1
|
Mohammadi SD, Moeini A, Rastegar T, Amidi F, Saffari M, Zhaeentan S, Akhavan S, Moradi B, Heydarikhah F, Takzare N. Diagnostic accuracy of plasma microRNA as a potential biomarker for detection of endometriosis. Syst Biol Reprod Med 2025; 71:61-75. [PMID: 40053518 DOI: 10.1080/19396368.2025.2465268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Endometriosis is a complex condition with a wide range of clinical manifestations, presenting significant challenges, particularly for young women. Its diverse and often perplexing presentations pose difficulties within the medical community. Laparoscopy remains the gold-standard diagnostic tool for endometriosis. However, alternative diagnostic methods are valuable for monitoring disease progression, assessing the likelihood of recurrence, reducing the need for surgical procedures, and facilitating timely decisions regarding fertility concerns. Recent research highlights the potential of microRNAs (miRNAs) as an alternative diagnostic test for endometriosis. A case-control study was conducted at the infertility unit of Arash Women's Hospital, involving 50 female participants, 25 with endometriosis and 25 without it. Plasma samples were collected and analyzed for the expression levels of 16 miRNAs using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Diagnostic accuracy measures were evaluated to establish a reliable and comparable diagnostic framework. Compared to the control group, downregulation of 11 miRNAs and upregulation of 5 miRNAs were observed in the case group. Regarding expression patterns, evidence from this study indicates that half of the evaluated miRNAs fall into the high-agreement category with similar studies. Sensitivity (SN) of the evaluated miRNAs ranged from 64.0% to 88.0%, while specificity (SP) ranged from 56.0% to 88.0%. The area under the curve (AUC) was reported between 0.619 (miR-135a) and 0.846 (miR-340). These findings suggest that the evaluated miRNAs demonstrate moderate to acceptable diagnostic accuracy for endometriosis.
Collapse
Affiliation(s)
- Seyed Danial Mohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and Obstetrics, Infertility Ward, Arash Women`s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saffari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zhaeentan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Akhavan
- Gynecology Oncology Department, Imam Khomeini Hospital Complex, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Moradi
- Department of Radiology, Yas Women's Hospital, Tehran, Iran
| | - Faezeh Heydarikhah
- Department of Genetics, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Nasrin Takzare
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hsieh HT, Zhang XY, Wang Y, Cheng XQ. Biomarkers for nasopharyngeal carcinoma. Clin Chim Acta 2025; 572:120257. [PMID: 40118267 DOI: 10.1016/j.cca.2025.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Nasopharyngeal Carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast Asia, particularly in China and Indonesia. According to the World Health Organization's global cancer statistics in 2022, there were 120,434 new cases and 73,485 deaths from NPC. Risk factors contribute to NPC development including genetic factors, dietary habits, and Epstein-Barr virus (EBV) infection. This paper reviews the comparison of different types of EBV test for NPC over the last few years and summarized the performance of novel diagnostic biomarker such as newly reported EBV antibody, anti-BNLF2b IgG (P85-Ab), microRNAs, DNA methylation and other markers for detection of NPC. Because approximately 40% of NPC patients show negative EBV DNA levels, additional markers are needed for NPC diagnosis, especially in cases without EBV infection, to make the result trustworthy. The potential biomarkers including circulating tumor cells, proteins, microRNAs and Rta-IgG for prognostic and therapeutic effect also be summarized. This review provides insights into potential biomarkers for early NPC detection and diagnosis, which could lead to improved prevention, treatment, and prognosis strategies.
Collapse
Affiliation(s)
- Hsun-Ting Hsieh
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao
| | - Xin-Yao Zhang
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yi Wang
- Department of Otolaryngology, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Xin-Qi Cheng
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
3
|
Li X, Sun C, Ge Z, Li Y, Zhou H, Wu Y, Lin S, Zhang P, Wu X, Lai Y. Evaluation of the diagnostic value of a three-miRNA panel in prostate cancer: a discovery and validation study. Discov Oncol 2025; 16:611. [PMID: 40279022 PMCID: PMC12031705 DOI: 10.1007/s12672-025-02382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND PSA is widely used in prostate cancer screening. However, false-positive PSA results can lead to misdiagnosis and wrong puncture biopsy, while false-negative PSA results can result in missed diagnosis and delayed treatment. There is an urgent need to find convenient, economical and non-invasive diagnostic methods to reduce the false-negative and false-positive rates of PSA. The aim of this study was to discover new miRNA panels to detect prostate cancer. MATERIALS AND METHOD We selected 10 miRNAs in the literature that were associated with prostate cancer. Afterwards, we measured the expression levels of these miRNAs in serum of 112 prostate cancer patients and healthy controls through a training phase and a validation phase. By plotting receiver operating characteristic curve, the miRNAs with the highest diagnosis value were chosen. Then, a set of miRNAs with the top diagnostic value was identified using stepwise logistic regression. RESULTS The findings showed that 5 kinds of miRNAs (let-7b-5p, miR-15a-5p, miR-133a-3p, miR-15b-5p, miR-144-3p) were abnormally expressed in the serum of prostate cancer patients. The diagnostic panel constructed with these 3 miRNAs including let-7b-5p, miR-15a-5p miR-15b-5p and which have high specificity and sensitivity in detecting prostate cancer (area under the curve (AUC) = 0.899). Furthermore, the genes FAM107A and TAF1C may be potential therapeutic targets for prostate cancer. CONCLUSIONS A three-microRNA panel has an important diagnostic value in prostate cancer and is expected to serve as diagnostic biomarker for prostate cancer. Furthermore, the genes FAM107A and TAF1C may be potential therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Xutai Li
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chen Sun
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zhenjian Ge
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Yingqi Li
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Huimei Zhou
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yutong Wu
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Shengjie Lin
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Pengwu Zhang
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- Peking University Health Science Center, Beijing, China
| | - Xionghui Wu
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China.
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China.
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China.
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China.
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Nagdeve SN, Suganthan B, Ramasamy RP. An electrochemical biosensor for the detection of microRNA-31 as a potential oral cancer biomarker. J Biol Eng 2025; 19:24. [PMID: 40133958 PMCID: PMC11938787 DOI: 10.1186/s13036-025-00492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Oral cancer presents substantial challenges to global health due to its elevated mortality rates. Approximately 90% of these malignancies are oral squamous cell carcinoma (OSCC). A significant contributor to the prevalence of oral cancer is the difficulty in detecting cancerous biomarkers, further exacerbated by socioeconomic disadvantages and late-stage diagnoses. Given the critical nature of oral cancer, the early detection of biomarkers is essential for reducing mortality rates. This study investigates the application of microRNA-31 (miRNA-31) as a biomarker for the electrochemical detection of oral cancer, recognizing the considerable potential that microRNAs have demonstrated in cancer screening and diagnosis. The methodology employed includes the use of a glassy carbon electrode modified with graphene and a molecular tethering agent designed to enhance sensitivity and specificity. The biosensor exhibited a limit of detection of 10- 11 M (70 pg/mL or 6.022 × 106 copies/µL) in buffer and 10- 10 M (700 pg/mL or 6.022 × 107 copies/µL) in diluted serum for the complementary target miRNA-31 using the Six Sigma method. The efficacy of this biosensor was further validated through specificity studies utilizing a non-complementary miRNA in both buffer and human serum samples. The electrochemical biosensor displayed exceptional performance and high sensitivity in detecting miRNA-31, confirming its role as an innovative sensor for the non-invasive diagnosis of oral cancer. Furthermore, the proposed biosensor demonstrates several advantages over current methodologies, including reduced detection time, and cost-effective reagents.
Collapse
Affiliation(s)
- Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
5
|
Jeng LB, Chan WL, Teng CF. Independent prognostic significance of tissue and circulating microrna biomarkers in hepatocellular carcinoma. Discov Oncol 2025; 16:281. [PMID: 40056315 DOI: 10.1007/s12672-025-02043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although many therapeutic modalities have been established for treating HCC patients, the outcomes of patients remain unsatisfactory. Development of independent prognostic biomarkers is thus an important need to allow for early diagnosis and timely treatment. MicroRNAs (miRNAs) are the most studied class of small non-coding RNAs. It has been shown that miRNAs play essential roles in the multiple steps of HCC tumorigenesis and progression. Furthermore, the baseline expression levels of many miRNAs are altered in tumor tissues and blood circulation of HCC patients. Therefore, miRNAs have emerged as independent biomarkers for the prediction of HCC prognosis. This review provides a comprehensive literature-based summary of tissue and circulating miRNA biomarkers with independent prognostic significance in HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, 404, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Rd., Northern Dist., Taichung, 404, Taiwan.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
6
|
Katopodi XL, Begik O, Novoa E. Toward the use of nanopore RNA sequencing technologies in the clinic: challenges and opportunities. Nucleic Acids Res 2025; 53:gkaf128. [PMID: 40057374 PMCID: PMC11890063 DOI: 10.1093/nar/gkaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
RNA molecules have garnered increased attention as potential clinical biomarkers in recent years. While short-read sequencing and quantitative polymerase chain reaction have been the primary methods for quantifying RNA abundance, they typically fail to capture critical post-transcriptional regulatory elements, such as RNA modifications, which are often dysregulated in disease contexts. A promising cutting-edge technique sequencing method that addresses this gap is direct RNA sequencing, offered by Oxford Nanopore Technologies, which can simultaneously capture both RNA abundance and modification information. The rapid advancements in this platform, along with growing evidence of dysregulated RNA species in biofluids, presents a compelling clinical opportunity. In this review, we discuss the challenges and the emerging opportunities for the adoption of nanopore RNA sequencing technologies in the clinic, highlighting their potential to revolutionize personalized medicine and disease monitoring.
