1
|
Martín Ramírez A, Akindele AA, González Mora V, García L, Lara N, de la Torre-Capitán Matías E, Molina de la Fuente I, Nassar SA, Ta-Tang TH, Benito A, Berzosa P. Mutational profile of pfdhfr, pfdhps, pfmdr1, pfcrt and pfk13 genes of P. falciparum associated with resistance to different antimalarial drugs in Osun state, southwestern Nigeria. Trop Med Health 2025; 53:49. [PMID: 40200353 PMCID: PMC11977893 DOI: 10.1186/s41182-025-00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Nigeria accounts for the greatest burden of malaria disease globally. Malaria control requires an effective treatment after diagnosis. The efficacy of antimalarial drugs can be assessed through the analysis of genetic changes associated with reduced drug sensitivity. METHODS This study includes the analysis of the markers associated with artemisinin (pfk13), sulfadoxine-pyrimethamine (pfdhfr and pfdhps), and chloroquine and its derivatives (pfmdr1 and pfcrt) resistances, in blood samples collected from asymptomatic children in south-western Nigeria. RESULTS The 25.95% of samples showed a number of mutations in pfk13 gene. Among those, the validated, C580Y, and the candidate, R515K, mutations by WHO were detected. Twenty-seven pfdhps different haplotypes were observed, with the haplotype ISGKAA as the most prevalent (18.80%), followed by IFGKAA (12.78%) and IAGKAA (11.28%). The VAGKGS was the most common haplotype carrying the I431V mutation (10.53%). Combinations of alleles in pfdhfr and pfdhps genes provided a 40.98% of samples with the partially resistant haplotype (IRNG). No samples exhibited the 'fully resistant' or 'super resistant' pfdhprf-pfdhps combinations, but one sample contained mutations at pfdhfr 51I, 59R, and 108N with pfdhps 431V, 436A, A437G and 540E. The analysis of pfcrt 72-76 variants disclosed a 12.12% of samples with the mutant-type (CVIET). No double mutant pfmdr1 haplotypes 86Y/1246Y (YY) were detected, nor was the haplotype formed by the alleles 86Y pfmdr1 + pfcrt 76 T (YT). CONCLUSIONS There was no evidence of parasite genomes harbouring multilocus mutations conferring multidrug resistance, although evidence of a validated (C580Y) and a candidate (R515K) mutation in pfk13 gene, high frequency pfdhfr mutant alleles and high variability of pfdhps haplotypes were found in this study, which provides a baseline information essential in monitoring P. falciparum resistances.
Collapse
Affiliation(s)
- Alexandra Martín Ramírez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.
| | - Akeem Abiodun Akindele
- Medical Laboratory Science Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- HRH-Centre for Emerging and Re-Emerging Diseases, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Luz García
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain
| | - Nicole Lara
- Complutense University of Madrid, Madrid, Spain
| | | | - Irene Molina de la Fuente
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain
- Alcala University, Madrid, Spain
| | - Sulaiman Adebayo Nassar
- Medical Laboratory Science Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- HRH-Centre for Emerging and Re-Emerging Diseases, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Thuy-Huong Ta-Tang
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain
| | - Agustín Benito
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain
| | - Pedro Berzosa
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
- National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Patrick OJ, Amodu OK, Sokan-Adeaga AA, Sokan-Adeaga MA, Kotera Y. Prevalence and distribution of Plasmodium falciparum multidrug resistant 1 D1246Y allele among children in Ibadan Southwest, Nigeria. Sci Rep 2025; 15:9715. [PMID: 40113916 PMCID: PMC11926228 DOI: 10.1038/s41598-025-94668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
The emergence and spread of the Plasmodium falciparum multidrug-resistant 1 (Pfmdr1) allele pose a significant setback to global efforts to control and eradicate malaria infection by diminishing the efficacy of commonly prescribed antimalarial drugs, particularly in Sub-Saharan Africa, where malaria remains endemic. The Pfmdr1 D1246Y mutation is of specific importance due to its potential role in modulating parasite susceptibility to antimalarial medicines and treatment outcomes. This study aimed to determine the presence and prevalence of the wild-type and mutant D1246Y alleles of Pfmdr1 among children in Ibadan, Southwest Nigeria. A total of 133 archived DNA samples collected between March 2016 and June 2021 from children aged 6 to 132 months with varying malaria phenotypes (asymptomatic infection, uncomplicated, and severe malaria) were analyzed. The Pfmdr1 D1246Y allele was amplified via nested PCR, and the mutation was detected using the restriction enzyme EcoRV. The digested nested PCR products were resolved on a 2% agarose gel and visualized under ultraviolet light. All statistical analyses were performed using SPSS version 25, and statistical significance was set at p ≤ 0.05. Among the 133 samples, 97 (72.9%) were successfully genotyped. Of these, 50 (51.55%) carried the wild-type allele, while 47 (48.45%) had the mutant allele. Notably, the Pfmdr1-1246Y mutation was detected in all severe malaria cases (41/41, 100%), whereas its prevalence was significantly lower in asymptomatic (3/36, 8.3%) and uncomplicated malaria cases (3/20, 15%). The difference in mutation prevalence across the malaria phenotypes was statistically significant (p < 0.05). The study provided valuable insight into the coexistence of wild-type and mutant Pfmdr1 D1246Y alleles within the population. It revealed a significantly higher mutation rate in all severe malaria cases, while the wild-type allele remained more prevalent overall. These findings contribute to a deeper understanding of the possible role of the wild-type and mutant D1246Y alleles in the various clinical manifestations of malaria.
