negative breast cancer (TNBC). The peptide ALT is not as stable in primary mammary epithelium, suggesting that NP-ALT has little effect in nontumor tissues. In HR+ breast cancer cells specifically, NP-ALT treatment induces ROS and RIPK1-dependent necroptosis. Estrogen signaling and ERα appear required. Significantly, NP-ALT induces necroptosis in MCF7 ESRY537S cells, which contain an ER gain of function mutation frequently detected in metastatic patients, which renders them resistant to endocrine therapy. Here we show that NP-ALT causes necroptosis and tumor regression in treatment naïve, palbociclib-resistant, and endocrine-resistant BC cells and xenograft models, demonstrating that p27 is a viable therapeutic target to combat drug resistance. IMPLICATIONS: This study reveals that blocking p27 tyrosine phosphorylation inhibits CDK4 and CDK2 activity and induces ROS-dependent necroptosis, suggesting a novel therapeutic option for endocrine and CDK4 inhibitor-resistant HR+ tumors.
Collapse
Affiliation(s)
- Irina Jilishitz
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jason Luis Quiñones
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Priyank Patel
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Grace Chen
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Jared Pasetsky
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Allison VanInwegen
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Scott Schoninger
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Manasi P Jogalekar
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vladislav Tsiperson
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Susan R S Gottesman
- Department of Pathology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jonathan Somma
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Stacy W Blain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
19
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
20
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
21
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
22
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
23
|
G-protein coupled estrogen receptor activation protects the viability of hyperoxia-treated primary murine retinal microglia by reducing ER stress. Aging (Albany NY) 2020; 12:17367-17379. [PMID: 32920550 PMCID: PMC7521534 DOI: 10.18632/aging.103733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the effects of G-protein coupled estrogen receptor (GPER) activation in the early phase of retinopathy of prematurity (ROP) and its association with endoplasmic reticulum (ER) stress using primary murine retinal microglia as an experimental model. Fluorescence microscopy results show that the CD11c-positive primary retinal microglia in vitro cultured for 14 days were GPER-positive. GPER activation using GPER-agonist G-1 reduced autophagy and increased the viability of the hyperoxia-treated primary murine retinal microglia. Furthermore, GPER activation reduced the expression of ER stress-related proteins, IRE1α, PERK and ATF6 in the hyperoxia-treated primary murine retinal microglia compared to the corresponding controls. GPER activation significantly reduced a time-dependent increase in IP3R-dependent calcium release from the ER, thereby maintaining higher calcium levels in the ER of hyperoxia-treated primary retinal microglia. However, the protective effects of G-1 on the hyperoxia-treated primary retinal microglia were eliminated by inactivation of GPER using the GPER-antagonist, G-15. In conclusion, our study demonstrates that GPER activation enhances the survival of hyperoxia-treated primary retinal microglia by reducing ER stress. Our study demonstrates the therapeutic potential of GPER agonists such as G-1 in the early phase of ROP.
Collapse
|
24
|
El‐Mesery M, Seher A, El‐Shafey M, El‐Dosoky M, Badria FA. Repurposing of quinoline alkaloids identifies their ability to enhance doxorubicin‐induced sub‐G0/G1 phase cell cycle arrest and apoptosis in cervical and hepatocellular carcinoma cells. Biotechnol Appl Biochem 2020; 68:832-840. [DOI: 10.1002/bab.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Mohamed El‐Mesery
- Department of Biochemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery University Hospital Wuerzburg Wuerzburg Germany
| | - Mohamed El‐Shafey
- Department of Anatomy and Embryology, Faculty of Medicine Mansoura University Egypt
- Physiological Sciences Department Fakeeh College for Medical Sciences Jeddah Saudi Arabia
| | - Mohamed El‐Dosoky
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail Imam Abdulalrahman Bin Faisal University Dammam Saudi Arabia
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Egypt
| |
Collapse
|
25
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
26
|
Wu JR, Zhao Y, Zhou XP, Qin X. Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis. Biomed Pharmacother 2020; 121:109647. [DOI: 10.1016/j.biopha.2019.109647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
|
27
|
Colhado Rodrigues BL, Lallo MA, Perez EC. The Controversial Role of Autophagy in Tumor Development: A Systematic Review. Immunol Invest 2019; 49:386-396. [PMID: 31726897 DOI: 10.1080/08820139.2019.1682600] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a natural regulatory mechanism of the cell that eliminates unnecessary and dysfunctional cellular components to maintain homeostasis. Several authors have demonstrated that this mechanism can be induced by pathological conditions as cancer. However, their role in tumor development is still a controversial issue in cancer research. Here, we discussed the most relevant findings concerning autophagy in tumor development. In this critical review performed with studies published between 2002 and 2018, we found that the main pathway involved in the autophagy process is the PI3K/AKT/mTOR intracellular signaling pathway. Regarding their role in cancer development, breast cancer is the main study target, followed by lung, prostate and colon cancer. In these issues, 46% of the works consulted suggesting that autophagy inhibits tumor progression by favor a better antitumor response, 4% suggest that favors growth and tumor progression and, 50% of the authors failed to establish whether autophagy inhibits or favors tumor development. Herein, we concluded that depending on the study model, autophagy may favor or inhibits growth and cancer progression.