Collapse
Affiliation(s)
- Xanthi-Lida Katopodi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
7
|
Banta A, Bratosin F, Golu I, Toma AO, Domuta EM. A Systematic Review of Circulating miRNAs Validated by Multiple Independent Studies in Laryngeal Cancer. Diagnostics (Basel) 2025; 15:394. [PMID: 39941323 PMCID: PMC11817663 DOI: 10.3390/diagnostics15030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Background and Objectives: Laryngeal squamous cell carcinoma (LSCC) is a common head and neck cancer with significant morbidity and mortality. Circulating microRNAs (miRNAs) have emerged as promising non-invasive biomarkers for cancer diagnosis and prognosis. This systematic review aims to identify circulating miRNAs associated with LSCC, emphasizing those validated by at least two independent studies to improve reliability and clinical applicability. Methods: An extensive literature search was performed in the PubMed, Scopus, and Web of Science databases up to October 2024, using keywords related to LSCC and circulating miRNAs. Studies involving human participants that provided quantitative data on circulating miRNA expression levels and their clinical correlations were included. Data extraction and quality assessment were conducted following standardized protocols, highlighting miRNAs reported in multiple studies. Results: Nine high-quality studies encompassing 660 patients with LSCC and 212 controls were included. Several miRNAs were consistently identified across these studies. miR-21-5p was upregulated in four studies and associated with advanced disease stages, lymph node metastasis, and decreased survival rates. miR-125b-5p and miR-126-3p were consistently downregulated, linked to advanced clinical stages and poor tumor differentiation. miR-27a-3p was upregulated in two studies and correlated with poor prognosis, promoting LSCC progression by targeting Smad4. Additionally, miR-33a-5p was identified as a potential diagnostic biomarker with high sensitivity and specificity. These miRNAs show potential as non-invasive biomarkers for the diagnosis and prognosis of LSCC. Conclusions: This systematic review highlights specific circulating miRNAs-particularly miR-21-5p, miR-125b-5p, miR-126-3p, miR-27a-3p, and miR-33a-5p-as promising biomarkers for LSCC. The consistent findings across independent studies emphasize their potential clinical utility in early detection, prognostic assessment, and therapeutic targeting. However, further validation in larger and more diverse populations, along with the standardization of detection methods, is necessary before these biomarkers can be implemented in clinical practice.
Collapse
Affiliation(s)
- Andreea Banta
- Doctoral School, Department of General Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Felix Bratosin
- Department of Infectious Disease, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Ioana Golu
- Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- University Clinic of Endocrinology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ana-Olivia Toma
- Discipline of Dermatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Eugenia Maria Domuta
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410073 Oradea, Romania;
| |
Collapse
|
8
|
Abdelgayed G, Hosni A, Abdel-Moneim A, Malik A, Zaky MY, Hasona NA. Integrated analysis of long non‑coding RNA megacluster, microRNA‑132 and microRNA‑133a and their implications for cardiovascular risk and kidney failure progression in diabetic patients. Exp Ther Med 2025; 29:35. [PMID: 39776891 PMCID: PMC11705225 DOI: 10.3892/etm.2024.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 01/11/2025] Open
Abstract
Inefficient control of elevated blood sugar levels can lead to certain health complications such as diabetic nephropathy (DN) and cardiovascular disease (CVD). The identification of effective biomarkers for monitoring diabetes was performed in the present study. The present study aimed to investigate the implications of long non-coding RNA megacluster (lnc-MGC), microRNA (miR)-132 and miR-133a, and their correlation with lactate dehydrogenase (LDH) activity and glycated hemoglobin (HbA1C) levels to identify biomarkers for the early diagnosis of diabetes mellitus, induced DN and CVD. The present study included a total of 200 patients with type 2 diabetes, as well as 40 healthy subjects as controls. The diabetic patients were classified into six groups based on their estimated HbA1c level, glomerular filtration rate and LDH activity, while the healthy controls constituted the seventh group. Diabetic patients exhibited significant increases in parameters related to diabetes as fasting blood sugar, HbA1c levels, cardiac injury and kidney failure. Furthermore, the expression levels of TNF-α were significantly increased in the diabetic groups compared with healthy controls. Diabetic patients with cardiovascular dysfunction showed significantly increased expression levels of miR-132, miR-133a and lnc-MGC, compared with the healthy group. The expression of circulating miR-132 in blood was low in the groups of diabetic patients compared with the healthy controls, and demonstrated a negative correlation with LDH and HbA1C levels. Expression levels of miR-132, miR-133a and lnc-MGC, along with their correlations with LDH and HbA1C levels, could be used to distinguish diabetic patients with reduced CVD from those at early stage diabetes, which indicated their potential as biomarkers for CV complications associated with diabetes mellitus in the future.
Collapse
Affiliation(s)
- Gehad Abdelgayed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Hosni
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 2457, Saudi Arabia
| | - Mohamed Y. Zaky
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
| | - Nabil A. Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Biochemistry Department, Beni-Suef National University, Beni-Suef 62511, Egypt
| |
Collapse
|
9
|
Puente-Rivera J, Nuñez-Olvera SI, Fernández-Sánchez V, Cureño-Díaz MA, Gómez-Zamora E, Plascencia-Nieto ES, Figueroa-Angulo EE, Alvarez-Sánchez ME. miRNA Signatures as Predictors of Therapy Response in Castration-Resistant Prostate Cancer: Insights from Clinical Liquid Biopsies and 3D Culture Models. Genes (Basel) 2025; 16:180. [PMID: 40004509 PMCID: PMC11855684 DOI: 10.3390/genes16020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) patients who do not respond to androgen deprivation therapy (ADT), referred to as castration-resistant prostate cancer (CRPC), remain a clinical challenge due to confirm the aggressive nature of CRPC and its resistance to conventional therapies. This study aims to investigate the potential of microRNAs (miRNAs) as biomarkers for predicting therapeutic response in CRPC patients. METHODS We performed miRNA and mRNA expression analyses using publicly available datasets and applied 3D cell culture models to replicate more physiologically relevant tumor conditions. Genetic analysis techniques were employed on publicly available data, and expression profiles from 3D cell culture models were examined. RESULTS Eighteen miRNAs with differential expression were identified between patients who responded favorably to abiraterone therapy (responders) and those with advanced CRPC (non-responders). Specifically, miRNAs such as hsa-miR-152-3p and hsa-miR-34a-3p were found to be associated with critical pathways, including TGF-β signaling and P53, which are linked to therapeutic resistance. Several miRNAs were identified as potential predictors of treatment efficacy, including therapies like abiraterone. CONCLUSIONS These results indicate that miRNAs could serve as non-invasive biomarkers for predicting therapeutic outcomes, facilitating a more personalized approach to CRPC treatment. This study provides a novel perspective on treatment strategies for CRPC, emphasizing the role of miRNAs in improving therapeutic precision and efficacy in this complex disease.
Collapse
Affiliation(s)
- Jonathan Puente-Rivera
- Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, Mexico City 03100, Mexico; (J.P.-R.)