Collapse
Affiliation(s)
- Osazuwa John Patrick
- Institute of Child Health, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
- Department of Restorative Dentistry, Faculty of Dentistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olukemi Kehinde Amodu
- Institute of Child Health, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Micheal Ayodeji Sokan-Adeaga
- Department of Community Health and Primary Care, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Yasuhiro Kotera
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2TU, UK
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Pierre-Louis E, Kelley J, Patel D, Carlson C, Talundzic E, Jacobson D, Barratt JLN. Geo-classification of drug-resistant travel-associated Plasmodium falciparum using Pfs47 and Pfcpmp gene sequences (USA, 2018-2021). Antimicrob Agents Chemother 2024; 68:e0120324. [PMID: 39530682 PMCID: PMC11619247 DOI: 10.1128/aac.01203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Travel-related malaria is regularly encountered in the United States, and the U.S. Centers for Disease Control and Prevention (CDC) characterizes Plasmodium falciparum drug-resistance genotypes routinely for travel-related cases. An important aspect of antimalarial drug resistance is understanding its geographic distribution. However, specimens submitted to CDC laboratories may have missing, incomplete, or inaccurate travel data. To complement genotyping for drug-resistance markers Pfcrt, Pfmdr1, Pfk13, Pfdhps, Pfdhfr, and PfcytB at CDC, amplicons of Pfs47 and Pfcpmp are also sequenced as markers of geographic origin. Here, a bi-allele likelihood (BALK) classifier was trained using Pfs47 and Pfcpmp sequences from published P. falciparum genomes of known geographic origin to classify clinical genotypes to a continent. Among P. falciparum-positive blood samples received at CDC for drug-resistance genotyping from 2018 to 2021 (n = 380), 240 included a travel history with the submission materials, though 6 were excluded due to low sequence quality. Classifications obtained for the remaining 234 were compared to their travel histories. Classification results were over 96% congruent with reported travel for clinical samples, and with collection sites for field isolates. Among travel-related samples, only two incongruent results occurred; a specimen submitted citing Costa Rican travel classified to Africa, and a specimen with travel referencing Sierra Leone classified to Asia. Subsequently, the classifier was applied to specimens with unreported travel histories (n = 140; 5 were excluded due to low sequence quality). For the remaining 135 samples, geographic classification data were paired with results generated using CDC's Malaria Resistance Surveillance (MaRS) protocol, which detects single-nucleotide polymorphisms in and generates haplotypes for Pfcrt, Pfmdr1, Pfk13, Pfdhps, Pfdhfr, and PfcytB. Given the importance of understanding the geographic distribution of antimalarial drug resistance, this work will complement domestic surveillance efforts by expanding knowledge on the geographic origin of drug-resistant P. falciparum entering the USA.
Collapse
Affiliation(s)
- Edwin Pierre-Louis
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Julia Kelley
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dhruviben Patel
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Williams Consulting LLC, Atlanta, Georgia, USA
| | - Christina Carlson
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eldin Talundzic
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Jacobson
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joel Leonard Nicholas Barratt
- Laboratory Science and Diagnostics Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Ñacata I, Early AM, Boboy J, Neafsey DE, Sáenz FE. Effects of drug pressure and human migration on antimalarial resistance in circulating Plasmodium falciparum malaria parasites in Ecuador. RESEARCH SQUARE 2024:rs.3.rs-4638168. [PMID: 39184096 PMCID: PMC11343295 DOI: 10.21203/rs.3.rs-4638168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Antimalarial resistance in Plasmodium falciparum is a public health problem in the fight against malaria in Ecuador. Characterizing the molecular epidemiology of drug resistance genes helps to understand the emergence and spread of resistant parasites. In this study, the effects of drug pressure and human migration on antimalarial resistance in P. falciparum were evaluated. Sixty-seven samples from northwestern Ecuador from the 2019-2021 period were analyzed. SNPs in Pfcrt , Pfdhps , Pfdhfr , Pfmdr-1 , Pfk13 and Pfaat1 were identified by Sanger sequencing and whole-genome sequencing. A comparison of the frequencies of the haplotypes was made with data from the 2013-2015 period. Also, nucleotide and haplotype diversity were calculated. The frequencies of the mutant haplotypes, CVM ET in Pfcrt and C I C N I in Pfdhfr , increased. NED F S D F Y in Pfmdr-1 was detected for the first time. While the wild-type haplotypes, SAKAA in Pfdhps and MYRIC in Pfk13 , remained dominant. Interestingly, the A16 V mutation in Pfdhfr that gives resistance to proguanil is reported in Ecuador. In conclusion, parasites resistant to chloroquine ( Pfcrt ) and pyrimethamine ( Pfdhfr ) increased in recent years, while parasites sensitive to sulfadoxine ( Pfdhps ) and artemisinin ( Pfk13 ) prevail in Ecuador. Therefore, the current treatment is still useful against P. falciparum . The frequent human migration between Ecuador and Colombia has likely contributed to the spread of resistant parasites. Keys words : Plasmodium falciparum , resistance, antimalarial, selective pressure, human migration.
Collapse
|
5
|
Rahmasari FV, Asih PBS, Rozi IE, Wangsamuda S, Risandi R, Dewayanti FK, Permana DH, Syahrani L, Prameswari HD, Basri HH, Bustos MDG, Charunwatthana P, Dondorp AM, Imwong M, Syafruddin D. Evolution of genetic markers for drug resistance after the introduction of dihydroartemisinin-piperaquine as first-line anti-malarial treatment for uncomplicated falciparum malaria in Indonesia. Malar J 2023; 22:231. [PMID: 37553646 PMCID: PMC10410932 DOI: 10.1186/s12936-023-04658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine has been Indonesia's first-line anti-malarial treatment since 2008. Annual therapeutic efficacy studies (TES) done in the last 12 years showed continued high treatment efficacy in uncomplicated Plasmodium falciparum malaria. Although these studies did not show evidence for artemisinin resistance, a slight increase in Late Treatment Failure was observed over time. It is highlight to explore the evolution of genetic markers for ACT partner drug resistance since adopting DHA-PPQ. METHODS Dry blood spots were identified from a mass blood survey of uncomplicated falciparum malaria patients (N = 50) in Sumba from 2010 to 2018. Analysis of genotypic profile (N = 51) and a Therapeutic Efficacy Study (TES) from Papua (N = 142) from 2020 to 2021, 42-day follow-up. PCR correction using msp1, msp2, and glurp was used to distinguish recrudescence and reinfection. Parasite DNA from DBSs was used for genotyping molecular markers for antimalaria drug resistance, including in Pfk13, pfcrt, and pfmdr1, as well as gene copy number variation in pfpm2/3 and pfmdr1. RESULTS The study revealed the absence of SNPs associated with ART resistance and several novel SNPs such as L396F, I526V, M579I and N537S (4.25%). In Sumba, the mutant haplotype SDD of pfmdr1 was found in one-third of the isolates, while only 8.9% in Papua. None of the pfcrt mutations linked to piperaquine resistance were observed, but 71% of isolates had pfcrt I356L. Amplification of the pfpm2/3 genes was in Sumba (17.02%) and Papua (13.7%), while pfmdr1 copy number prevalence was low (3.8%) in both areas. For the TES study, ten recurrences of infection were observed on days 28, 35, and 42. Late parasitological failure (LPF) was observed in 10/117 (8.5%) subjects by microscopy. PCR correction revealed that all nine cases were re-infections and one was confirmed as recrudescence. CONCLUSION This study revealed that DHA-PPQ is still highly effective against P. falciparum. The genetic architecture of the parasite P. falciparum isolates during 2010-2021 revealed single copy of Pfpm2 and pfmdr1 were highly prevalent. The slight increase in DHA-PPQ LTF alerts researchers to start testing other ACTs as alternatives to DHA-PPQ for baseline data in order to get a chance of achieving malaria elimination wants by 2030.
