1
|
Fadil SA, Aljoud FA, Yonbawi AR, Almalki AJ, Hareeri RH, Ashi A, AlQriqri MA, Bawazir NS, Alshangiti HH, Shaala LA, Youssef DTA, Alkhilaiwi FA. Red Sea Sponge Callyspongia siphonella Extract Induced Growth Inhibition and Apoptosis in Breast MCF-7 and Hepatic HepG-2 Cancer Cell Lines in 2D and 3D Cell Cultures. Onco Targets Ther 2024; 17:521-536. [PMID: 38948385 PMCID: PMC11214578 DOI: 10.2147/ott.s467083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 μg/mL and 64.4 ± 8 μg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 μg/mL for MCF-7 and 166.4 ± 27 μg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.
Collapse
Affiliation(s)
- Sana A Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa A Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Ahmed R Yonbawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abrar Ashi
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mehal Atallah AlQriqri
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nada S Bawazir
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadeel H Alshangiti
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lamiaa A Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia, 41522, Egypt
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Diaa T A Youssef
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41523, Egypt
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Yildirim M, Degirmenci U, Akkapulu M, Gungor M, Oztornacı RO, Berkoz M, Comelekoglu U, Yalın AE, Yalın S. Anti-Inflammatory Effects of Usnic Acid in Breast Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Di Meo F, Esposito R, Cuciniello R, Favale G, Arenga M, Ruocco N, Nuzzo G, Fontana A, Filosa S, Crispi S, Costantini M. Organic extract of Geodia cydonium induces cell cycle block in human mesothelioma cells. Oncol Lett 2022; 24:286. [PMID: 35814825 PMCID: PMC9260718 DOI: 10.3892/ol.2022.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Francesco Di Meo
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Zoological Station Anton Dohrn, I‑80121 Naples, Italy
| | - Rossana Cuciniello
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Gregorio Favale
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Mario Arenga
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Zoological Station Anton Dohrn, I‑80121 Naples, Italy
| | - Genoveffa Nuzzo
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council, I‑80078 Naples, Italy
| | - Angelo Fontana
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council, I‑80078 Naples, Italy
| | - Stefania Filosa
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Stefania Crispi
- Department of Biology, Agriculture and Food Science, Institute of Biosciences and BioResources‑UOS Naples, National Research Council, I‑80131 Naples, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Zoological Station Anton Dohrn, I‑80121 Naples, Italy
| |
Collapse
|
4
|
Esposito R, Federico S, Bertolino M, Zupo V, Costantini M. Marine Demospongiae: A Challenging Treasure of Bioactive Compounds. Mar Drugs 2022; 20:244. [PMID: 35447918 PMCID: PMC9032870 DOI: 10.3390/md20040244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cin-thia 21, 80126 Naples, Italy
| | - Serena Federico
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| |
Collapse
|
5
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Ruocco N, Esposito R, Zupo V, Costantini M. Metataxonomic Analysis of Bacterial Diversity Associated with Marine Organisms. Methods Mol Biol 2022; 2498:253-264. [PMID: 35727548 DOI: 10.1007/978-1-0716-2313-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present era marine biotechnologies are dominating the world of scientific research assisted by great advances in molecular biology techniques, and microbial community analysis provides useful tool to investigate their diversity and their potential for biotechnological applications. In fact, several marine organisms harbor diverse microbial associated communities, which play key roles for their host functioning and are rich sources of bioactive natural compounds. Here, we describe the fundamental steps of metataxonomic analysis of microbial communities associated with marine organisms.
Collapse
Affiliation(s)
- Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Naples, Italy
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Naples, Italy.
| |
Collapse
|
7
|
Alves J, Gaspar H, Silva J, Alves C, Martins A, Teodoro F, Susano P, Pinteus S, Pedrosa R. Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline. Mar Drugs 2021; 19:632. [PMID: 34822503 PMCID: PMC8625174 DOI: 10.3390/md19110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.
Collapse
Affiliation(s)
- Joana Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
8
|
Ruocco N, Esposito R, Zagami G, Bertolino M, De Matteo S, Sonnessa M, Andreani F, Crispi S, Zupo V, Costantini M. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep 2021; 11:21151. [PMID: 34707182 PMCID: PMC8551288 DOI: 10.1038/s41598-021-00713-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Roberta Esposito
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giacomo Zagami
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | - Marco Bertolino
- grid.5606.50000 0001 2151 3065DISTAV, Università Degli Studi Di Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sergio De Matteo
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | | | | | - Stefania Crispi
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources Naples, National Research Council of Italy, Naples, Italy
| | - Valerio Zupo
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Costantini
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
9
|
Zhu X, Sun Y, Zhang Y, Su X, Luo C, Alarifi S, Yang H. Dieckol alleviates dextran sulfate sodium-induced colitis via inhibition of inflammatory pathway and activation of Nrf2/HO-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:782-788. [PMID: 33331035 DOI: 10.1002/tox.23080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Ulcerative colitis (UC) is the major type of inflammatory ailment with elevated prevalence worldwide. Dieckol (DEK) is a phlorotannin that is extensively found in marine algae and has been found to have different pharmacological properties. Nevertheless, the impact of DEK in UC has not been investigated earlier. Therefore, we appraised DEK's function in dextran sulfate sodium (DSS)-induced UC in the mouse. An overall of 30 mice was randomized into 5 equal groups. Control mice treated with a standard diet (group I), colitis mice challenged with 3% of DSS through drinking water for 7 consecutive days (group II), DEK was supplemented via oral gavage from day 1 to 10 at the dosages of 5, 10, and 15 mg/kg b.wt, respectively. All animals were sacrificed on the 11th day. The body weight (bwt), colon length, disease activity index, malondialdehyde (MDA), myeloperoxidase (MPO), and histological features were observed using suitable techniques, and COX-2 expression was investigated by immunohistochemistry. Moreover, TNF-α, IL-1β, p65, IκBα, HO-1, and Nrf2 expressions were measured using ELISA and RT-PCR techniques, respectively. DEK treatment to the colitis mice considerably lessened, DSS-challenged alterations in body weight, DAI, colonic length shortening and histological changes. DEK exhibited potent antioxidant effects due to the reduced MDA and MPO, and Nrf2 expression markers while the HO-1 marker was augmented. Additionally, DEK also suppressed the expression s of TNF-α, IL-1β, and the p-p65, p-IκBα, and p65 and augmented the expression of IκBα, which eventually proved the anti-inflammatory potential of DEK against the DSS-challenge. Based on these results, DEK has been found effective in mitigating colitis, conceivably alleviating colon inflammation through the NF-κB inhibition and triggering of Nrf2/HO-1 signaling cascade.