- División de Investigación, Hospital Juárez De México, Mexico City 07760, Mexico
| | - Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Verónica Fernández-Sánchez
- División de Investigación, Hospital Juárez De México, Mexico City 07760, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz 54090, Mexico
| | - Monica Alethia Cureño-Díaz
- Dirección de Investigación y Enseñanza, Hospital Juárez de Mexico, Mexico City 07760, Mexico
- Departamento de Salud Pública, Facultad de Medicina, Circuito Interior, Ciudad Universitaria UNAM, Mexico City 04510, Mexico
| | | | - Estibeyesbo Said Plascencia-Nieto
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, Mexico City 03100, Mexico; (J.P.-R.)
| | - María Elizbeth Alvarez-Sánchez
- Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, Mexico City 03100, Mexico; (J.P.-R.)
| |
Collapse
|
10
|
Zhang B, Zhu B, Yu J, Liu H, Zhou Y, Sun G, Ma Y, Luan Y, Chen M. A combined model of six serum microRNAs as diagnostic markers for hepatocellular carcinoma. Clin Chim Acta 2025; 565:119977. [PMID: 39332657 DOI: 10.1016/j.cca.2024.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality, and its poor prognosis is mainly due to the lack of an effective means of early diagnosis. This study aimed to identify a group of serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of HCC. METHODS We collected 190 HCC cases, 109 benign lesions of the liver, 40 cases of non-HCC tumors, and 130 healthy controls. The 469 participants were divided into training and validation sets. A literature search revealed 12 miRNAs closely associated with HCC. In the training set, significantly differentially expressed miRNAs (DEmiRNAs) were screened using real-time quantitative PCR, and a diagnostic model of HCC was constructed using logistic regression analysis. An independent validation was performed using a validation set. The identified DE miRNAs were subjected to target gene prediction and functional analyses. RESULTS Compared to the controls, the levels of miR-21, miR-221, miR-801, and miR-1246 significantly decreased in HCC (P < 0.05), while the levels of miR-26a and miR-122 significantly increased (P < 0.05). A diagnostic model based on the six DE miRNAs was successfully constructed, with AUC values of 0.953 for the training set and 0.952 for the verification set. Finally, 100 target genes of the DE miRNAs were predicted and were significantly enriched in the B cell receptor, neurotrophin, ferroptosis, and EGFR tyrosine kinase inhibitor resistance signaling pathways. CONCLUSIONS The constructed diagnostic model based on six DE miRNA combinations has important clinical value for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Bingqiang Zhang
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China
| | - Boyang Zhu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Junmei Yu
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China
| | - He Liu
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China
| | - Yang Zhou
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China
| | - Guolong Sun
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China
| | - Yongchao Ma
- School of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, Shandong 266111, PR China
| | - Yansong Luan
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China.
| | - Mengmeng Chen
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, Shandong 266111, PR China.
| |
Collapse
|
11
|
Wakamatsu K, Maruyama A, Okazumi S. Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer. J Clin Med 2024; 14:98. [PMID: 39797181 PMCID: PMC11721468 DOI: 10.3390/jcm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Methods: The published miRNA abnormalities were searched in the microRNA Cancer Association Database. Plasma samples were collected from patients with GC (n = 26) and controls (n = 17). The sensitivity and specificity of polyadenylation RT-PCR (PA-RT) and stem-loop RT-PCR (SL-RT) were compared. Statistical comparisons between patients with GC and controls were performed to identify miRNA biomarkers, and correlation analyses between the threshold cycle (Ct) values of miRNAs and various blood biochemical parameters were performed to elucidate the confounding factors. Results: mir-17, mir-21, mir-31, mir-99b, mir-222, and U6 were selected. PA-RT showed greater sensitivity and lower specificity than SL-RT (PA-RT vs. SL-RT, mean Ct: 19.6 vs. 29.2; coefficient of variation: 0.42 vs. 0.10). Adopting SL-RT owing to its higher specificity, only mir-222 was significantly upregulated in patients with GC (GC vs. control, miRNA expression: 15.4 vs. 5.27, p = 0.0098). Regarding the correlation between blood biochemical parameters and cells with miRNA expression, mir-31 and mir-99b were correlated with blood urea nitrogen, mir-17, mir-21, and mir-99b were negatively correlated with platelets, and mir-21 was correlated with neutrophils. No obvious correlations were noted between mir-222 expression and blood parameters. Receiver operating characteristic (ROC) curve analysis indicated that mir-222 identified GC patients with a maximum area under the curve (0.73, 95% confidence interval 0.57-0.89). Conclusions: Plasma mir-222 was confirmed to be dysregulated in patients with GC, irrespective of blood biochemical parameters.
Collapse
Affiliation(s)
- Kotaro Wakamatsu
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| | - Atsushi Maruyama
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 B-57 Nagatsuta-cho, Midori, Yokohama 226-8501, Kanagawa, Japan;
| | - Shinichi Okazumi
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| |
Collapse
|
12
|
Huang G, Liu Y, Li L, Li B, Jiang T, Cao Y, Yang X, Liu X, Qu H, Li S, Zheng X. Integration analysis of microRNAs as potential biomarkers in early-stage lung adenocarcinoma: the diagnostic and therapeutic significance of miR-183-3p. Front Oncol 2024; 14:1508715. [PMID: 39759146 PMCID: PMC11697600 DOI: 10.3389/fonc.2024.1508715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) poses a significant therapeutic challenge, primarily due to delayed diagnosis and the limited efficacy of existing treatments. Methods To understand the pathogenesis and identify diagnostic biomarkers for LUAD in the early stage, we investigated differential miRNA expression in 33 stage I LUAD patients between tumor and matched paracancerous tissues by Illumina Sequencing. Target genes of differentially expressed miRNAs were predicted using TargetScan and miRDB databases and further analyzed by GO and KEGG pathway enrichment analysis. The miRNAs expression results were verified using qRT-PCR. Additionally, we evaluated the clinical significance of miRNAs by the TCGA database. miR-183-3p was chosen for subsequent biological functional studies by cell proliferation assays, cell migration and cell invasion assays, cell apoptosis and cell cycle assays in LUAD cells. The clinical relevance target genes of miR-183-3p were predicted by TargetScan databases and bioinformatics assays. Gene-specific experimental validation was performed using qRT-PCR, western blotting and luciferase reporter assays. Results We identified 36 differentially expressed miRNAs between LUAD tissues and matched paracancerous tissues. Target genes for these miRNAs revealed associations with processes and pathways such as RNA biosynthesis, intracellular signaling, protein transport, and the Ras, MAPK, and PI3K-AKT pathways. The qRT-PCR results were in alignment with the sequencing data for 19 out of these 21 miRNAs which not yet implicated in LUAD, 13 were up-regulated, 6 were down-regulated. The clinical relevance assays showed that 5 up-regulated miRNAs have diagnostic value for LUAD. miR-183-3p showed significant advantages in the result of sequencing, qRT-PCR, and clinical relevance assay. Biological functional assays showed that miR-183-3p emerged as a key regulator, promoting LUAD cell proliferation, decreasing apoptosis, and augmenting migration and invasion capabilities. The clinical relevance assays and experimental validation showed SESN1 as a clinical significance target of miR-183-3p. Discussion Our study lays the foundation for investigating miRNAs with diagnostic significance in early-stage LUAD, pointing out that inhibition of miR-183-3p may serve as a novel therapeutic in LUAD.
Collapse
Affiliation(s)
- Guodong Huang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yuxia Liu
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lisha Li
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Bing Li
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ting Jiang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yufeng Cao
- Cancer Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xiaoping Yang
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xinning Liu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Honglin Qu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Shitao Li
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zheng
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
13
|
Corrêa CAP, Andrade AF, Veronez LC, da Silva KR, Baroni M, Suazo VK, de Paula Gomes Queiroz R, Lira RCP, Chagas PS, Brandalise SR, Yunes JA, Molina CAF, Antonini SRR, Valera ET, Tone LG, Scrideli CA. Analysis of miR-483-3p and miR-630 expression profile in pediatric adrenocortical tumors and the effect of their modulation on adrenal tumorigenesis in vitro. Mol Cell Endocrinol 2024; 594:112371. [PMID: 39278396 DOI: 10.1016/j.mce.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and outcomes of several types of cancer. However, the role played by miRNAs in pediatric ACT has been poorly explored. In this study, we have evaluated the expression of miR-483-3p and miR-630 in 67 pediatric ACT and 19 non-neoplastic adrenal samples, the effects of the modulations of these miRNAs, and their relationship with the TGF-β pathway in the H295R and H295A cell lines. Deregulation of both miRNAs was related to survival and disease advanced stages and hence to patients' prognosis. Moreover, modified miR-483-3p and miR-630 in vitro expression decreased cell viability and colony formation capacity, changed how some genes of the TGF-β pathway, such as TGFBR1, TGFBR2, and SMAD7, are expressed, and altered Smad3, pSmad3, Smad 2/3, N-cadherin, and Vimentin protein expression. Besides that, when inhibition of the TGF-β pathway was combined with miR-630 overexpression or miR-483-3p silencing, cell viability and colony formation capacity decreased, and protein expression in the TGF-β pathway changed. Together, the data indicate that both miRNAs participate in the TGF-β pathway and are therefore potential markers for predicting the prognosis of patients with pediatric ACT.