Collapse
Affiliation(s)
- Bridilla Luiza Colhado Rodrigues
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil.,Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil
| |
Collapse
|
28
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
29
|
Wang LY, Zheng SS. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ Sci B 2019; 20:291-299. [PMID: 30932374 DOI: 10.1631/jzus.b1800508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of low-frequency ultrasound imaging technology and the improvement of ultrasound contrast agent production technology mean that they play an increasingly important role in tumor therapy. The interaction between ultrasound and microbubbles and their biological effects can transfer and release microbubbles carrying genes and drugs to target tissues, mediate the apoptosis of tumor cells, and block the embolization of tumor microvasculature. With the optimization of ultrasound parameters, the development of targeted microbubbles, and the emergence of various composite probes with both diagnostic and therapeutic functions, low-frequency ultrasound combined with microbubble contrast agents will bring new hope for clinical tumor treatment.
Collapse
Affiliation(s)
- Li-Ying Wang
- Department of Ultrasound, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Shu-Sen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Health, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
30
|
Piccolo M, Misso G, Ferraro MG, Riccardi C, Capuozzo A, Zarone MR, Maione F, Trifuoggi M, Stiuso P, D'Errico G, Caraglia M, Paduano L, Montesarchio D, Irace C, Santamaria R. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci Rep 2019; 9:7006. [PMID: 31065032 PMCID: PMC6505035 DOI: 10.1038/s41598-019-43411-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
According to WHO, breast cancer incidence is increasing so that the search for novel chemotherapeutic options is nowadays an essential requirement to fight neoplasm subtypes. By exploring new effective metal-based chemotherapeutic strategies, many ruthenium complexes have been recently proposed as antitumour drugs, showing ability to impact on diverse cellular targets. In the framework of different molecular pathways leading to cell death in human models of breast cancer, here we demonstrate autophagy involvement behind the antiproliferative action of a ruthenium(III)-complex incorporated into a cationic nanosystem (HoThyRu/DOTAP), proved to be hitherto one of the most effective within the suite of nucleolipidic formulations we have developed for the in vivo transport of anticancer ruthenium(III)-based drugs. Indeed, evidences are implicating autophagy in both cancer development and therapy, and anticancer interventions endowed with the ability to trigger this biological response are currently considered attractive oncotherapeutic approaches. Moreover, crosstalk between apoptosis and autophagy, regulated by finely tuned metallo-chemotherapeutics, may provide novel opportunities for future improvement of cancer treatment. Following this line, our in vitro and in vivo preclinical investigations suggest that an original strategy based on suitable formulations of ruthenium(III)-complexes, inducing sustained cell death, could open new opportunities for breast cancer treatment, including the highly aggressive triple-negative subtype.