Collapse
Affiliation(s)
- Farindira Vesti Rahmasari
- Graduate Programme in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
- Department of Parasitology, School of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia
| | - Puji Budi Setia Asih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ismail Ekoprayitno Rozi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Suradi Wangsamuda
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Rifqi Risandi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Farahana Kresno Dewayanti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Dendi Hadi Permana
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Lepa Syahrani
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | | - Herdiana H Basri
- World Health Organization, Country Office for Indonesia, Jakarta, Indonesia
| | | | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Din Syafruddin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Department of Parasitology, Faculty of Medicine, The University of Hasanuddin, Makassar, Indonesia
| |
Collapse
|
6
|
Tadele G, Jawara A, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Clinical isolates of uncomplicated falciparum malaria from high and low malaria transmission areas show distinct pfcrt and pfmdr1 polymorphisms in western Ethiopia. Malar J 2023; 22:171. [PMID: 37270589 DOI: 10.1186/s12936-023-04602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminata Jawara
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Büchler J, Malca SH, Patsch D, Voss M, Turner NJ, Bornscheuer UT, Allemann O, Le Chapelain C, Lumbroso A, Loiseleur O, Buller R. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nat Commun 2022; 13:371. [PMID: 35042883 PMCID: PMC8766452 DOI: 10.1038/s41467-022-27999-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Late-stage functionalization of natural products offers an elegant route to create novel entities in a relevant biological target space. In this context, enzymes capable of halogenating sp3 carbons with high stereo- and regiocontrol under benign conditions have attracted particular attention. Enabled by a combination of smart library design and machine learning, we engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage functionalization of the complex and chemically difficult to derivatize macrolides soraphen A and C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the macrolide substrates, our engineering strategy leads to active halogenase variants and improves upon their apparent kcat and total turnover number by more than 90-fold and 300-fold, respectively. Notably, our machine-learning guided engineering approach is capable of predicting more active variants and allows us to switch the regio-selectivity of the halogenases facilitating the targeted analysis of the derivatized macrolides’ structure-function activity in biological assays. The late-stage functionalization of unactivated carbon–hydrogen bonds is a difficult but important task, which has been met with promising but limited success through synthetic organic chemistry. Here the authors use machine learning to engineer WelO5* halogenase variants, which led to regioselective chlorination of inert C–H bonds on a representative polyketide that is a non-natural substrate for the enzyme.
Collapse
Affiliation(s)
- Johannes Büchler
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.,School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, United Kingdom
| | - Sumire Honda Malca
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - David Patsch
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.,Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Moritz Voss
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Nicholas J Turner
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, United Kingdom
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Oliver Allemann
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland.,Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | | | - Alexandre Lumbroso
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland
| | - Olivier Loiseleur
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland.
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| |
Collapse
|
8
|
Oluyemi WM, Samuel BB, Adewumi AT, Adekunle YA, Soliman MES, Krenn L. An Allosteric Inhibitory Potential of Triterpenes from Combretum racemosum on the Structural and Functional Dynamics of Plasmodium falciparum Lactate Dehydrogenase Binding Landscape. Chem Biodivers 2022; 19:e202100646. [PMID: 34982514 DOI: 10.1002/cbdv.202100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.
Collapse
Affiliation(s)
- Wande M Oluyemi
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Babatunde B Samuel
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Yemi A Adekunle
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria.,Department of Pharmaceutical Chemistry, Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Benin City, Nigeria
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
9
|
Fontecha G, Pinto A, Archaga O, Betancourth S, Escober L, Henríquez J, Valdivia HO, Montoya A, Mejía RE. Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfcrt and pfmdr1 genes in isolates from Honduras and Nicaragua, 2018-2021. Malar J 2021; 20:465. [PMID: 34906144 PMCID: PMC8670165 DOI: 10.1186/s12936-021-03977-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Central America and the island of Hispaniola have set out to eliminate malaria by 2030. However, since 2014 a notable upturn in the number of cases has been reported in the Mosquitia region shared by Nicaragua and Honduras. In addition, the proportion of Plasmodium falciparum malaria cases has increased significantly relative to vivax malaria. Chloroquine continues to be the first-line drug to treat uncomplicated malaria in the region. The objective of this study was to evaluate the emergence of chloroquine resistant strains of P. falciparum using a genetic approach. Plasmodium vivax populations are not analysed in this study. Methods 205 blood samples from patients infected with P. falciparum between 2018 and 2021 were analysed. The pfcrt gene fragment encompassing codons 72–76 was analysed. Likewise, three fragments of the pfmdr1 gene were analysed in 51 samples by nested PCR and sequencing. Results All samples revealed the CVMNK wild phenotype for the pfcrt gene and the N86, Y184F, S1034C, N1042D, D1246 phenotype for the pfmdr1 gene. Conclusions The increase in falciparum malaria cases in Nicaragua and Honduras cannot be attributed to the emergence of chloroquine-resistant mutants. Other possibilities should be investigated further. This is the first study to report the genotype of pfmdr1 for five loci of interest in Central America. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03977-8.