Collapse
Affiliation(s)
| | | | - Luciana Chain Veronez
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mirella Baroni
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Veridiana Kill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Régia Caroline Peixoto Lira
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Division of General Pathology, Federal University of Triângulo Mineiro, Campus I, Uberaba, MG, 38025-200, Brazil
| | - Pablo Shimaoka Chagas
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil.
| |
Collapse
|
14
|
Su Z, Fang M, Smolnikov A, Vafaee F, Dinger ME, Oates EC. Post-transcriptional regulation supports the homeostatic expression of mature RNA. Brief Bioinform 2024; 26:bbaf027. [PMID: 39913622 PMCID: PMC11801271 DOI: 10.1093/bib/bbaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Gene expression regulation is a sophisticated, multi-stage process, and its robustness is critical to normal cell function and the survival of an organism. Previous studies indicate that differential gene expression at the RNA level is typically attenuated at the protein level through translational regulation. However, how post-transcriptional regulation (PTR) influences expression change during the RNA maturation process remains unclear. In this study, we investigated this by quantifying the magnitude of expression change in precursor RNA and mature RNA across a vast range of different biological conditions. We analyzed bulk tissue RNA sequencing data from 4689 samples, including healthy and diseased tissues from human, chimpanzee, rhesus macaque, and murine sources. We demonstrated that PTR tends to support homeostatic expression of mature RNA by amplifying normal tissue-specific expression of precursor RNA, while reducing expression change of precursor RNA in disease contexts. Our study provides insight into the general influence of PTR on gene expression homeostasis. Our analysis also suggests that intronic reads in RNA-seq studies may contain under-utilized information about disease associations. Additionally, our findings may assist in identifying new disease biomarkers and more effective ways of altering gene expression as a therapeutic strategy.
Collapse
Affiliation(s)
- Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Mingyan Fang
- BGI Research, Building 1, Future Science and Technology Innovation Mansion, No. 59, Science and Technology 3rd Road, East Lake High-tech Development Zone, Wuhan City, Hubei Province, 430074, China
- BGI Australia, L6, CBCRC, QIMR Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, F22 Life, Earth and Environmental Sciences (LEES) Building, Camperdown NSW 2050, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- Department of Neurology, Sydney Children’s Hospital, High St, Randwick NSW 2031, Australia
| |
Collapse
|
15
|
Dahal S, Kakulavarapu RV, Heyburn L, Wilder D, Kumar R, Dimitrov G, Gautam A, Hammameih R, Long JB, Sajja VS. microRNA Profile Changes in Brain, Cerebrospinal Fluid, and Blood Following Low-Level Repeated Blast Exposure in a Rat Model. J Neurotrauma 2024. [PMID: 39535039 DOI: 10.1089/neu.2024.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified. In this study, rats were exposed to multiple field-relevant blast waves with 8.5 and 10 psi peak positive overpressures, applying one exposure per day for 14 consecutive days. micro-RNAs that can potentially be used as biomarkers for RBEs were assessed in blood, brain, and cerebrospinal fluid (CSF). RBE caused a differential pattern of changes in various miRNAs in blood, brain and CSF in an overpressure-dependent manner. Our key outcomes were decrease of mir-6215 and let-7 family miRNAs and increase of mir-6321 and mir-222-5p in brain, blood, and CSF. Expression pattern of these miRNAs is in concurrence with various neurological conditions such as upregulation of mir-6321 in focal ischemic injury and downregulation of mir-6215 in nerve injury model. Contrarily, Let-7 family miRNAs have neuroprotective role and their downregulation suggests progression of blast induced traumatic brain injury (bTBI) with RBE at 14× -8.5 psi. Repeated blast caused alterations in miRNAs that are likely involved in vascular integrity, inflammation, and cell death. These results indicate that miRNAs are differentially dysregulated in response to blast injuries and may represent better prognostic and diagnostic biomarkers than traditional molecules to identify blast-specific brain injury.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - RamaRao Venkata Kakulavarapu
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lanier Heyburn
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna Wilder
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Raina Kumar
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Dimitrov
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aarti Gautam
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammameih
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joseph B Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Venkatasivasai Sujith Sajja
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Lima S, Santiago F, Silvestre RT, Elexias SRV, Ornellas MH, Ribeiro Carvalho MDM. Recent Advances in Biomonitoring of Gas Station Workers: A Systematic Review. Asian Pac J Cancer Prev 2024; 25:3439-3445. [PMID: 39471009 PMCID: PMC11711367 DOI: 10.31557/apjcp.2024.25.10.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND In Brazil, gas stations are not self-service; attendants fill fuel tanks, leading to chronic exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes), which can cause bone marrow degeneration and immunosuppression. This systematic review highlights recent advances in biomonitoring gas station workers (GSW). METHODS We searched PubMed, Medline, and Cochrane databases for articles in English, French, Portuguese, and Spanish from 2014 to April 30, 2024, using multiple search terms. RESULTS A total of 1,086 articles were identified, 322 were analyzed, and 13 were included in the final review. We highlighted recent technologies in GSW biomonitoring, such as immunophenotyping, molecular cytogenetics (FISH), and measuring miRNAs and inflammatory markers via ELISA. We also explored the link between benzene exposure and immunosuppression and suggested a potential association with chronic inflammation. Conclusion: GSWs face significant health risks and require continuous clinical monitoring, even in the absence of overt disease. Effect biomarkers may indicate early biological responses to benzene toxicity and highlight potential health risks. However, there is no universally accepted gold standard for assessing these biomarkers.
Collapse
Affiliation(s)
- Simone Lima
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
| | - Fabio Santiago
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Department of Pathology Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Rafaele Tavares Silvestre
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Stêphanie Rocha Vieira Elexias
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
| | - Maria Helena Ornellas
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences (FCM), State, Brazil.
| | - Marilza de Moura Ribeiro Carvalho
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences (FCM), State, Brazil.
| |
Collapse
|
17
|
Zhou T, Qiu JM, Han XJ, Zhang X, Wang P, Xie SY, Xie N. The application of nanoparticles in delivering small RNAs for cancer therapy. Discov Oncol 2024; 15:500. [PMID: 39331172 PMCID: PMC11436575 DOI: 10.1007/s12672-024-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Small molecular RNAs, including microRNA (miRNA) and small interfering RNA (siRNA), participate in the regulation of gene expression. As powerful regulators, miRNAs, take part in posttranscriptional regulation of gene expression and play important roles in the diagnosis and treatment of cancer. Meanwhile, siRNA can induce sequence-specific gene silencing, thus being able to inhibit tumorigenesis by suppressing the expression of their targeted proto-oncogenes. Small RNAs (including naked miRNAs and siRNAs) are easily degraded by circulating RNAase, which can be retarded through the package of nanoparticles. Therefore, nanoparticles help tumor therapy by regulating targeted genes of small RNAs. Here, we reviewed the effects of small RNAs on gene expression; the advantages, disadvantages, and targeted modification of nanoparticles as carriers transporting small RNAs; and the application of nanocarriers delivering small RNA for cancer-targeted therapy.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, People's Republic of China
| | - Jun-Ming Qiu
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Xue-Jia Han
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Xia Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Pingyu Wang
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, People's Republic of China.
| | - Ning Xie
- Department of Breast and Thyroid Surgery, Affiliated Yantaishan Hospital of Binzhou Medical University, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
18
|
Li Y, Yu ND, Ye XL, Jiang MC, Chen XQ. Construction of lung cancer serum markers based on ReliefF feature selection. Comput Methods Biomech Biomed Engin 2024; 27:1215-1223. [PMID: 37489703 DOI: 10.1080/10255842.2023.2235045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Serum miRNAs are available clinical samples for cancer screening. Identifying early serum markers in lung cancer (LC) is essential for patients' early diagnosis and clinical treatment. Expression data of serum miRNAs of lung adenocarcinoma (LUAD) patients and healthy individuals were downloaded from the Gene Expression Omnibus (GEO). These data were normalized and subjected to differential expression analysis to obtain differentially expressed miRNAs (DEmiRNAs). The DEmiRNAs were subsequently subjected to ReliefF feature selection, and subsets closely related to cancer were screened as candidate feature miRNAs. Thereafter, a Gaussian Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifier were constructed based on these candidate feature miRNAs. Then the best diagnostic signature was constructed through NB combined with incremental feature selection (IFS). Thereafter, these samples were subjected to principal component analysis (PCA) based on miRNAs with optimal predictive performance. Finally, the peripheral serum miRNAs of 64 LUAD patients and 59 normal individuals were extracted for qRT-PCR analysis to validate the performance of the diagnostic model in respect of clinical detection. Finally, according to area under the curve (AUC) and accuracy values, the NB classifier composed of miR-5100 and miR-663a manifested the most outstanding diagnostic performance. The PCA results also revealed that the 2-miRNA diagnostic signature could effectively distinguish cancer patients from healthy individuals. Finally, qRT-PCR results of clinical serum samples revealed that miR-5100 and miR-663a expression in tumor samples was remarkably higher than that in normal samples. The AUC of the 2-miRNA diagnostic signature was 0.968. In summary, we identified markers (miR-5100 and miR-663a) in serum for early LUAD screening, providing ideas for developing early LUAD diagnostic models.