Collapse
Affiliation(s)
- Marialuisa Piccolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Antonella Capuozzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Mayra Rachele Zarone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
31
|
Lv C, Zhang Z, Zhao T, Han MF, Jia DP, Su LZ, Huang F, Wang FZ, Fang FF, Li B. The anti-tumour effect of Mel and its role in autophagy in human hepatocellular carcinoma cells. Am J Transl Res 2019; 11:931-941. [PMID: 30899392 PMCID: PMC6413251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 06/09/2023]
Abstract
Melittin (Mel), a major component of venom of honey bee (Apismellifera), has various biological effects. Recent researches have reported the anti-tumor activity of Mel in various human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to further discuss the role of Mel in HCC and investigate the correlation of autophagy with the effect of Mel in HCC cells. Methyl thiazolyl tetrazolium (MTT) assay and flow cytometry were used to detect the viability and apoptosis of HCC cells, respectively. To examine the changes of autophagy in HCC cells treated with Mel, transmission electronmicroscope (TEM) and immunofluorescence detection were adopted. Finally, we used western blot method to detect the changes of pivotal proteins in autophagy and mitochondrial apoptotic pathways. The results of MTT assay and flow cytometry revealed that Mel could suppress the cell viability and promote the apoptosis of HCC cells. Autophagy could be induced by the treatment with Mel in HCC cells. The inhibition of autophagy by chloroquine (CQ) contributed to the enhanced anti-tumor effect of Mel, but autophagy induction by RAPA decreased Mel effect in HCC cells. Mel was closely associated with the expression of proteins in mitochondrial apoptotic pathway. In summary, Mel could induce the autophagy of HCC cells, and the autophagy might offer protection against apoptosis in HCC. Mel might suppress the tumor through activating mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Can Lv
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Zhan Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Tong Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Meng-fei Han
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Da-peng Jia
- Shanghai University of Traditional Chinese MedicineShanghai 201203, P. R. China
| | - Ling-zi Su
- Shanghai University of Traditional Chinese MedicineShanghai 201203, P. R. China
| | - Feng Huang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Fu-zhe Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Fan-Fu Fang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Bai Li
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| |
Collapse
|
32
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q, Liao DY, Luo DZ, Chen G. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 2019; 54:600-626. [PMID: 30570107 PMCID: PMC6317664 DOI: 10.3892/ijo.2018.4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
33
|
Yuan M, Liao J, Luo J, Cui M, Jin F. Significance of Vesicle-Associated Membrane Protein 8 Expression in Predicting Survival in Breast Cancer. J Breast Cancer 2018; 21:399-405. [PMID: 30607161 PMCID: PMC6310720 DOI: 10.4048/jbc.2018.21.e57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose Vesicle-associated membrane protein 8 (VAMP8) is a soluble N-ethylmaleimide-sensitive factor receptor protein that participates in autophagy by directly regulating autophagosome membrane fusion and has been reported to be involved in tumor progression. Nevertheless, the expression and prognostic value of VAMP8 in breast cancer (BC) remain unknown. This study aimed to evaluate the clinical significance and biological function of VAMP8 in BC. Methods A total of 112 BC samples and 30 normal mammary gland samples were collected. The expression of VAMP8 was assessed in both BC tissues and normal mammary gland tissues via a two-step immunohistochemical detection method. Results The expression of VAMP8 in BC tissues was significantly higher than that in normal breast tissues. Furthermore, increased VAMP8 expression was significantly correlated with tumor size (p=0.007), lymph node metastasis (p=0.024) and recurrence (p=0.001). Patients with high VAMP8 expression had significantly lower cumulative recurrence-free survival and overall survival (p<0.001 for both) than patients with low VAMP8 expression. In multivariate logistic regression and Cox regression analyses, lymph node metastasis and VAMP8 expression were independent prognostic factors for BC. Conclusion VAMP8 is significantly upregulated in human BC tissues and can thus be a practical and potentially effective surrogate marker for survival in BC patients.