Collapse
Affiliation(s)
- Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras.
| | - Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Osman Archaga
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Sergio Betancourth
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Lenin Escober
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa, Honduras
| | - Jessica Henríquez
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa, Honduras
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru
| | - Alberto Montoya
- National Center for Diagnosis and Reference, Health Ministry, Managua, Nicaragua
| | | |
Collapse
|
10
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
11
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
12
|
Elfahmi, Hapsari RA, Chrysanthy T, Synthiarini V, Masduki FF, Setiawan A, Muranaka T. Expression of Two Key Enzymes of Artemisinin Biosynthesis FPS and ADS genes in Saccharomyces cerevisiae. Adv Pharm Bull 2021; 11:181-187. [PMID: 33747865 PMCID: PMC7961222 DOI: 10.34172/apb.2021.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/22/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: Artemisinin, a secondary metabolite in Artemisia annua is one of primary choice for the treatment of malaria, it is naturally produced in low concentration from this plant. This study was aimed to clone key enzymes of artemisinin production in order to enhance its production through the semi-synthetically production in Saccharomyces cerevisiae. Methods: Two key enzymes in artemisinin biosynthetic pathway which are farnesyl phosphate synthase (fps) and amorpha-4,11-diene synthase (ads) genes were transformed into S. cerevisiae using pBEVY vector. Successful transformation was checked by polymerase chain reaction (PCR) method and sequencing analysis Results: Recombinant plasmids which are pBEVY-GU_ads and pBEVY_GL_fps were successfully constructed. The optimized ads gene was amplified using PCR with a couple of primers that are designed in order to provide the homolog recombination between ads gene with the expression plasmid of pBEVY-GU respectively. While the A. annua optimized fps gene was cloned using classical method. Transformants were grown in selective media Synthetic Defined (SD) without leucine for transformants contain plasmid pBEVY-GL_fps and media without uracil for transformants contain plasmid pBEVY-GU_ads. Confirmation of colonies was done by PCR with primers to amplify fps and ads. DNA from yeast was isolated from positive colonies then transformed to E. coli. Plasmid from E. coli was isolated for restriction analysis and sequencing. Protein expression was induced by cultivating the yeast in the media with 2% galactose. Conclusion: Based on PCR, restriction and sequencing analysis, it could be concluded that fps and ads genes were successfully constructed, transformed and expressed in S. cerevisiae.
Collapse
Affiliation(s)
- Elfahmi
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,University Centre of Excelence - Nutraceutical, Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Rizqiya Astri Hapsari
- Biochemistry Division, Chemistry Department, Faculty of Mathematic and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Tamara Chrysanthy
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | | | - Fifi Fitriyah Masduki
- Biochemistry Division, Chemistry Department, Faculty of Mathematic and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Agus Setiawan
- Departement of Biotechnology, Graduate School of Biotechnology, Osaka University, Japan
| | - Toshiya Muranaka
- Departement of Biotechnology, Graduate School of Biotechnology, Osaka University, Japan
| |
Collapse
|
13
|
Kayode AT, Akano K, Ajogbasile FV, Uwanibe JN, Oluniyi PE, Bankole BE, Eromon PJ, Sowunmi A, Folarin OA, Volkman SK, McInnis B, Sabeti P, Wirth DF, Happi CT. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) in Nigerian children 10 years post-adoption of artemisinin-based combination treatments. Int J Parasitol 2021; 51:301-310. [PMID: 33359205 PMCID: PMC7940560 DOI: 10.1016/j.ijpara.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/08/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
The emergence and spread of Plasmodium falciparum parasites resistant to artemisinin derivatives and their partners in southeastern Asia threatens malaria control and elimination efforts, and heightens the need for an alternative therapy. We have explored the distribution of P. falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) haplotypes 10 years following adoption of artemisinin-based combination therapies in a bid to investigate the possible re-emergence of Chloroquine-sensitive parasites in Nigeria, and investigated the effect of these P. falciparum haplotypes on treatment outcomes of patients treated with artemisinin-based combination therapies. A total of 271 children aged <5 years with uncomplicated falciparum malaria were included in this study. Polymorphisms on codons 72-76 of the Pfcrt gene and codon 86 and 184 of Pfmdr-1 were determined using the high resolution melting assay. Of 240 (88.6%) samples successfully genotyped with HRM for Pfcrt, wildtype C72M74N75K76 (42.9%) and mutant C72I74E75T76 (53.8%) were observed. Also, wildtype N86Y184 (62.9%) and mutant N86F184 (21.1%), Y86Y184 (6.4%), and Y86F184 (0.4%) haplotypes of Pfmdr-1 were observed. Measures of responsiveness to ACTs were similar in children infected with P. falciparum crt haplotypes (C72I74E75T76 and C72M74N75K76) and major mdr-1 haplotypes (N86Y184, N86F184 and Y86Y184). Despite a 10 year gap since the malaria treatment policy changed to ACTs, over 50% of the P. falciparum parasites investigated in this study harboured the Chloroquine-resistant C72I74E75T76 haplotype, however this did not compromise the efficacy of artemisinin-based combination therapies. Should complete artemisinin resistance emerge from or spread to Nigeria, chloroquine might not be a good alternative therapy.
Collapse
Affiliation(s)
- Adeyemi T Kayode
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Kazeem Akano
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Fehintola V Ajogbasile
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Jessica N Uwanibe
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Paul E Oluniyi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Bolajoko E Bankole
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Philomena J Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Akintunde Sowunmi
- Institute of Medical Research and Training, College of Medicine, University of Ibadan; Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Pardis Sabeti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Adam R, Mukhtar MM, Abubakar UF, Damudi HA, Muhammad A, Ibrahim SS. Polymorphism Analysis of pfmdr1 and pfcrt from Plasmodium falciparum Isolates in Northwestern Nigeria Revealed the Major Markers Associated with Antimalarial Resistance. Diseases 2021; 9:6. [PMID: 33406727 PMCID: PMC7838797 DOI: 10.3390/diseases9010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Suspicion of failure in the effectiveness of artemisinin-based combination therapies (currently the first-line treatment of malaria, worldwide) is leading to the unofficial use of alternative antimalarials, including chloroquine and sulfadoxine/pyrimethamine, across northern Nigeria. To facilitate evidence-based resistance management, antimalarial resistance mutations were investigated in Plasmodium falciparum multidrug resistance-1 (pfmdr1) and chloroquine resistance transporter (pfcrt), in isolates from Kano, northwestern Nigeria. Out of the 88 samples genotyped for pfmdr1N86Y mutation using PCR/restriction fragment length polymorphism, one sample contained the 86Y mutation (86Yfrequency = 1.14%). The analysis of 610 bp fragments of pfmdr1 from 16 isolates revealed two polymorphic sites and low haplotype diversity (Hd = 0.492), with only 86 Y mutations in one isolate, and 184 F replacements in five isolates (184Ffrequency = 31.25%). The analysis of 267 bp fragments of pfcrt isolates revealed high polymorphism (Hd = 0.719), with six haplotypes and seven non-synonymous polymorphic sites. Eleven isolates (61.11%) were chloroquine-resistant, CQR (C72V73I74E75T76 haplotype), two of which had an additional mutation, D57E. An additional sequence was CQR, but of the C72V73M74E75T76 haplotype, while the rest of the sequences (33.33%) were chloroquine susceptible (C72V73M74N75K76 haplotype). The findings of these well characterized resistance markers should be considered when designing resistance management strategies in the northwestern Nigeria.