Collapse
Affiliation(s)
- Yong Li
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Nan-Ding Yu
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiang-Li Ye
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiang-Qi Chen
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
20
|
Yan Y, Liao L. MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes. Mol Biotechnol 2024; 66:1357-1375. [PMID: 37314613 DOI: 10.1007/s12033-023-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
The ability to detect early metabolic changes in patients who have an increased mortality risk in the intensive care units (ICUs) could increase the likelihood of predicting recovery patterns and assist in disease management. Markers that can predict the disease progression of patients in the ICU might also be beneficial for improving their medical profile. Although biomarkers have been used in the ICU more frequently in recent years, the clinical use of most of them is limited. A wide range of biological processes are influenced by microRNAs (miRNAs) that modulate the translation and stability of specific mRNAs. Studies suggest that miRNAs may serve as a diagnostic and therapeutic biomarker in ICUs by profiling miRNA dysregulation in patient samples. To improve the predictive value of biomarkers for ICU patients, researchers have proposed both investigating miRNAs as novel biomarkers and combining them with other clinical biomarkers. Herein, we discuss recent approaches to the diagnosis and prognosis of patients admitted to an ICU, highlighting the use of miRNAs as novel and robust biomarkers for this purpose. In addition, we discuss emerging approaches to biomarker development and ways to improve the quality of biomarkers so that patients in ICU get the best outcomes possible.
Collapse
Affiliation(s)
- Youqin Yan
- ICU Department, People's Hospital of Changshan, Changshan, China
| | - Linjun Liao
- ICU Department, People's Hospital of Changshan, Changshan, China.
| |
Collapse
|
21
|
Casado Gama H, Amorós MA, Andrade de Araújo M, Sha CM, Vieira MP, Torres RG, Souza GF, Junkes JA, Dokholyan NV, Leite Góes Gitaí D, Duzzioni M. Systematic review and meta-analysis of dysregulated microRNAs derived from liquid biopsies as biomarkers for amyotrophic lateral sclerosis. Noncoding RNA Res 2024; 9:523-535. [PMID: 38511059 PMCID: PMC10950706 DOI: 10.1016/j.ncrna.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of disease-specific biomarkers, such as microRNAs (miRNAs), holds the potential to transform the landscape of Amyotrophic Lateral Sclerosis (ALS) by facilitating timely diagnosis, monitoring treatment response, and accelerating drug discovery. Such advancement could ultimately improve the quality of life and survival rates for ALS patients. Despite more than a decade of research, no miRNA biomarker candidate has been translated into clinical practice. We conducted a systematic review and meta-analysis to quantitatively synthesize data from original studies that analyzed miRNA expression from liquid biopsies via PCR and compared them to healthy controls. Our analysis encompasses 807 miRNA observations from 31 studies, stratified according to their source tissue. We identified consistently dysregulated miRNAs in serum (hsa-miR-3665, -4530, -4745-5p, -206); blood (hsa-miR-338-3p, -183-5p); cerebrospinal fluid (hsa-miR-34a-3p); plasma (hsa-miR-206); and neural-enriched extracellular vesicles from plasma (hsa-miR-146a-5p, -151a-5p, -10b-5p, -29b-3p, and -4454). The meta-analyses provided further support for the upregulation of hsa-miR-206, hsa-miR-338-3p, hsa-miR-146a-5p and hsa-miR-151a-5p, and downregulation of hsa-miR-183-5p, hsa-miR-10b-5p, hsa-miR-29b-3p, and hsa-miR-4454 as consistent indicators of ALS across independent studies. Our findings provide valuable insights into the current understanding of miRNAs' dysregulated expression in ALS patients and on the researchers' choices of methodology. This work contributes to the ongoing efforts towards discovering disease-specific biomarkers.
Collapse
Affiliation(s)
- Hemerson Casado Gama
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Mykaella Andrade de Araújo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Congzhou M. Sha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Mirella P.S. Vieira
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Rayssa G.D. Torres
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Gabriela F. Souza
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Janaína A. Junkes
- Postgraduate Program in Society, Technologies and Public Policies, Tiradentes University Centre, AL, 57038-000, Brazil
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas -AL, 57072-900, Brazil
| |
Collapse
|
22
|
Baylie T, Kasaw M, Getinet M, Getie G, Jemal M, Nigatu A, Ahmed H, Bogale M. The role of miRNAs as biomarkers in breast cancer. Front Oncol 2024; 14:1374821. [PMID: 38812786 PMCID: PMC11133523 DOI: 10.3389/fonc.2024.1374821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer (BC) is the second most common cause of deaths reported in women worldwide, and therefore there is a need to identify BC patients at an early stage as timely diagnosis would help in effective management and appropriate monitoring of patients. This will allow for proper patient monitoring and effective care. However, the absence of a particular biomarker for BC early diagnosis and surveillance makes it difficult to accomplish these objectives. miRNAs have been identified as master regulators of the molecular pathways that are emphasized in various tumors and that lead to the advancement of malignancies. Small, non-coding RNA molecules known as miRNAs target particular mRNAs to control the expression of genes. miRNAs dysregulation has been linked to the start and development of a number of human malignancies, including BC, since there is compelling evidence that miRNAs can function as tumor suppressor genes or oncogenes. The current level of knowledge on the role of miRNAs in BC diagnosis, prognosis, and treatment is presented in this review. miRNAs can regulate the tumorigenesis of BC through targeting PI3K pathway and can be used as prognostic or diagnostic biomarkers for BC therapy. Some miRNAs, like miR-9, miR-10b, and miR-17-5p, are becoming known as biomarkers of BC for diagnosis, prognosis, and therapeutic outcome prediction. Other miRNAs, like miR-30c, miR-187, and miR-339-5p, play significant roles in the regulation of hallmark functions of BC, including invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs, such as miR-155 and miR-210, are circulating in bodily fluids and are therefore of interest as novel, conveniently accessible, reasonably priced, non-invasive methods for the customized care of patients with BC.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mulugeta Kasaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Amare Nigatu
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Hassen Ahmed
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihiret Bogale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Wollo University, Wollo, Ethiopia
| |
Collapse
|
23
|
Zong S, Huang G, Pan B, Zhao S, Ling C, Cheng B. A Hypoxia-Related miRNA-mRNA Signature for Predicting the Response and Prognosis of Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:525-542. [PMID: 38496249 PMCID: PMC10944249 DOI: 10.2147/jhc.s454698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Transcatheter arterial chemoembolization (TACE) is commonly used in the treatment of hepatocellular carcinoma (HCC). However, not all patients respond to this treatment. TACE typically leads to hypoxia in the tumor microenvironment. Therefore, we aimed to construct a prognostic model based on hypoxia-related differentially expressed microRNA (miRNAs) in hepatocellular carcinoma (HCC) and to investigate the potential target mRNAs for predicting TACE response. Methods The hypoxia-related miRNAs (HRMs) were identified in liver cancer cells, then global test was performed to further select the miRNAs which were associated with recurrence and vascular invasion. A prognostic model was constructed based on multivariate Cox regression analysis; qRT-PCR analysis was used to validate the differentially expressed miRNAs in HCC cell lines under hypoxic condition. We further identified the putative target genes of the miRNAs and investigate the relationship between the target genes and TACE response, immune cells infiltration. Results We established a HRMs prognostic model for HCC patients, containing two miRNAs (miR-638, miR-501-5p), the patients with high-HRMs score showed worse survival in discovery and validation cohort; qRT-PCR analysis confirmed that these two miRNAs are up-regulated in hepatoma cells under hypoxic condition. Furthermore, four putative target genes of these two miRNAs were identified (ADH1B, CTH, FTCD, RCL1), which were significantly associated with TACE response, immune score, immunosuppressive immune cells infiltration, PDCD1 and CTLA4. Conclusion The HCC-HRMs signature may be utilized as a promising prognostic factor and may have implications for guiding TACE and immune therapy.
Collapse
Affiliation(s)
- Shaoqi Zong
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Guokai Huang
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Bo Pan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Shasha Zhao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| |
Collapse
|
24
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
25
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
26
|
Reyaz I, Khan B, James N, Azhar H, Rehman A, Younas MW, Rashid H, Al-Shaikhly FF, Almomani MM, I Kh Almadhoun MK, Abdullah Yahya N, Bokhari SFH, Shehzad A. Emerging Horizons in the Diagnosis of Pancreatic Cancer: The Role of Circulating microRNAs as Early Detection Biomarkers for Pancreatic Ductal Adenocarcinoma. Cureus 2024; 16:e53023. [PMID: 38410292 PMCID: PMC10895207 DOI: 10.7759/cureus.53023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis, primarily due to a late diagnosis. Recent studies have focused on identifying non-invasive biomarkers for early detection, with microRNAs (miRNAs) emerging as promising candidates. This systematic review aims to evaluate the potential of circulating miRNAs as biomarkers for the early detection of PDAC, analyzing their diagnostic accuracy, specificity, and sensitivity. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search across PubMed, Embase, and the Cochrane Library was conducted. Studies published from January 2013 to October 2023 focusing on miRNA biomarkers for early PDAC detection were included. Data synthesis was performed through a narrative approach due to the heterogeneity of the studies. Nine studies met the inclusion criteria. Key findings include the elevated levels of specific miRNAs, such as miR-18a, miR-106a, and miR-25, in early-stage PDAC patients compared to controls. The integration of miRNA profiles with traditional biomarkers like CA19-9 showed improved diagnostic performance. However, challenges in the standardization of miRNA evaluation methodologies were noted. Circulating miRNAs demonstrate significant potential as non-invasive biomarkers for early PDAC detection. Despite promising results, further research and standardization are necessary for clinical application.