Collapse
Affiliation(s)
- Mengci Yuan
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou, China
| | - Ji Luo
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyao Cui
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Liu M, Zhao G, Zhang D, An W, Lai H, Li X, Cao S, Lin X. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol 2018; 53:1363-1373. [DOI: 10.3892/ijo.2018.4465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/09/2022] Open
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
35
|
Pooladanda V, Bandi S, Mondi SR, Gottumukkala KM, Godugu C. Nimbolide epigenetically regulates autophagy and apoptosis in breast cancer. Toxicol In Vitro 2018; 51:114-128. [PMID: 29778718 DOI: 10.1016/j.tiv.2018.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
Autophagy is a critical regulator of cellular homeostasis and its dysregulation often results in various disease manifestations, including cancer. Nimbolide, an active chemical constituent of neem (Azadirachta indica) exhibits potent anticancer effects. Although, nimbolide mediated apoptosis activation in breast cancer cells is well known. Nevertheless, its role in autophagy induction mechanism and epigenetic alteration is not explored previously. Our current study intended to bridge the gaps in the existing research by exploring the potential of nimbolide in inducing autophagy, which could counter regulate the transformations in breast cancer. In our studies, nimbolide significantly inhibited the cell proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.97 ± 0.24 and 5.04 ± 0.25 μM, respectively. Nimbolide markedly arrested the cell cycle progression and cell survival with loss of mitochondrial membrane potential by reducing Bcl-2 concomitantly inducing Bax and caspases protein expression with modulation of HDAC-2 and H3K27Ac expression. Consequently, characteristic autophagolysosome accumulation was observed by acridine orange, monodansylcadaverine (MDC) and Lysotracker Red staining. Moreover, nimbolide induced autophagy signaling by increasing Beclin 1 and LC3B along with decreased p62 and mTOR protein expression. Thus, our findings imply that nimbolide induces autophagy mediated apoptotic cell death in breast cancer with epigenetic modifications.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Soumya Bandi
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Sandhya Rani Mondi
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Krishna Mohan Gottumukkala
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
36
|
Deng X, Apple S, Zhao H, Song J, Lee M, Luo W, Wu X, Chung D, Pietras RJ, Chang HR. CD24 Expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget 2018; 8:38294-38308. [PMID: 28418843 PMCID: PMC5503533 DOI: 10.18632/oncotarget.16203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related death in women. Adjuvant systemic chemotherapies are effective in reducing risks of recurrence and have contributed to reduced BC mortality. Although targeted adjuvant treatments determined by biomarkers for endocrine and HER2-directed therapies are largely successful, predicting clinical benefit from chemotherapy is more challenging. Drug resistance is a major reason for treatment failures. Efforts are ongoing to find biomarkers to select patients most likely to benefit from chemotherapy. Importantly, cell surface biomarkers CD44+/CD24- are linked to drug resistance in some reports, yet underlying mechanisms are largely unknown. This study focused on the potential role of CD24 expression in resistance to either docetaxel or doxorubicin in part by the use of triple-negative BC (TNBC) tissue microarrays. In vitro assays were also done to assess changes in CD24 expression and differential drug susceptibility after chemotherapy. Further, mouse tumor xenograft studies were done to confirm in vitro findings. Overall, the results show that patients with CD24-positive TNBC had significantly worse overall survival and disease-free survival after taxane-based treatment. Also, in vitro cell studies show that CD44+/CD24+/high cells are more resistant to docetaxel, while CD44+/CD24-/low cells are resistant to doxorubicin. Both in vitro and in vivo studies show that cells with CD24-knockdown are more sensitive to docetaxel, while CD24-overexpressing cells are more sensitive to doxorubicin. Further, mechanistic studies indicate that Bcl-2 and TGF-βR1 signaling via ATM-NDRG2 pathways regulate CD24. Hence, CD24 may be a biomarker to select chemotherapeutics and a target to overcome TNBC drug resistance.
Collapse
Affiliation(s)
- Xinyu Deng
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| | - Sophia Apple
- Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095-1732, USA
| | - Hong Zhao
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA.,Department of Breast Surgery, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P. R. China
| | - Jeongyoon Song
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA.,Department of Surgery, East-West Medical Center, Kyung Hee University College of Medicine, Seoul, 02447 South Korea
| | - Minna Lee
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| | - William Luo
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| | - Xiancheng Wu
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| | - Debra Chung
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| | - Richard J Pietras