Collapse
Affiliation(s)
- Ruqayya Adam
- Department of Biological Sciences, Federal University Dutsinma, Katsina PMB 5001, Nigeria;
| | - Muhammad M. Mukhtar
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
| | - Umar F. Abubakar
- Laboratory Department, Public Health and Diagnostic Institute, Yusuf Maitama Sule University, Kwanar Dawaki, Kano PMB 3220, Nigeria;
| | - Hajara A. Damudi
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
| | - Abdullahi Muhammad
- Centre for Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria;
- Liverpool School of Tropical Medicine LSTM, Pembroke Place L3 5QA, UK
| | - Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
- Liverpool School of Tropical Medicine LSTM, Pembroke Place L3 5QA, UK
| |
Collapse
|
15
|
Adamu A, Jada MS, Haruna HMS, Yakubu BO, Ibrahim MA, Balogun EO, Sakura T, Inaoka DK, Kita K, Hirayama K, Culleton R, Shuaibu MN. Plasmodium falciparum multidrug resistance gene-1 polymorphisms in Northern Nigeria: implications for the continued use of artemether-lumefantrine in the region. Malar J 2020; 19:439. [PMID: 33256739 PMCID: PMC7708160 DOI: 10.1186/s12936-020-03506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. Methods Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher’s exact (FE) tests. Results The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. Conclusion The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.
Collapse
Affiliation(s)
- Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mahmoud Suleiman Jada
- Department of Biochemistry, Modibbo Adama University of Technology Yola, Yola, Nigeria
| | | | | | | | | | - Takaya Sakura
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Kita
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan
| | | |
Collapse
|
16
|
Pillat MM, Krüger A, Guimarães LMF, Lameu C, de Souza EE, Wrenger C, Ulrich H. Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19. Cytometry A 2020; 97:872-881. [PMID: 32686260 PMCID: PMC7404934 DOI: 10.1002/cyto.a.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Micheli Mainardi Pillat
- Department of Microbiology and ParasitologyHealth Sciences Center, Federal University of Santa MariaSanta MariaRio Grande do SulBrazil
| | - Arne Krüger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Claudiana Lameu
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| | - Edmarcia Elisa de Souza
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Henning Ulrich
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| |
Collapse
|
17
|
Zhang K, Zhao Y, Zhang Z, Zhang M, Wu X, Bian H, Zhu P, Chen Z. Nonclinical safety, tolerance and pharmacodynamics evaluation for meplazumab treating chloroquine-resistant Plasmodium falciparum. Acta Pharm Sin B 2020; 10:1680-1693. [PMID: 33088688 PMCID: PMC7564037 DOI: 10.1016/j.apsb.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Meplazumab is an anti-CD147 humanized IgG2 antibody. The purpose of this study was to characterize the nonclinical safety, tolerance and efficacy evaluation of meplazumab treating chloroquine resistant Plasmodium falciparum. Meplazumab was well tolerated in repeat-dose toxicology studies in cynomolgus monkeys. No observed adverse effect level was 12 mg/kg. No difference between genders in the primary toxicokinetic parameters after repeat intravenous injection of meplazumab. No increased levels of drug exposure and drug accumulation were observed in different gender and dose groups. Meplazumab had a low cross-reactivity rate in various tissues and did not cause hemolysis or aggregation of red blood cells. The biodistribution and excretion results indicated that meplazumab was mainly distributed in the plasma, whole blood, and hemocytes, and excreted in the urine. Moreover, meplazumab effectively inhibited the parasites from invading erythrocytes in humanized mice in a time-dependent manner and the efficacy is superior to that of chloroquine. All these studies suggested that meplazumab is safe and well tolerated in cynomolgus monkeys, and effectively inhibits P. falciparum from invading into human red blood cells. These nonclinical data facilitated the initiation of an ongoing clinical trial of meplazumab for antimalarial therapy.
Collapse
Key Words
- ADA, anti-drug antibody
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Antimalarial therapy
- CD147
- Efficacy
- FFPE, formalin-fixed paraffin-embedded
- Fab, variable region of monoclonal antibody
- Fc, crystalline region of monoclonal antibody
- HPLC, high-performance liquid chromatography
- HRP, horseradish peroxidase
- IR, inhibition rate
- Meplazumab
- NOG mice, NOD/Shi-scid/IL-2Rγ null mice
- Nonclinical
- PBS, phosphate buffered saline
- PC50, median parasite clearance time
- Plasmodium falciparum
- Pr, parasitemia
- RAP2, rhoptry-associated protein 2
- RBCs, red blood cells
- RH5, reticulocyte-binding protein homolog 5
- RO, receptor occupancy
- SD rats, Sprague–Dawley rats
- Safety
- TCA, trichloroacetic acid
- Tolerance
- WHO, World Health Organization
- huRBCs, human red blood cells
- mAbs, monoclonal antibodies
Collapse
|
18
|
Zomuanpuii R, Hmar CL, Lallawmzuala K, Hlimpuia L, Balabaskaran Nina P, Senthil Kumar N. Epidemiology of malaria and chloroquine resistance in Mizoram, northeastern India, a malaria-endemic region bordering Myanmar. Malar J 2020; 19:95. [PMID: 32103751 PMCID: PMC7045395 DOI: 10.1186/s12936-020-03170-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mizoram, a northeastern state in India, shares international borders with Myanmar and Bangladesh and is considered to be one of the key routes through which drug-resistant parasites of Southeast Asia enter mainland India. Despite its strategic location and importance, malaria epidemiology and molecular status of chloroquine resistance had not been well documented, and since chloroquine (CQ), as the first-line treatment in Plasmodium falciparum infection was discontinued since 2008, it was expected that CQ-sensitive haplotype would be more abundant. Methods Malaria epidemiology data for the period 2010 to 2018 was collected from the office of State Vector Disease Control Programme. Plasmodium falciparum-positive blood samples were collected from government district hospitals, community health centres, primary health centres, sub-centres, and diagnostic centres from six malaria-prone districts. The samples were processed and analysed using genes–P. falciparum chloroquine-resistant transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) via sequencing of PCR amplicon from 2015 to 2017. Results Malaria occurred throughout the year and P. falciparum accounted for > 89% of total malaria cases. During 2010–2018, the highest number of malaria incidence was recorded in Lawngtlai (36% of total malaria cases; average API2010–2018 of 34.8) while Champhai remained consistently low (0.4%; average API2010–2018 of 0.04). Males of ≥ 15 years old contributed maximum (35.7%) among gender and age malarial distribution recorded during 2014–2018. Death due to malaria gradually decreased over the years. A higher abundance of mutated pfcrt (58.5% of the total sample analysed) and a lower prevalence of mutated pfmdr1 (48.7%) were observed. All mutations identified for pfcrt belong to the Southeast Asian CVIET haplotype. Only a single point mutation was observed at 86 (N → Y) position in pfmdr1 (48.7%). The key N86Y mutation in pfmdr1 that had been shown to modulate CQR was found in 67.1% of the samples positive for the CVIET haplotype. Conclusions This is the first report that details malaria epidemiology and also the molecular status of CQ-resistance in P. falciparum population of the region. The efforts of the State Vector Borne Disease Control Programme have proved to be quite effective in controlling the malaria burden in the state. Despite the discontinuation of CQ for a decade, local P. falciparum is observed with decreased CQ-sensitive haplotype. It is believed that the present findings will form a basis for further studies on genetic diversity in P. falciparum, which could confer better understanding of the complexity of the disease in Southeast Asia.