Collapse
Affiliation(s)
- Ibrahim Reyaz
- Internal Medicine, Christian Medical College and Hospital Ludhiana, Ludhiana, IND
| | - Bilal Khan
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Neha James
- General Medicine, Rehman Medical Institute, Peshawar, PAK
| | - Hammad Azhar
- Accident and Emergency, Sahiwal Teaching Hospital, Sahiwal, PAK
- General Medicine, King Edward Medical University, Lahore, PAK
| | | | - Muhammad Waqas Younas
- Accident and Emergency, Sahiwal Teaching Hospital, Sahiwal, PAK
- General Medicine, Faisalabad Medical University, Faisalabad, PAK
| | - Hamza Rashid
- Medicine, Pak Medical Centre & Hospital, Peshawar, PAK
| | | | | | | | | | | | - Ahsan Shehzad
- Surgery, King Edward Medical University, Lahore, PAK
| |
Collapse
|
27
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
29
|
Naithani U, Jain P, Sachan A, Khare P, Gabrani R. MicroRNA as a potential biomarker for systemic lupus erythematosus: pathogenesis and targeted therapy. Clin Exp Med 2023; 23:4065-4077. [PMID: 37921874 DOI: 10.1007/s10238-023-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with hyperactive innate and adaptive immune systems that cause dermatological, cardiovascular, renal, and neuropsychiatric problems in patients. SLE's multifactorial nature and complex pathogenesis present significant challenges in its clinical classification. In addition, unpredictable treatment responses in patients emphasize the need for highly specific and sensitive SLE biomarkers that can assist in understanding the exact pathogenesis and, thereby, lead to the identification of novel therapeutic targets. Recent studies on microRNA (miRNA), a non-coding region involved in the regulation of gene expression, indicate its importance in the development of the immune system and thus in the pathogenesis of various autoimmune disorders such as SLE. miRNAs are fascinating biomarker prospects for SLE categorization and disease monitoring owing to their small size and high stability. In this paper, we have discussed the involvement of a wide range of miRNAs in the regulation of SLE inflammation and how their modulation can be a potential therapeutic approach.
Collapse
Affiliation(s)
- Urshila Naithani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Priyanjal Jain
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Aastha Sachan
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Prachi Khare
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India.
| |
Collapse
|
30
|
Fletcher CE, Taylor MA, Bevan CL. PLK1 Regulates MicroRNA Biogenesis through Drosha Phosphorylation. Int J Mol Sci 2023; 24:14290. [PMID: 37762595 PMCID: PMC10531876 DOI: 10.3390/ijms241814290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Polo-Like Kinase 1 (PLK1), a key mediator of cell-cycle progression, is associated with poor prognosis and is a therapeutic target in a number of malignancies. Putative phosphorylation sites for PLK1 have been identified on Drosha, the main catalytic component of the microprocessor responsible for miR biogenesis. Several kinases, including GSK3β, p70 S6 kinase, ABL, PAK5, p38 MAPK, CSNK1A1 and ANKRD52-PPP6C, have been shown to phosphorylate components of the miR biogenesis machinery, altering their activity and/or localisation, and therefore the biogenesis of distinct miR subsets. We hypothesised that PLK1 regulates miR biogenesis through Drosha phosphorylation. In vitro kinase assays confirmed PLK1 phosphorylation of Drosha at S300 and/or S302. PLK1 inhibition reduced serine-phosphorylated levels of Drosha and its RNA-dependent association with DGCR8. In contrast, a "phospho-mimic" Drosha mutant showed increased association with DGCR8. PLK1 phosphorylation of Drosha alters Drosha Microprocessor complex subcellular localisation, since PLK1 inhibition increased cytosolic protein levels of both DGCR8 and Drosha, whilst nuclear levels were decreased. Importantly, the above effects are independent of PLK1's cell cycle-regulatory role, since altered Drosha:DGCR8 localisation upon PLK1 inhibition occurred prior to significant accumulation of cells in M-phase, and PLK1-regulated miRs were not increased in M-phase-arrested cells. Small RNA sequencing and qPCR validation were used to assess downstream consequences of PLK1 activity on miR biogenesis, identifying a set of ten miRs (miR-1248, miR-1306-5p, miR-2277-5p, miR-29c-5p, miR-93-3p, miR-152-3p, miR-509-3-5p, miR-511-5p, miR-891a-5p and miR-892a) whose expression levels were statistically significantly downregulated by two pharmacological PLK1 kinase domain inhibitors, RO-5203280 and GSK461364. Opposingly, increased levels of these miRs were observed upon transfection of wild-type or constitutively active PLK1. Importantly, pre-miR levels were reduced upon PLK1 inhibition, and pri-miR levels decreased upon PLK1 activation, and hence, PLK1 Drosha phosphorylation regulates MiR biogenesis at the level of pri-miR-to-pre-miR processing. In combination with prior studies, this work identifies Drosha S300 and S302 as major integration points for signalling by several kinases, whose relative activities will determine the relative biogenesis efficiency of different miR subsets. Identified kinase-regulated miRs have potential for use as kinase inhibitor response-predictive biomarkers, in cancer and other diseases.
Collapse
Affiliation(s)
- Claire Emily Fletcher
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | - Charlotte Lynne Bevan
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
31
|
Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO, dos Santos AP. miRNome expression analysis in canine diffuse large B-cell lymphoma. Front Oncol 2023; 13:1238613. [PMID: 37711209 PMCID: PMC10499539 DOI: 10.3389/fonc.2023.1238613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lymphoma is a common canine cancer with translational relevance to human disease. Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype, contributing to almost fifty percent of clinically recognized lymphoma cases. Identifying new biomarkers capable of early diagnosis and monitoring DLBCL is crucial for enhancing remission rates. This research seeks to advance our knowledge of the molecular biology of DLBCL by analyzing the expression of microRNAs, which regulate gene expression by negatively impacting gene expression via targeted RNA degradation or translational repression. The stability and accessibility of microRNAs make them appropriate biomarkers for the diagnosis, prognosis, and monitoring of diseases. Methods We extracted and sequenced microRNAs from ten fresh-frozen lymph node tissue samples (six DLBCL and four non-neoplastic). Results Small RNA sequencing data analysis revealed 35 differently expressed miRNAs (DEMs) compared to controls. RT-qPCR confirmed that 23/35 DEMs in DLBCL were significantly upregulated (n = 14) or downregulated (n = 9). Statistical significance was determined by comparing each miRNA's average expression fold-change (2-Cq) between the DLCBL and healthy groups by applying the unpaired parametric Welch's 2-sample t-test and false discovery rate (FDR). The predicted target genes of the DEMs were mainly enriched in the PI3K-Akt-MAPK pathway. Discussion Our data point to the potential value of miRNA signatures as diagnostic biomarkers and serve as a guideline for subsequent experimental studies to determine the targets and functions of these altered miRNAs in canine DLBCL.