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1678, USA
| | - Helena R Chang
- Gonda, UCLA Breast Cancer Research Laboratory and Revlon, UCLA Breast Center, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7028, USA
| |
Collapse
|
37
|
Zhou L, Wang M, Guo C, Zhu Y, Yu H, Zhang L, Yu P. Expression of pAkt is associated with a poor prognosis in Chinese women with invasive ductal breast cancer. Oncol Lett 2018; 15:4859-4866. [PMID: 29552125 PMCID: PMC5840663 DOI: 10.3892/ol.2018.7965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Over the past three decades, numerous patients with breast cancer succumbed to cancer metastasis and recurrence, while, the exact mechanisms underlying this malignancy, and the potential biomarkers for prognosis prediction remain elusive. It was previously demonstrated that phosphorylated RAC-α serine/threonine-protein kinase (pAkt) and Beclin 1 was associated with cancer metastasis, and recurrence. Thus far, the expression patterns of pAkt and Beclin 1 in breast cancer tissues, and their associations with the prognosis of invasive ductal breast cancer remain inconclusive, which may be due to various factors, including ethnicity and pathological types. In the present study, a total of 90 Chinese female patients with invasive ductal breast cancer between June 1999 and August 2002 were enrolled at Shanghai First People's Hospital (Shanghai, China). The patients were followed up from 5 months to 13.5 years for survival analysis. The expressional levels of pAkt and Beclin 1 in invasive ductal breast cancer tissues, and the normal paracancerous tissues were measured by immunohistochemistry. Associations with prognosis following surgery were further evaluated using Cox regression analysis. In 90 invasive ductal breast cancer samples, pAkt was detected in 17 (18.9%) samples and Beclin 1 in 33 (36.7%) samples, but both were not detected in any of the paracancerous samples. Survival analysis revealed that pAkt expression carried a tendency to predict a shorter disease-free survival (DFS) in patients with invasive ductal breast cancer. Additionally, Beclin 1 expression was not significantly associated with survival. Furthermore, univariate Cox regression analysis demonstrated that pAkt expression was negatively associated with DFS and overall survival. Multivariate Cox regression analysis indicated that pAkt expression was an independent risk factor associated with poor prognosis in patients with invasive ductal breast cancer (all P<0.05). pAkt may be used as a potential prognostic biomarker in Chinese women with invasive ductal breast cancer.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Surgery, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Min Wang
- Department of Pathology, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Chongyong Guo
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Ying Zhu
- Department of Pathology, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Hua Yu
- Department of Surgery, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pei Yu
- Department of Orthopedics, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 210025, P.R. China
| |
Collapse
|
38
|
Tian Y, Xu H, Farooq AA, Nie B, Chen X, Su S, Yuan R, Qiao G, Li C, Li X, Liu X, Lin X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res 2018. [PMID: 29516568 DOI: 10.1002/ptr.6064] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maslinic acid (MA), a natural pentacyclictriterpene, displays cytotoxic activity on various types of cancer cells. However, its underlying mechanism is unclear. In this study, we assessed the effect of MA on autophagy of human pancreatic cancer cells, and the potential autophagic pathway was presented. MA inhibited the proliferation and induced autophagy of Panc-28 cells by altering the expressions of autophagy related proteins. SDS-PAGE analysis revealed that one protein band was significantly down-regulated in cells treated with MA, and the band was identified as heat shock protein HSPA8 as analyzed using Western blot and MS, MS/MS approaches. HSPA8 knockdown could significantly inhibit cell viability and enhance the cytotoxic effects of MA, whereas HSPA8 overexpression was able to enhance cell viability, diminishing the effects of MA. Western blot analysis indicated that the effect of MA on the expression of autophagy related genes was increased significantly in cells treated with HSPA8 inhibitor VER-155008, whereas HSPA8 inducer geranylgeranylacetone antagonized the effects of MA. Our study provides evidence that MA is able to induce of autophagy via down-regulation of HSPA8 in Panc-28 cells.
Collapse
Affiliation(s)
- Ye Tian
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Zibo Biomedicinal Institute, Zibo, 255000, Shandong, China
| | - Ammad Ahmad Farooq
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Baozeng Nie
- Rizhao Tranditional Chinese Medical Hospital, Rizhao, 276800, Shandong, China
| | - Xiaoliang Chen
- Basic Medical School, Datong Univeristy, Datong, 037009, Shanxi, China
| | - Shuonan Su
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ru Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
39
|
Identification of breast cancer cell subtypes sensitive to ATG4B inhibition. Oncotarget 2018; 7:66970-66988. [PMID: 27556700 PMCID: PMC5341851 DOI: 10.18632/oncotarget.11408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies.