Collapse
Affiliation(s)
- Rita Zomuanpuii
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India.
| | - Christopher L Hmar
- Department of Orthopaedics, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Khawlhring Lallawmzuala
- Department of Medicine, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Lal Hlimpuia
- State Vector Disease Control Programme, Department of Health and Family Welfare, Government of Mizoram, Aizawl, Mizoram, India
| | - Praveen Balabaskaran Nina
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Tiruvarur, Tamil Nadu, India
| | | |
Collapse
|
19
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
20
|
Ibraheem ZO, Majid RA, Sidek HM, Noor SM, Yam MF, Abd Rachman Isnadi MF, Basir R. In Vitro Antiplasmodium and Chloroquine Resistance Reversal Effects of Andrographolide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7967980. [PMID: 31915453 PMCID: PMC6930765 DOI: 10.1155/2019/7967980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
The emergence of drug-resistant strains of Plasmodium falciparum is the worst catastrophe that has ever confronted the dedicated efforts to eradicate malaria. This urged for searching other alternatives or sensitizers that reverse chloroquine resistance. In this experiment, the potential of andrographolide to inhibit plasmodial growth and reverse CQ resistance was tested in vitro using the SYBRE green-1-based drug sensitivity assay and isobologram technique, respectively. Its safety level toward mammalian cells was screened as well against Vero cells and RBCs using MTT-based drug sensitivity and RBC hemolysis assays, respectively. Its effect against hemozoin formation was screened using β-hematin formation and heme fractionation assays. Its molecular characters were determined using the conventional tests for the antioxidant effect measurement and the in silico molecular characterization using the online free chemi-informatic Molinspiration software. Results showed that andrographolide has a moderate antiplasmodium effect that does not entitle it to be a substituent for chloroquine. Furthermore, andrographolide ameliorated the sensitivity of the parasite to chloroquine. Besides, it showed an indirect inhibitory effect against hemozoin formation within the parasite and augmented the chloroquine-induced inhibition of hemozoin formation. The study suggests that its chloroquine resistance reversal effect may be due to inhibition of chloroquine accumulation or due to its impact on the biological activity of the parasite. Overall, this in vitro study is a clue for the reliability of andrographolide to be added with chloroquine for reversal of chloroquine resistance and tolerance, but further in vivo studies are recommended to confirm this notion. In spite of its prominent and safe in vitro and in vivo growth inhibitory effect and its in vitro chloroquine resistance reversing effect, it is inapplicable to implement it in malaria chemotherapy to substitute chloroquine or to reverse its resistance.
Collapse
Affiliation(s)
- Zaid O. Ibraheem
- Pharmacology and Toxicology Unit, Department of Pharmacy, Al Rafidain University College, Al Mustansyria, Baghdad, Iraq
- Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Roslaini Abd Majid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasidah Mohd Sidek
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sabariah Md Noor
- Department of Hemeatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mun Fei Yam
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
| | - Mohammad Faruq Abd Rachman Isnadi
- Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Characterization of drug resistance and genetic diversity of Plasmodium falciparum parasites from Tripura, Northeast India. Sci Rep 2019; 9:13704. [PMID: 31548652 PMCID: PMC6757058 DOI: 10.1038/s41598-019-50152-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
Monitoring of anti-malarial drug resistance is vital in Northeast India as this region shares its international border with Southeast Asia. Genetic diversity of Plasmodium parasites regulates transmission dynamics, disease severity and vaccine efficacy. P. falciparum chloroquine resistance transporter (Pfcrt), multidrug resistance-1 (Pfmdr-1) and kelch 13 propeller (PfK-13) genes which govern antimalarial drug resistance and three genetic diversity markers, merozoite surface protein 1 and 2 (Pfmsp-1, Pfmsp-2) and glutamate rich protein (Pfglurp) were evaluated from Tripura, Northeast India using molecular tools. In the Pfcrt gene, 87% isolates showed triple mutations at codons M74I, N75E and K76T. 12.5% isolates in Pfmdr-1 gene showed mutation at N86Y. No polymorphism in PfK-13 propeller was found. Polyclonal infections were observed in 53.85% isolates and more commonly in adults (p = 0.0494). In the Pfmsp-1 locus, the K1 allelic family was predominant (71.2%) followed by the 3D7/IC family (69.2%) in the Pfmsp-2 locus. RII region of Pfglurp exhibited nine alleles with expected heterozygosity of 0.85. The multiplicity of infection for Pfmsp-1, Pfmsp-2 and Pfglurp were 1.56, 1.31 and 1.06 respectively. Overall, the study demonstrated a high level of chloroquine resistance and extensive parasite diversity in the region, necessitating regular surveillance in this population group.