Collapse
Affiliation(s)
- Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nathanael I. Lichti
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Ekramy. E. Sayedahmed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
32
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Bogaczyk A, Zawlik I, Zuzak T, Kluz M, Potocka N, Kluz T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int J Mol Sci 2023; 24:11489. [PMID: 37511248 PMCID: PMC10380838 DOI: 10.3390/ijms241411489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer is one of the most common cancers in developing and developed countries. Although the detection of this cancer is high at the early stages, there is still a lack of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the post-transcriptional regulation of genes responsible for the most important biological processes, which is why they are increasingly used as biomarkers in many types of cancer. Many studies have demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and their role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
34
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
35
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
36
|
Thomas P, Preethi KA, Selvakumar SC, Ramani P, Sekar D. Relevance of micro-RNAs and their targets as a diagnostic and prognostic marker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:364-373. [PMID: 37854932 PMCID: PMC10581285 DOI: 10.4103/jomfp.jomfp_349_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 10/20/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks sixth among all cancers in the world, affecting various sites of the oral cavity with associated several risk factors. High mortality has been associated with the presence of metastasis during the time of diagnosis and an increase in therapeutic relapses. Micro-RNAs (miRNAs) are a group of small non-coding RNAs with salient roles in the initiation and progression of cancer. The tumorigenesis of OSCC is associated with the dysregulation of several miRNAs. MicroRNAs are an area of recent interest, and numerous studies have been reported and are being undertaken to identify their role in diagnostic and prognostic value for oral cancers. Most of the miRNA processing machinery is considered to be either up-/down-regulated in OSCC, but the underlying mechanism of miRNA dysregulation and their activity as either a tumour suppressor or an oncogene in oral carcinogenesis is not yet clear. The article presents a concise review of the available current literature regarding the various miRNAs' signatures in OSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Priya Thomas
- Department of Oral Pathology and Microbiology, Annoor Dental College and Hospital, Muvattupuzha, Kerala, India
| | - K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sushmaa C. Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
37
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
38
|
Fawzy MS, Ibrahiem AT, Bayomy NA, Makhdoom AK, Alanazi KS, Alanazi AM, Mukhlef AM, Toraih EA. MicroRNA-155 and Disease-Related Immunohistochemical Parameters in Cutaneous Melanoma. Diagnostics (Basel) 2023; 13:1205. [PMID: 36980512 PMCID: PMC10047208 DOI: 10.3390/diagnostics13061205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cutaneous melanoma is a severe and life-threatening form of skin cancer with growing incidences. While novel interventions have improved prognoses for these patients, early diagnosis of targeted treatment remains the most effective approach. MicroRNAs have grown to good use as potential biomarkers for early detection and as targets for treatment. miR-155 is well-studied for its role in tumor cell survival and proliferation in various tissues, although its role in melanoma remains controversial. In silico data analysis was performed in the dbDEMC v.3 to identify differentially expressed miRNA. We validated gene targets in melanoma using TarBase v8.0 and miRPath v3.0 and determined protein-protein interactions of the target genes. One hundred forty patients (age range 21-90 years) with cutaneous melanoma who underwent resection were included. Molecular assessment using Real-Time RT-qPCR, clinicopathological associations, and a literature review for the different roles of miR-155 in melanoma were performed. Analysis of the dbDEMC reveals controversial findings. While there is evidence of upregulation of miR-155 in primary and metastatic melanoma samples, others suggest decreased expression in later-stage melanoma and cases with brain metastasis. miR-155 has been overexpressed in prior cases of melanoma and precancerous lesions, and it was found to be dysregulated when compared to benign nevi. While miR-155 expression was associated with favorable outcomes in some studies, others showed an association with metastasis. Patients with high levels of miR-155 also noted reduction after receiving anti-PD-1 treatment, correlated with more prolonged overall survival. In our patient's cohort, 22.9% relapsed during treatment, and 45% developed recurrence, associated with factors such as lymph node infiltration, high mitotic index, and positive staining for CD117. Although overall analysis revealed miR-155 downregulation in melanoma specimens compared to non-cancer tissues, increased expression of miR-155 was associated with cases of superficial spreading melanoma subtype (p = 0.005) and any melanoma with a high mitotic rate (p = 0.010). The analysis did not identify optimum cutoff values to predict relapse, recurrence, or mortality. In conclusion, miR-155 could have, in part, a potential prognostic utility in cutaneous melanoma. Further mechanistic studies are required to unravel the multifunctional role of miR-155 in melanoma.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Naglaa A. Bayomy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Amin K. Makhdoom
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Khalid S. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Mukhlef
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
39
|
Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EGE, El-Husseiny AA, Khidr EG, Ali EM, Rashed MH, El-Demerdash FES, Doghish AS. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract 2023; 244:154411. [PMID: 36921547 DOI: 10.1016/j.prp.2023.154411] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Endometrial cancer (EC) is the 2nd common cancer in females after breast cancer. Besides, it's the most common among gynecological cancers. Several epigenetic factors such as miRNAs have been reported to affect EC aspects including initiation, progression, angiogenesis, and resistance to therapy. miRNAs could regulate the expression of various genes involved in EC pathogenesis. This effect is attributed to miRNAs' effects in proliferation, apoptosis, cell cycle, angiogenesis, invasion, and metastasis. miRNAs also influence crucial EC-related mechanistic pathways such as JAK/STAT axis, EGFR, TGF-β signaling, and P53. Beside pathogenesis, miRNAs also have the potential to affect EC response to treatments including radio and chemotherapy. Thus, this review aims to illustrate the link between miRNAs and EC; focusing on the effects of miRNAs on EC signaling pathways.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Esraa M Ali
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Helmy Rashed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Fatma El-Saeed El-Demerdash
- Department of Zoology and Entomology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
40
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
41
|
Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Identification of Driver Genes and miRNAs in Ovarian Cancer through an Integrated In-Silico Approach. BIOLOGY 2023; 12:biology12020192. [PMID: 36829472 PMCID: PMC9952540 DOI: 10.3390/biology12020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the eighth-most common cancer in women and has the highest rate of death among all gynecological malignancies in the Western world. Increasing evidence shows that miRNAs are connected to the progression of ovarian cancer. In the current study, we focus on the identification of miRNA and its associated genes that are responsible for the early prognosis of patients with ovarian cancer. The microarray dataset GSE119055 used in this study was retrieved via the publicly available GEO database by NCBI for the analysis of DEGs. The miRNA GSE119055 dataset includes six ovarian carcinoma samples along with three healthy/primary samples. In our study, DEM analysis of ovarian carcinoma and healthy subjects was performed using R Software to transform and normalize all transcriptomic data along with packages from Bioconductor. Results: We identified miRNA and its associated hub genes from the samples of ovarian cancer. We discovered the top five upregulated miRNAs (hsa-miR-130b-3p, hsa-miR-18a-5p, hsa-miR-182-5p, hsa-miR-187-3p, and hsa-miR-378a-3p) and the top five downregulated miRNAs (hsa-miR-501-3p, hsa-miR-4324, hsa-miR-500a-3p, hsa-miR-1271-5p, and hsa-miR-660-5p) from the network and their associated genes, which include seven common genes (SCN2A, BCL2, MAF, ZNF532, CADM1, ELAVL2, and ESRRG) that were considered hub genes for the downregulated network. Similarly, for upregulated miRNAs we found two hub genes (PRKACB and TAOK1).
Collapse
Affiliation(s)
- Anam Beg
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence: or (A.B.); (R.P.); Tel.: +91-965-049-3477 (R.P.)
| | - Rafat Parveen
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence: or (A.B.); (R.P.); Tel.: +91-965-049-3477 (R.P.)
| | - Hassan Fouad
- Applied Medical Science Department, CC, King Saud University, Riyadh 11433, Saudi Arabia
| | - M. E. Yahia
- Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička Cesta 15, Ilidža, 71210 Sarajevo, Bosnia and Herzegovina
| | - Azza S. Hassanein
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
| |
Collapse
|
42
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
43
|
In silico Identification of Hypoxic Signature followed by reverse transcription-quantitative PCR Validation in Cancer Cell Lines. IRANIAN BIOMEDICAL JOURNAL 2023; 27:23-33. [PMID: 36624663 PMCID: PMC9971715 DOI: 10.52547/ibj.3803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Hypoxic tumor microenvironment is one of the important impediments for conventional cancer therapy. This study aimed to computationally identify hypoxia-related messenger RNA (mRNA) signatures in nine hypoxic-conditioned cancer cell lines and investigate their role during hypoxia. Methods Nine RNA sequencing (RNA-Seq) expression data sets were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in each cancer cell line. Then 23 common DEGs were selected by comparing the gene lists across the nine cancer cell lines. Reverse transcription-quantitative PCR (qRT-PCR) was performed to validate the identified DEGs. Results By comparing the data sets, GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, CA9, EGLN3, HK, PDK1, KDM3A, UBC, and P4HA1 were identified as hub genes. In addition, miR-335-5p, miR-122-5p, miR-6807-5p, miR-1915-3p, miR-6764-5p, miR-92-3p, miR-23b-3p, miR-615-3p, miR-124-3p, miR-484, and miR-455-3p were determined as common micro RNAs. Four DEGs were selected for mRNA expression validation in cancer cells under normoxic and hypoxic conditions with qRT-PCR. The results also showed that the expression levels determined by qRT-PCR were consistent with RNA-Seq data. Conclusion The identified protein-protein interaction network of common DEGs could serve as potential hypoxia biomarkers and might be helpful for improving therapeutic strategies.