Collapse
|
40
|
Xue L, Zhang WJ, Fan QX, Wang LX. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol Lett 2017; 15:1869-1873. [PMID: 29399197 DOI: 10.3892/ol.2017.7451] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/17/2017] [Indexed: 01/22/2023] Open
Abstract
Previous studies have demonstrated that Licochalcone A possesses anti-inflammatory, anticancer, anti-bacterial, anti-malarial and anti-parasitic activities. In the present study the potential anticancer effects of Licochalcone A on MCF-7 cells were investigated. Licochalcone A significantly decreased cell viability and promoted autophagy and apoptosis, as demonstrated by an MTT assay, acridine orange staining and Annexin V-fluorescein isothiocyanate staining, respectively. Western blot analyses demonstrated that Licochalcone A treatment activated the LC3-II signaling pathway while suppressing the phosphoinositide 3-kinase (PI3K)/RAC-α serine-threonine-protein kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. In addition, Licochalcone A significantly increased caspase-3 activity and significantly decreased B-cell lymphoma-2 expression. The results from the present study indicate that Licochalcone A inhibits PI3K/Akt/mTOR activation, and promotes autophagy and apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Lei Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei-Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing-Xia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liu-Xing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
41
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
42
|
Xin Y, Jiang F, Yang C, Yan Q, Guo W, Huang Q, Zhang L, Jiang G. Role of autophagy in regulating the radiosensitivity of tumor cells. J Cancer Res Clin Oncol 2017; 143:2147-2157. [PMID: 28786037 DOI: 10.1007/s00432-017-2487-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Autophagy is a metabolic response of cells to chemical and physical factors, such as nutrition or growth factor deprivation, proinflammatory state, hypoxia, accumulation of reactive oxygen species, presence of infectious agents, and DNA damage. Autophagy maintains the homeostasis of intracellular metabolism mainly by degrading cellular organelles and critical proteins. In a sense, autophagy protects cells from death. Radiotherapy is a powerful tool used to control tumor growth, and it can induce autophagy. The relationship between radiotherapy and autophagy is worthy of further investigation. METHODS We searched various electronic databases including PubMed for peer-reviewed English-language articles and selected articles on the mechanism of autophagy, its role in cancer development and cancer treatment, and the relationship between the effect of radiation therapy and autophagy intensity. RESULTS This review has recently shown that the sensitivity of tumor cells to radiation therapy can be increased by regulating autophagy. CONCLUSION The effects of autophagy vary, and autophagy provides various ways of enhancing radiosensitivity, including inhibition of autophagy, increase in autophagy, and altering the outcome of autophagy.
Collapse
Affiliation(s)
- Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Fan Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical, Huai'an, China
| | - Qiuyue Yan
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Wenwen Guo
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Qian Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
43
|
Wu J, Wu Q, Li JJ, Chen C, Sun S, Wang CH, Sun SR. Autophagy mediates free fatty acid effects on MDA-MB-231 cell proliferation, migration and invasion. Oncol Lett 2017; 14:4715-4721. [PMID: 29085471 PMCID: PMC5649568 DOI: 10.3892/ol.2017.6807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Epidemiological and animal studies indicate an association between high levels of dietary fat intake and an increased risk of breast cancer. The multifaceted role of autophagy in cancer has been revealed in previous years. However, the mechanism of this role remains unknown. In the present study, the two most common free fatty acids, palmitate acid (PA) and oleic acid (OA), were used to determine the effect on human breast cancer MDA-MB-231 cells, and the possible role of autophagy was investigated by detecting light chain 3 (LC3)-II/I. Bafliomycin A1 was used to detect autophagy flux. High palmitate acid condition-induced MDA-MB-231 cell death and invasion were mitigated by 3-methyladenine pretreatment or transfection with shRNA against autophagy protein 5. By contrast, high oleic acid condition induced MDA-MB-231 cell proliferation, migration and invasion were mitigated using rapamycin. The present results suggest that autophagy has an important role in the effects of PA and OA on breast cancer growth and metastasis in vitro.
Collapse
Affiliation(s)
- Juan Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chang-Hua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basal Medical School, Wuhan, Hubei 430071, P.R. China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
44
|
Bohl L, Guizzardi S, Rodríguez V, Hinrichsen L, Rozados V, Cremonezzi D, Tolosa de Talamoni N, Picotto G. Combined calcitriol and menadione reduces experimental murine triple negative breast tumor. Biomed Pharmacother 2017; 94:21-26. [PMID: 28750356 DOI: 10.1016/j.biopha.2017.07.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Calcitriol (D) or 1,25(OH)2D3 inhibits the growth of several tumor cells including breast cancer cells, by activating cell death pathways. Menadione (MEN), a glutathione-depleting compound, may be used to potentiate the antiproliferative actions of D on cancer cells. We have previously shown in vitro that MEN improved D-induced growth arrest on breast cancer cell lines, inducing oxidative stress and DNA damage via ROS generation. Treatment with MEN+D resulted more effective than D or MEN alone. OBJECTIVE To study the in vivo effect of calcitriol, MEN or their combination on the development of murine transplantable triple negative breast tumor M-406 in its syngeneic host. METHODS Tumor M-406 was inoculated s.c., and when tumors reached the desired size, animals were randomly assigned to one of four groups receiving daily i.p. injections of either sterile saline solution (controls, C), MEN, D, or both (MEN+D). Body weight and tumor volume were recorded three times a week. Serum calcium was determined before and at the end of the treatment, at which time tumor samples were obtained for histological examination. RESULTS None of the drugs, alone or in combination, affected mice body weight in the period studied. The combined treatment reduced tumor growth rate (C vs. MEN+D, P<0.05) and the corresponding histological sections exhibited small remaining areas of viable tumor only in the periphery. A concomitant DNA fragmentation was observed in all treated groups and MEN potentiated the calcitriol effect on tumor growth. CONCLUSIONS As previously observed in vitro, treatment with MEN and D delayed tumor growth in vivo more efficiently than the individual drugs, with evident signals of apoptosis induction. Our results propose an alternative protocol to treat triple negative breast cancer, using GSH depleting drugs together with calcitriol, which would allow lower doses of the steroid to maintain the antitumor effect while diminishing its adverse pharmacological effects.
