1
|
Cerutti C, Lucotti S, Menendez ST, Reymond N, Garg R, Romero IA, Muschel R, Ridley AJ. IQGAP1 and NWASP promote human cancer cell dissemination and metastasis by regulating β1-integrin via FAK and MRTF/SRF. Cell Rep 2024; 43:113989. [PMID: 38536816 DOI: 10.1016/j.celrep.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
Collapse
Affiliation(s)
- Camilla Cerutti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK; Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sofia T Menendez
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Nicolas Reymond
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ritu Garg
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Ruth Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK.
| |
Collapse
|
2
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
3
|
Viñado AC, Calvo IA, Cenzano I, Olaverri D, Cocera M, San Martin-Uriz P, Romero JP, Vilas-Zornoza A, Vera L, Gomez-Cebrian N, Puchades-Carrasco L, Lisi-Vega LE, Apaolaza I, Valera P, Guruceaga E, Granero-Molto F, Ripalda-Cemborain P, Luck TJ, Bullinger L, Planes FJ, Rifon JJ, Méndez-Ferrer S, Yusuf RZ, Pardo-Saganta A, Prosper F, Saez B. The bone marrow niche regulates redox and energy balance in MLL::AF9 leukemia stem cells. Leukemia 2022; 36:1969-1979. [PMID: 35618797 PMCID: PMC7614282 DOI: 10.1038/s41375-022-01601-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/14/2023]
Abstract
Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.
Collapse
Affiliation(s)
- Ana C Viñado
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Isabel A Calvo
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Itziar Cenzano
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Danel Olaverri
- Tecnun Universidad de Navarra, School of Engineering, 20018, San Sebastian, Spain
| | - Miguel Cocera
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Patxi San Martin-Uriz
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Juan P Romero
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Laura Vera
- Regenerative Medicine Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Nuria Gomez-Cebrian
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | | | - Livia E Lisi-Vega
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, and NHS Blood and Transplant, Cambridge, CB2 0AW, UK
| | - Iñigo Apaolaza
- Tecnun Universidad de Navarra, School of Engineering, 20018, San Sebastian, Spain
- Universidad de Navarra, Centro de Ingeniería Biomédica and DATAI Instituto de Ciencia de los Datos e Inteligencia Artificial, 31008, Pamplona, Spain
| | - Pablo Valera
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Elisabeth Guruceaga
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Froilan Granero-Molto
- Regenerative Medicine Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Cell Therapy Area, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Purificacion Ripalda-Cemborain
- Regenerative Medicine Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Tamara J Luck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francisco J Planes
- Tecnun Universidad de Navarra, School of Engineering, 20018, San Sebastian, Spain
- Universidad de Navarra, Centro de Ingeniería Biomédica and DATAI Instituto de Ciencia de los Datos e Inteligencia Artificial, 31008, Pamplona, Spain
| | - José J Rifon
- Department of Hematology, Cell Therapy and Center of Cancer of the University of Navarra, Clínica Universidad de Navarra (CCUN), 31008, Pamplona, Spain
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, and NHS Blood and Transplant, Cambridge, CB2 0AW, UK
| | - Rushdia Z Yusuf
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Ana Pardo-Saganta
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, 35392, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, 35392, Germany
- German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Felipe Prosper
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Cell Therapy and Center of Cancer of the University of Navarra, Clínica Universidad de Navarra (CCUN), 31008, Pamplona, Spain
| | - Borja Saez
- Hematology-Oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
| |
Collapse
|
4
|
Tumor-Associated Macrophage Promotes the Survival of Cancer Cells upon Docetaxel Chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 Axis in Castration-Resistant Prostate Cancer. Genes (Basel) 2021; 12:genes12050773. [PMID: 34069563 PMCID: PMC8161256 DOI: 10.3390/genes12050773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced stage of prostate cancer that can progress rapidly even in patients treated with castration. Previously, we found that tumor-associated macrophages (TAM) can be recruited by CSF-1 secreted by docetaxel-treated prostate cancer cells and promote the survival of cancer cells in response to chemotherapy. The inhibition of CSF-1R can impede this effect and significantly prolong survival in xenograft mice. However, the actual mechanism of how TAM improves cancer cell survival still remains elusive and controversial. Here, for the first time, we found that the enhanced survival of cancer cells achieved by TAM was mainly mediated by CXCR4 activation from the increased secretion of CXCL12 from CSF-1 activated TAM. This finding helps to clarify the mechanism of chemoresistance for second-line chemotherapy using docetaxel, facilitating the development of novel drugs to overcome immune tolerance in castration-resistant prostate cancer.