Collapse
|
44
|
Slonim LB, Mangold KA, Alikhan MB, Joseph N, Reddy KS, Sabatini LM, Kaul KL. Cell-free Nucleic Acids in Cancer: Current Approaches, Challenges, and Future Directions. Clin Lab Med 2022; 42:669-686. [PMID: 36368789 DOI: 10.1016/j.cll.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liron Barnea Slonim
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Mir B Alikhan
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Nora Joseph
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Kalpana S Reddy
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Linda M Sabatini
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Karen L Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201.
| |
Collapse
|
45
|
Mohammadi E, Aliarab A, Babaei G, Habibi NK, Jafari SM, Mir SM, Memar MY. MicroRNAs in esophageal squamous cell carcinoma: Application in prognosis, diagnosis, and drug delivery. Pathol Res Pract 2022; 240:154196. [PMID: 36356334 DOI: 10.1016/j.prp.2022.154196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in various cell biology processes, including cancer formation. These small non-coding RNAs could function as diagnostic and prognostic markers. They may involve esophageal squamous cell carcinoma (ESCC) and distinctive miRNA expression profiles; they are also known as therapeutic targets in human diseases. Therefore, in this study, the function of miRNAs was reviewed regarding the prognosis and diagnosis of ESCC. The changes in miRNAs before and after cancer therapy and the effects of miRNAs on chemo-susceptibility patterns were also investigated. MiRNA delivery systems in ESCC were also highlighted, providing a perspective on how these systems can improve miRNA efficiency.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasim Kouhi Habibi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Moreira FC, Sarquis DP, de Souza JES, Avelar DDS, Araújo TMT, Khayat AS, dos Santos SEB, de Assumpção PP. Treasures from trash in cancer research. Oncotarget 2022; 13:1246-1257. [PMID: 36395362 PMCID: PMC9671455 DOI: 10.18632/oncotarget.28308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cancer research has significantly improved in recent years, primarily due to next-generation sequencing (NGS) technology. Consequently, an enormous amount of genomic and transcriptomic data has been generated. In most cases, the data needed for research goals are used, and unwanted reads are discarded. However, these eliminated data contain relevant information. Aiming to test this hypothesis, genomic and transcriptomic data were acquired from public datasets. MATERIALS AND METHODS Metagenomic tools were used to explore genomic cancer data; additional annotations were used to explore differentially expressed ncRNAs from miRNA experiments, and variants in adjacent to tumor samples from RNA-seq experiments were also investigated. RESULTS In all analyses, new data were obtained: from DNA-seq data, microbiome taxonomies were characterized with a similar performance of dedicated metagenomic research; from miRNA-seq data, additional differentially expressed sncRNAs were found; and in tumor and adjacent to tumor tissue data, somatic variants were found. CONCLUSIONS These findings indicate that unexplored data from NGS experiments could help elucidate carcinogenesis and discover putative biomarkers with clinical applications. Further investigations should be considered for experimental design, providing opportunities to optimize data, saving time and resources while granting access to multiple genomic perspectives from the same sample and experimental run.
Collapse
Affiliation(s)
- Fabiano Cordeiro Moreira
- Núcleo de Pesquisas em Oncologia/Universidade Federal do Pará, Belém, Pará, Brazil
- Co-first authors
| | - Dionison Pereira Sarquis
- Núcleo de Pesquisas em Oncologia/Universidade Federal do Pará, Belém, Pará, Brazil
- Co-first authors
| | | | | | | | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia/Universidade Federal do Pará, Belém, Pará, Brazil
| | - Sidney Emanuel Batista dos Santos
- Núcleo de Pesquisas em Oncologia/Universidade Federal do Pará, Belém, Pará, Brazil
- Instituto de Ciências Biológicas/Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
47
|
Ahmed R, Samanta S, Banerjee J, Kar SS, Dash SK. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100131. [PMID: 36568259 PMCID: PMC9780070 DOI: 10.1016/j.crphar.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Over the past few decades, thyroid cancer has become one of the most common types of endocrine cancer, contributing to an increase in prevalence. In the year 2020, there were 586,202 newly diagnosed cases of thyroid cancer around the world. This constituted approximately 3.0% of all patients diagnosed with cancer. The World Health Organization reported that there will be 2.3 million women receiving treatment for breast cancer in 2020, with 685,000. Despite the fact that carcinoma is one of the world's leading causes of death, there is still a paucity of information about its biology. MicroRNAs (miRNAs; miRs) are non-coding RNAs that can reduce gene expression by cleaving the 3' untranslated regions of mRNA. These factors make them a potential protein translation inhibitor. Diverse biological mechanisms implicated in the genesis of cancer are modulated by miRNA. The investigation of global miRNA expression in cancer showed regulatory activity through up regulation and down-regulation in several cancers, including thyroid cancer and breast cancer. In thyroid cancer, miRNA influences several cancers related signaling pathways through modulating MAPK, PI3K, and the RAS pathway. In breast cancer, the regulatory activity of miRNA was played through the cyclin protein family, protein kinases and their inhibitors, and other growth promoters or suppressors, which modulated cell proliferation and cell cycle progression. This article's goal is to discuss key miRNA expressions that are involved in the development of thyroid and breast cancer as well as their therapeutic manipulation for these two specific cancer types.
Collapse
Affiliation(s)
- Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College and Hospital, Kolkata, 700004, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India,Corresponding author.
| |
Collapse
|
48
|
Cheong JK, Rajgor D, Lv Y, Chung KY, Tang YC, Cheng H. Noncoding RNome as Enabling Biomarkers for Precision Health. Int J Mol Sci 2022; 23:10390. [PMID: 36142304 PMCID: PMC9499633 DOI: 10.3390/ijms231810390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Noncoding RNAs (ncRNAs), in the form of structural, catalytic or regulatory RNAs, have emerged to be critical effectors of many biological processes. With the advent of new technologies, we have begun to appreciate how intracellular and circulatory ncRNAs elegantly choreograph the regulation of gene expression and protein function(s) in the cell. Armed with this knowledge, the clinical utility of ncRNAs as biomarkers has been recently tested in a wide range of human diseases. In this review, we examine how critical factors govern the success of interrogating ncRNA biomarker expression in liquid biopsies and tissues to enhance our current clinical management of human diseases, particularly in the context of cancer. We also discuss strategies to overcome key challenges that preclude ncRNAs from becoming standard-of-care clinical biomarkers, including sample pre-analytics standardization, data cross-validation with closer attention to discordant findings, as well as correlation with clinical outcomes. Although harnessing multi-modal information from disease-associated noncoding RNome (ncRNome) in biofluids or in tissues using artificial intelligence or machine learning is at the nascent stage, it will undoubtedly fuel the community adoption of precision population health.
Collapse
Affiliation(s)
- Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- NUS Centre for Cancer Research, Singapore 117599, Singapore
| | | | - Yang Lv
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | | | | | - He Cheng
- MiRXES Lab, Singapore 138667, Singapore
| |
Collapse
|
49
|
Chen X, Yu L, Hao K, Yin X, Tu M, Cai L, Zhang L, Pan X, Gao Q, Huang Y. Fucosylated exosomal miRNAs as promising biomarkers for the diagnosis of early lung adenocarcinoma. Front Oncol 2022; 12:935184. [PMID: 36033494 PMCID: PMC9414872 DOI: 10.3389/fonc.2022.935184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Considering the absence of apparent symptoms at the early stage, most patients with lung adenocarcinoma (LUAD) present at an advanced stage, leading to a dismal 5-year survival rate of <20%. Thus, finding perspective non-invasive biomarkers for early LUAD is very essential. Methods We developed a fucose-captured strategy based on lentil lectin-magnetic beads to isolate fucosylated exosomes from serum. Then, a prospective study was conducted to define the diagnostic value of serum exosomal miRNAs for early LUAD. A total of 310 participants were enrolled, including 146 LUAD, 98 benign pulmonary nodules (BPNs), and 66 healthy controls (HCs). Firstly, exosome miRNAs in the discovery cohort (n = 24) were profiled by small RNA sequencing. Secondly, 12 differentially expressed miRNAs (DEmiRs) were selected for further screening in a screening cohort (n = 64) by qRT-PCR. Finally, four candidate miRNAs were selected for further validation in a validating cohort (n = 222). Results This study demonstrated the feasibility of a fucose-captured strategy for the isolation of fucosylated exosomes from serum, evidenced with exosomal characteristics identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting, as well as rapid and convenient operation of <10 min. Furthermore, a miRNA panel for early LUAD composed of miR4732-5p, miR451a, miR486-5p, and miR139-3p was defined with an AUC of 0.8554 at 91.07% sensitivity and 66.36% specificity. Conclusions The fucose-captured strategy provides a reliable, as well as rapid and convenient, approach for the isolation of tumor-derived exosomes from serum. A four-fucosylated exosomal miRNA panel presents good performance for early LUAD diagnosis.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, China
| | - Lili Yu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Kun Hao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
| | - Xiaoqing Yin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liqing Cai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liangming Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Qi Gao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
- *Correspondence: Yi Huang, ; Qi Gao,
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Yi Huang, ; Qi Gao,
| |
Collapse
|
50
|
Tonmoy MIQ, Fariha A, Hami I, Kar K, Reza HA, Bahadur NM, Hossain MS. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci Rep 2022; 12:10260. [PMID: 35715447 PMCID: PMC9205881 DOI: 10.1038/s41598-022-13381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh. .,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|