Collapse
|
22
|
Dokunmu TM, Adjekukor CU, Yakubu OF, Bello AO, Adekoya JO, Akinola O, Amoo EO, Adebayo AH. Asymptomatic malaria infections and Pfmdr1 mutations in an endemic area of Nigeria. Malar J 2019; 18:218. [PMID: 31248414 PMCID: PMC6598231 DOI: 10.1186/s12936-019-2833-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries. Plasmodium falciparum continues to develop resistance to currently available anti-malarial drugs, posing great problems for malaria elimination. This study evaluates the frequencies of asymptomatic infection and multidrug resistance-1 (mdr-1) gene mutations in parasite isolates, which form the basis for understanding persistently high incidence in South West, Nigeria. METHODS A total of 535 individuals aged from 6 months were screened during the epidemiological survey evaluating asymptomatic transmission. Parasite prevalence was determined by histidine-rich protein II rapid detection kit (RDT) in healthy individuals. Plasmodium falciparum mdr-1 gene mutations were detected by polymerase chain reaction (PCR) followed by restriction enzyme digest and electrophoresis to determine polymorphism in parasite isolates. Sequencing was done to confirm polymorphism. Proportions were compared using Chi-square test at p value < 0.05. RESULTS Malaria parasites were detected by RDT in 204 (38.1%) individuals. Asymptomatic infection was detected in 117 (57.3%) and symptomatic malaria confirmed in 87 individuals (42.6%). Overall, individuals with detectable malaria by RDT was significantly higher in individuals with symptoms, 87 of 197 (44.2%), than asymptomatic persons; 117 of 338 (34.6%), p = 0.02. In a sub-set of 75 isolates, 18(24%) and 14 (18.6%) individuals had Pfmdr1 86Y and 1246Y mutations. CONCLUSIONS There is still high malaria transmission rate in Nigeria with higher incidence of asymptomatic infections. These parasites harbour mutations on Pfmdr1 which contribute to artemisinin partner drug resistance; surveillance strategies to reduce the spread of drug resistance in endemic areas are needed to eliminate the reservoir of malaria parasites that can mitigate the eradication of malaria in Nigeria.
Collapse
Affiliation(s)
| | | | - Omolara F Yakubu
- Department of Biochemistry, Covenant University, Ota, 23401, Nigeria
| | - Adetutu O Bello
- Department of Biological Sciences, Covenant University, Ota, 23401, Nigeria
| | - Jarat O Adekoya
- Department of Biological Sciences, Covenant University, Ota, 23401, Nigeria
| | - Olugbenga Akinola
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, 24003, Nigeria
| | - Emmanuel O Amoo
- Demography and Social Statistics Unit, Department of Economics and Development Studies, Covenant University, Ota, 23401, Nigeria
| | - Abiodun H Adebayo
- Department of Biochemistry, Covenant University, Ota, 23401, Nigeria.
| |
Collapse
|
23
|
Reis PA, Pais KC, Pereira MF, Douradinha B, Costa NF, Kaiser CR, Bozza PT, Areas ALL, Zalis MG, de Lima Ferreira M, de Souza MVN, da Silva Frutuoso V, de Castro-Faria-Neto HC. In vivo and in vitro antimalarial effect and toxicological evaluation of the chloroquine analogue PQUI08001/06. Parasitol Res 2018; 117:3585-3590. [PMID: 30145706 DOI: 10.1007/s00436-018-6057-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
Antimalarial interventions mostly rely upon drugs, as chloroquine. However, plasmodial strains resistant to many drugs are constantly reported, leading to an expansion of malaria cases. Novel approaches are required to circumvent the drug resistance issue. Here, we describe the antimalarial potential of the chloroquine analogue 2-[[2-[(7-chloro-4-quinolinyl)amino]ethyl]amino] ethanol (PQUI08001/06). We observed that PQUI08001/06 treatment reduces parasitemia of both chloroquine-resistant and -sensitive strains of Plasmodium falciparum in vitro and P. berghei in vivo. Our data suggests that PQUI08001/06 is a potential antimalarial therapeutic alternative approach that could also target chloroquine-resistant plasmodial strains.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - Karla Ceodaro Pais
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil.,Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica Farah Pereira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - Bruno Douradinha
- Unità di Medicina Rigenerativa e Immunologia, Fondazione Ri.MED c/o IRCCS-ISMETT, Via Ernesto Tricomi 5, 90127, Palermo, PA, Italy.
| | - Natália Ferreira Costa
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil
| | - Carlos Roland Kaiser
- Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Patricia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | - André Luiz Lisboa Areas
- Laboratorio de Infectologia e Parasitologia Molecular, Serviço de Patologia Clínica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Mariano Gustavo Zalis
- Laboratorio de Infectologia e Parasitologia Molecular, Serviço de Patologia Clínica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcelle de Lima Ferreira
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil.,Instituto de Química, Laboratório de Ressonância Magnética Nuclear, Avenida Athos da Silveira Ramos, nº 149 Bloco A Cidade Universitària, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Marcos Vinícius Nora de Souza
- Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, 21040-360, Brazil
| | - Valber da Silva Frutuoso
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, RJ, Brazil
| | | |
Collapse
|
24
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
25
|
Saksena R, Matlani M, Singh V, Kumar A, Anveshi A, Kumar D, Gaind R. Early treatment failure in concurrent dengue and mixed malaria species infection with suspected resistance to artemisinin combination therapy from a tertiary care center in Delhi: a case report. Int Med Case Rep J 2017; 10:289-294. [PMID: 28860870 PMCID: PMC5566360 DOI: 10.2147/imcrj.s139729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Concurrent dengue and mixed malaria infections in a single patient present with overlapping clinical manifestations which pose a diagnostic challenge and management dilemma in areas of common endemicities. Methods We report a case of a young male who tested positive for both Plasmodium vivax and Plasmodium falciparum along with dengue infection. He showed signs of early treatment failure to artemisinin combination therapy (artesunate with sulfadoxine+pyrimethamine). Molecular analysis for the drug resistance genes viz: chloroquine resistance (pfcrt), multidrug resistance (pfmdr-1), sulfadoxine (pfdhps), pyrimethamine (pfdhfr), and artemisinin resistance (keltch 13) was performed. Results A rise in parasitemia from <2% to 5% was observed after 3 days of treatment. Mutations in pfcrt, pfmdr-1, pfdhfr, and pfdhps genes were detected as a possible cause of treatment failure. Conclusion Increased severity, overlapping symptoms, and suspected resistance to treatment warrants a multidimensional diagnostic approach and diligent therapeutic monitoring.