Collapse
|
5
|
Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40:427-445. [PMID: 33973098 DOI: 10.1007/s10555-021-09974-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. .,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Gong W, Martin TA, Sanders AJ, Jiang A, Sun P, Jiang WG. Location, function and role of stromal cell‑derived factors and possible implications in cancer (Review). Int J Mol Med 2021; 47:435-443. [PMID: 33416125 PMCID: PMC7797432 DOI: 10.3892/ijmm.2020.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Despite improvements in therapy and management, cancer represents and remains a major cause of mortality and morbidity worldwide. Although genetics serve an important role in tumorigenesis and tumour progression, the tumour microenvironment (TME) in solid tumours is also important and has been indicated to contribute to these processes. Stromal cell‑derived factors (SDFs) represent an important family within the TME. The family includes SDF‑1, SDF‑2, SDF2‑like 1 (SDF2L1), SDF‑3, SDF‑4 and SDF‑5. SDF‑1 has been demonstrated to act as a positive regulator in a number of types of tumour, such as oesophago‑gastric, pancreatic, lung, breast, colorectal and ovarian cancer, while the biology and functions of other members of the SDF family, including SDF‑2, SDF2L1, SDF‑4 and SDF‑5, in cancer are different, complex and controversial, and remain mainly unknown. Full identification and understanding of the SDFs across multiple types of cancer is required to elucidate their function and establish potential key targets in cancer.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Aihua Jiang
- Department of Anaesthesiology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK,Correspondence to: Professor Wen G. Jiang, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Henry Wellcome Building, Cardiff CF14 4XN, UK, E-mail:
| |
Collapse
|
7
|
New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM. Vaccines (Basel) 2020; 8:vaccines8020164. [PMID: 32260318 PMCID: PMC7349554 DOI: 10.3390/vaccines8020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread. At present, different cancer types have been shown to overexpress C-X-C chemokine receptor type 4 (CXCR4) and to respond to its ligand C-X-C motif chemokine 12 (CXCL12). The CXCL12/CXCR4 axis influences cancer biology, promoting survival, proliferation, and angiogenesis, and plays a pivotal role in directing migration of cancer cells to sites of metastases, making it a prognostic marker and a therapeutic target. More recently, mutations in the C-terminus of CXCR4 have been identified in the genomic landscape of patients affected by Waldenstrom's macroglobulinemia, a rare B cell neoplasm. These mutations closely resemble those occurring in Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis (WHIM) syndrome, an immunodeficiency associated with CXCR4 aberrant expression and activity and with chemotherapy resistance in clinical trials. In this review, we summarize the current knowledge on the relevance of CXCR4 mutations in cancer biology, focusing on its importance as predictors of clinical presentation and response to therapy.
Collapse
|
8
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Li P, Li WL, Qi JX. [Stromal cell-derived factor-1 inducing metastasis squamous cell carcinoma of head and neck induced via integrin ανβ3-CXC chemokine receptor 4/7 biological axis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:398-403. [PMID: 30182568 DOI: 10.7518/hxkq.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To observe the influence of LM609/AMD3100/CCX754 on chemotactic capability, cytoskeleton, and expression of integrin ανβ3 protein of squamous cell carcinoma of head and neck (SCCHN) cell line PCI-13 induced by stromal cell-derived factor-1 (SDF-1) in vitro. METHODS Migration assays, flow cytometry and immunofluorescence were used to observe the effects of SDF-1, LM609, AMD3100 and CCX754 on the migration, cytoskeleton and the expression of integrin ανβ3 protein in PCI-13 cell lines. RESULTS SDF-1 favored PCI-13 cell migration, pseudopod formation, and activities of integrin ανβ3 phosphorylation. LM609, AMD3100, and CCX754 blocked all these effects. CONCLUSIONS SDF-1 can induce metastatic SCCHN by integrin ανβ3-CXC chemokine receptor (CXCR) 4/CXCR7 axi. LM609, AMD3100, and CCX754 and can reduce the regulation of SDF-1 on SCCHN activity.