Collapse
Affiliation(s)
- Luciana Bohl
- Centro de Investigaciones y Transferencia de Villa María (CONICET-UNVM), Córdoba, Argentina
| | - Solange Guizzardi
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC, Córdoba, Argentina
| | - Valeria Rodríguez
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC, Córdoba, Argentina
| | - Lucila Hinrichsen
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - Viviana Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - David Cremonezzi
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC, Córdoba, Argentina
| | - Gabriela Picotto
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC, Córdoba, Argentina.
| |
Collapse
|
45
|
Li CJ, Liao WT, Wu MY, Chu PY. New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 18:1566. [PMID: 28753959 PMCID: PMC5536054 DOI: 10.3390/ijms18071566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a complex system that is affected by various factors, including hypoxia, acidosis, and immune and inflammatory responses, which have significant effects on tumor adhesion, invasion, metastasis, angiogenesis, and autophagy. In this hostile tumor microenvironment, autophagy of tumor cells can promote tumor growth and metastasis. As autophagy is a double-edged sword in tumors, treatment of cancer via regulation of autophagy is extremely complicated. Therefore, understanding the relationship between tumor autophagy and the tumor microenvironment is extremely important. As the immune milieu plays an important role in tumor development, immunotherapy has become a promising form of cancer therapy. A multi-pronged treatment approach using immunotherapy and molecular targets may become the major direction for future cancer treatments. This article reviews existing knowledge regarding the immune factors in the tumor microenvironment and the status of tumor autophagy research.
Collapse
Affiliation(s)
- Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Wan-Ting Liao
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
46
|
Taglieri L, De Iuliis F, Giuffrida A, Giantulli S, Silvestri I, Scarpa S. Resistance to the mTOR inhibitor everolimus is reversed by the downregulation of survivin in breast cancer cells. Oncol Lett 2017; 14:3832-3838. [PMID: 28927154 PMCID: PMC5587981 DOI: 10.3892/ol.2017.6597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Everolimus (RAD001) is an inhibitor of mammalian target of rapamycin used in combination with exemestane to treat hormone receptor-positive advanced breast cancer. However, not all patients are equally sensitive to RAD001 and certain patients develop resistance. Therefore, the present study analyzed the mechanisms involved in the resistance of breast cancer cells to RAD001 in order to identify a potential tool to overcome it. The effects of RAD001 on the inhibition of cell viability, on the induction of apoptosis and autophagy and on the regulation of survivin, an anti-apoptotic protein, were evaluated in two breast cancer cell lines: BT474 (luminal B) and MCF7 (luminal A). RAD001 was demonstrated to induce autophagy in the two cell lines at following a short period of treatment (4 h) and to induce apoptosis exclusively in BT474 cells following longer periods of treatment (48 h). RAD001 induced the downregulation of survivin in BT474 cells and its upregulation in MCF7 cells. Consequently, inhibiting survivin with YM155 resulted in the acquired resistance of MCF7 cells to RAD001 being reverted, restoring RAD001-induced apoptosis. These data demonstrated that RAD001 exerted anti-proliferative and pro-apoptotic effects on breast cancer cells, but that these effects were repressed by the simultaneous up-regulation of survivin. Finally, the results demonstrated that inhibiting the expression of survivin resulted in the restoration of the anti-neoplastic activity of RAD001.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Francesca De Iuliis
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Anna Giuffrida
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| |
Collapse
|
47
|
Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer. Biochem Pharmacol 2017; 142:58-70. [PMID: 28669564 DOI: 10.1016/j.bcp.2017.06.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid presented in the plant Isodon eriocalyx var. laxiflora, has been reported to diminish angiogenesis-dependent breast tumor growth. In the present study, the effects of EriB on human breast cancer and its underlying mechanisms were further investigated. The in vitro anti-breast cancer activity of EriB was determined using MCF-7 and MDA-MB-231 cell lines. MDA-MB-231 xenograft model of human breast cancer was also established to explore the anti-tumor effect in vivo. We found that EriB was able to induce apoptosis accompanied by the activation of autophagy, which was evidenced by the increased accumulation of autophagosomes, acidic vesicular organelles formation, the microtubule-associated protein 1A/1B-light chain 3B-II (LC3B-II) conversion from LC3B-I and p62 degradation. Meanwhile, EriB treatment time-dependently decreased the phosphorylation of Akt, mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K), leading to the inhibition of Akt/mTOR/p70S6K signaling pathway. Moreover, the blockage of autophagy obviously sensitized EriB-induced cell death, which suggested the cytoprotective function of autophagy in both MCF-7 and MDA-MB-231 cells. Interestingly, the autophagic features and apoptosis induction were prevented by reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine, indicating that ROS played an essential role in the mediation of EriB-induced cell death. Furthermore, in MDA-MB-231 xenograft model, EriB displayed a significant anti-tumor effect via the activation of autophagy and apoptosis in breast tumor cells. Taken together, our findings firstly demonstrated that EriB suppressed breast cancer cells growth both in vitro and in vivo, and thus could be developed as a promising anti-breast tumor agent.
Collapse
|
48
|
Investigation of discriminant metabolites in tamoxifen-resistant and choline kinase-alpha-downregulated breast cancer cells using 1H-nuclear magnetic resonance spectroscopy. PLoS One 2017. [PMID: 28644842 PMCID: PMC5482454 DOI: 10.1371/journal.pone.0179773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of breast cancer cells (BCCs) and was also promoted by CK-α knockdown, resulting in the survival of TAM-resistant BCCs. There is no comparative study yet about the metabolites resulting from BCCs with TAM-resistance and CK-α knockdown. Therefore, the aim of this study was to explore the discriminant metabolic biomarkers responsible for TAM resistance as well as CK-α expression, which might be linked with autophagy through a protective role. A total of 33 intracellular metabolites, including a range of amino acids, energy metabolism-related molecules and others from cell extracts of the parental cells (MCF-7), TAM-resistant cells (MCF-7/TAM) and CK-α knockdown cells (MCF-7/shCK-α, MCF-7/TAM/shCK-α) were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMRS). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) revealed the existence of differences in the intracellular metabolites to separate the 4 groups: MCF-7 cells, MCF-7/TAM cells, MCF-7-shCK-α cells, and MCF-7/TAM/shCK-α cells. The metabolites with VIP>1 contributed most to the differentiation of the cell groups, and they included fumarate, UA (unknown A), lactate, myo-inositol, glycine, phosphocholine, UE (unknown E), glutamine, formate, and AXP (AMP/ADP/ATP). Our results suggest that these altered metabolites would be promising metabolic biomarkers for a targeted therapeutic strategy in BCCs that exhibit TAM-resistance and aberrant CK-α expression, which triggers a survival and drug resistance mechanism.
Collapse
|
49
|
Zhong JT, Yu J, Wang HJ, Shi Y, Zhao TS, He BX, Qiao B, Feng ZW. Effects of endoplasmic reticulum stress on the autophagy, apoptosis, and chemotherapy resistance of human breast cancer cells by regulating the PI3K/AKT/mTOR signaling pathway. Tumour Biol 2017; 39:1010428317697562. [PMID: 28459209 DOI: 10.1177/1010428317697562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jia-Teng Zhong
- 1 Department of Pathology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Jian Yu
- 2 Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Hai-Jun Wang
- 1 Department of Pathology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Yu Shi
- 3 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, P.R. China
| | - Tie-Suo Zhao
- 4 Department of Immunology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Bao-Xia He
- 5 Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Bin Qiao
- 5 Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Zhi-Wei Feng
- 3 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, P.R. China
| |
Collapse
|
50
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|