Collapse
Affiliation(s)
- Rushika Saksena
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Monika Matlani
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, National Institute of Malaria Research, Delhi, India
| | - Amit Kumar
- Cell Biology Laboratory and Malaria Parasite Bank, National Institute of Malaria Research, Delhi, India
| | - Anupam Anveshi
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Dilip Kumar
- Department of Internal Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| |
Collapse
|
26
|
Alam MS, Ley B, Nima MK, Johora FT, Hossain ME, Thriemer K, Auburn S, Marfurt J, Price RN, Khan WA. Molecular analysis demonstrates high prevalence of chloroquine resistance but no evidence of artemisinin resistance in Plasmodium falciparum in the Chittagong Hill Tracts of Bangladesh. Malar J 2017; 16:335. [PMID: 28806961 PMCID: PMC5557264 DOI: 10.1186/s12936-017-1995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Artemisinin resistance is present in the Greater Mekong region and poses a significant threat for current anti-malarial treatment guidelines in Bangladesh. The aim of this molecular study was to assess the current status of drug resistance in the Chittagong Hill Tracts of Bangladesh near the Myanmar border. METHODS Samples were obtained from patients enrolled into a Clinical Trial (NCT02389374) conducted in Alikadam, Bandarban between August 2014 and January 2015. Plasmodium falciparum infections were confirmed by PCR and all P. falciparum positive isolates genotyped for the pfcrt K76T and pfmdr1 N86Y markers. The propeller region of the kelch 13 (k13) gene was sequenced from isolates from patients with delayed parasite clearance. RESULTS In total, 130 P. falciparum isolates were available for analysis. The pfcrt mutation K76T, associated with chloroquine resistance was found in 81.5% (106/130) of cases and the pfmdr1 mutation N86Y in 13.9% (18/130) cases. No single nucleotide polymorphisms were observed in the k13 propeller region. CONCLUSION This study provides molecular evidence for the ongoing presence of chloroquine resistant P. falciparum in Bangladesh, but no evidence of mutations in the k13 propeller domain associated with artemisinin resistance. Monitoring for artemisinin susceptibility in Bangladesh is needed to ensure early detection and containment emerging anti-malarial resistance.
Collapse
Affiliation(s)
- Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Maisha Khair Nima
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Fatema Tuj Johora
- Department of Zoology, University of Dhaka, Ramna, Dhaka, 1000 Bangladesh
| | - Mohammad Enayet Hossain
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| |
Collapse
|
27
|
Zaid OI, Majid RA, Hasidah MS, Sabariah MN, Al-Zihiry K, Rahi S, Basir R. Anti-plasmodial and Chloroquine Resistance Suppressive Effects of Embelin. Pharmacogn Mag 2017; 13:S48-S55. [PMID: 28479726 PMCID: PMC5407116 DOI: 10.4103/0973-1296.203982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/22/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Emergence of chloroquine (CQ) resistance among different strains of Plasmodium falciparum is the worst catastrophe that has ever perplexed the dedicated efforts to eradicate malaria. This urged the scientists to search for new alternatives or sensitizers to augment its antiplasmodium effect. MATERIALS AND METHOD In this experiment, the potential of embelin, isolated from Embelia ribes, to inhibit the growth and sensitize CQ action was screened using SYBRE-green-I based drug sensitivity and isobologram assays, respectively. Its effect on red blood cells stability was screened to assess its safety. To explore its molecular mechanism, its effect on plasmodial Hemozoin and the in vitro β-hematin formation was screened as well. Furthermore, its anti-oxidant activity was measured using the conventional in vitro tests and its molecular characters were obtained using Molispiration program. RESULTS The results showed that its anti-plasmodial effect was weaker than CQ but synergism was obtained when they were combined at ratios lower than 5:5 CQ/embelin. Furthermore, β-hematin formation was inhibited by embelin without showing any synergism after mixing with CQ. CONCLUSION Overall, embelin is not ideal to be suggested as a conventional antiplasmodium but it has a potential to ameliorate CQ resistance. Furthermore, its action is not related to its impact on hemozoin formation. Further, investigations are recommended to illustrate its detailed mechanism of action. Abbreviation used: CQ-DV-PBS-HEPES: Chloroquine-Digestive vacuole-Phosphate-buffer-saline-4-(2-hydroxyethyl-1-piperazin-ethan-sulphoni-acid), EDTA: Ethylen-diamin-tetra-acetic-acid, g.m.wt: Gram molecular weight, cMCM: Complete-malaria-culture-medium, Hct: Hematocrite, PRBCs: Parasitized-redblood-cells, nRBCs: Normal-red-blood-cells, RT: Room temperature, IC: Inhibitory concentration, FIC: Fractional inhibitory concentration, iCM: Incomplete-culturemedium, BSA: Bovin serum albumin, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, DPPH: 2,2-diphenyl-1- picrylhydrazy, BHT: Butylatedhydroxyl-toleuen, PSA: Polar surface area, ClogP: Log partition coefficient (octanol/water), GPCR: G-protein-coupled-receptors, DMSO: Dimethylsulphoxide, NaOH: Sodium hydroxide.
Collapse
Affiliation(s)
- O I Zaid
- Pharmacology unit, Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R Abd Majid
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M S Hasidah
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - M N Sabariah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - K Al-Zihiry
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sattar Rahi
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R Basir
- Pharmacology unit, Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Guerra M, Neres R, Salgueiro P, Mendes C, Ndong-Mabale N, Berzosa P, de Sousa B, Arez AP. Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin-Based Combination Therapy. Antimicrob Agents Chemother 2017; 61:e02556-15. [PMID: 27795385 PMCID: PMC5192141 DOI: 10.1128/aac.02556-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Mónica Guerra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Rita Neres
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Patrícia Salgueiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Cristina Mendes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Nicolas Ndong-Mabale
- Centro de Referencia para el Control de Endemias, Instituto de Salud Carlos III, Bata, Equatorial Guinea
| | - Pedro Berzosa
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno de Sousa
- Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
29
|
Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau JM, Benoit-Vical F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J 2016; 15:149. [PMID: 26955948 PMCID: PMC4784301 DOI: 10.1186/s12936-016-1206-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance.
Collapse
Affiliation(s)
- Lucie Paloque
- CNRS, LCC (Laboratoire de Chimie de Coordination) UPR8241, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France.
| | - Arba P Ramadani
- CNRS, LCC (Laboratoire de Chimie de Coordination) UPR8241, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France. .,Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | | | - Jean-Michel Augereau
- CNRS, LCC (Laboratoire de Chimie de Coordination) UPR8241, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France.
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination) UPR8241, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France.
| |
Collapse
|