Collapse
Affiliation(s)
- Peng Li
- Dept. of Head Neck and Thyroid, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Wen-Lu Li
- Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jin-Xing Qi
- Dept. of Head Neck and Thyroid, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
10
|
Gwak J, Shin JY, Lee K, Hong SK, Oh S, Goh SH, Kim WS, Ju BG. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells. Oncotarget 2018; 7:48250-48264. [PMID: 27340776 PMCID: PMC5217015 DOI: 10.18632/oncotarget.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/04/2016] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.
Collapse
Affiliation(s)
- Jungsug Gwak
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Jee Yoon Shin
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Kwanghyun Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Soon Ki Hong
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Sung-Ho Goh
- Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Won Sun Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
11
|
Meng W, Xue S, Chen Y. The role of CXCL12 in tumor microenvironment. Gene 2018; 641:105-110. [DOI: 10.1016/j.gene.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
|
12
|
Zal F, Khademi F, Taheri R, Mostafavi-Pour Z. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells. Toxicol Mech Methods 2017; 28:122-129. [DOI: 10.1080/15376516.2017.1372540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F. Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F. Khademi
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R. Taheri
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z. Mostafavi-Pour
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant Protein Lab, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit 2015; 21:1276-87. [PMID: 25940978 PMCID: PMC4432617 DOI: 10.12659/msm.893689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Different sensitivity of advanced cervical cancer to irradiation can decrease effectiveness of radiotherapy in some cases. We attempted to identify the differentially expressed genes in residual cervical cancer after radiotherapy that might be associated with poor prognosis and radioresistance. Material/Methods Differential genes expression was identified by an oligonucleotide microarray in cervical cancer tissues before radiation and after a 50-Gy dose of radiation. The microarray results were validated by quantitative real-time PCR. CXCL12 was validated by immunohistochemistry in paraffin-embedded cervical cancer tissues before radiotherapy. The relationship between the differentiated gene and prognosis was validated by survival analysis. Results Hierarchic cluster analysis identified 238 differentiated genes that exhibited ≥3.0-fold change and p<0.05. We found 111 genes that were in persistent up-regulation and 127 in persistent down-regulation after a 50-Gy dose of radiation when compared with the control group. These genes were involved in processes such as cell growth and death, cell-apoptosis, cell cycle regulation, cell signaling, DNA synthesis and repair, and cell adhesion. High differential expression of CXCL12, CD74, FGF7, COL14A1, PRC1, and RAD54L genes was validated by quantitative PCR before and after radiotherapy. Survival analysis results showed that the high expression of CXCL12 was closely related to poor prognosis. Conclusions The higher expression of CXCL12 might be informative regarding poor prognosis in patients undergoing radical radiotherapy. The differentially expressed genes identified in our study might provide a new method for diagnosis and treatment of radioresistance in cervical cancer.
Collapse
Affiliation(s)
- Zhi-chao Fu
- Department of Radiotherapy, Fu Zhou General Hospital, Fuzhou, Fujian, China (mainland)
| | - Feng-mei Wang
- Department of Obstetrics and Gynecology, Fu Zhou General Hospital, Fuzhou, Fujian, China (mainland)
| | - Jian-ming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
14
|
Iturri J, García-Fernández L, Reuning U, García AJ, del Campo A, Salierno MJ. Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding. Sci Rep 2015; 5:9533. [PMID: 25825012 PMCID: PMC4379501 DOI: 10.1038/srep09533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies.
Collapse
Affiliation(s)
- Jagoba Iturri
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics &Gynecology, Technische Universitaet München, Munich, Germany
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aránzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marcelo J Salierno
- 1] Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany [2] National Scientific and Technical Research Council, Av. Rivadavia 1917, C1033AAJ CABA, Argentina
| |
Collapse
|