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, PR China
| | - Yuanhua Sun
- Department of Surgery, Xintai People's Hospital, Xintai, China
| | - Ying Zhang
- The School Hospital, Shandong University of Finance and Economics, Jinan, China
| | - Xinyou Su
- Department of Oncology, Jinan Central Hospital Affiliated Shandong University, Jinan, PR China
| | - Changqin Luo
- Department of Gastroenterology, Ankang Central Hospital, Ankang City, China
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University Xibei Hospital, Xi'an, China
| |
Collapse
|
10
|
Hadisaputri YE, Andika R, Sopyan I, Zuhrotun A, Maharani R, Rachmat R, Abdulah R. Caspase Cascade Activation During Apoptotic Cell Death of Human Lung Carcinoma Cells A549 Induced by Marine Sponge Callyspongia aerizusa. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1357-1368. [PMID: 33824580 PMCID: PMC8018393 DOI: 10.2147/dddt.s282913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
Abstract
Introduction In this study, Callyspongia aerizusa (CA), one of the most popular marine sponges for cancer therapy research, was investigated for its phytochemical compounds and evaluated for its anticancer activity in various cell lines. Since lung cancer is the most frequently diagnosed cancer, a solution from this marine source is a good choice to address the resistance to anticancer agents. Elucidation of the underlying mechanism of cell death elicited by a CA extract in human lung carcinoma cells A549 was undertaken. Methods The presence of secondary metabolites in CA methanol extract was revealed by gas chromatography-mass spectrometry (GC-MS) and evaluated on four cancerous cell lines and a non-cancerous cell line using Cell Counting Kit-8. Since the activity of CA extract in A549 cells was then evaluated through clonogenic assay, morphological detection of apoptosis, polymerase chain reaction (PCR) and Western blot assay, were also presented in this study. Results GC-MS analysis revealed the presence of two ergosteroids, ergost-22-en-3-one, (5β,22E), and ergost-7-en-3-ol, (35β) in the sponge extract that was suggested to suppress A549 cells (IC50 9.38 μg/mL), and another cancerous cell’s viability (IC50 3.12–10.72 μg/mL) in 24 h, but not in the non-cancerous cells. Moreover, CA extract was also able to reduce the colony-forming ability of A549 cells, and through A549 cells morphology seems that apoptosis is the underlying mechanism of cell death. Further, the treatment with CA extract induced the up-regulation of caspase-9, caspase-3, and PARP-1, and the down-regulation of BCL-2, in both mRNA and proteins expression level, promoting apoptotic cell death via caspase cascade. Conclusion These findings suggest that the compounds in CA extract possess the ability to induce apoptotic cell death in A549 cells and could become a promising candidate for future anticancer therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rheza Andika
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Iyan Sopyan
- Department of Pharmaceutical and Pharmacy Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rani Maharani
- Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia.,Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rachmaniar Rachmat
- Oceanographic Research Center, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
11
|
Zupo V, Scibelli S, Mutalipassi M, Ruocco N, Esposito F, Macina A, Polese G, Di Cosmo A, Costantini M. Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants. Sci Rep 2020; 10:11295. [PMID: 32647309 PMCID: PMC7347631 DOI: 10.1038/s41598-020-68031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 11/09/2022] Open
Abstract
The sea squirt Ciona robusta is a model organism characterized by a transparent body, exhibiting peculiar physiologic and evolutionary characters. In vitro fertilization and breeding of sea squirts is possible, in order to preserve consistent genetic pools. However, some aspects of its biology, as the feeding efficiency according to diet quantity and quality, are still scarcely known. Here we test the effects of three experimental diets on survival and growth, to detect physiological and molecular responses to various types of alimentary suspended particles and the effects of feed concentrations. We also aimed at determining rearing conditions able to limit handling operations, save artificial seawater and control water pollution. Molecular analyses of growth-related genes were performed to detect stressful effects due to feed quality and quantity. A strong effect of doses was highlighted, but water pollution may represent a major concern. A compound diet containing both live algae and non-live particles of a correct size is indispensable to assure development, low stress and high survival rates. Overall, our findings suggest protocols for an easier rearing of Ciona robusta in the laboratory, increasing the potentialities of these organisms as models for research.
Collapse
Affiliation(s)
- Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Sebastiano Scibelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
- Department of Biology, University Federico II of Naples, Monte Sant'Angelo, 80126, Naples, Italy
| | - Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Francesco Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alberto Macina
- Department of Research Infrastructures for Marine Biological Resources, Marine Organism Core Facility, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Gianluca Polese
- Department of Biology, University Federico II of Naples, Monte Sant'Angelo, 80126, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, University Federico II of Naples, Monte Sant'Angelo, 80126, Naples, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
12
|
Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar Drugs 2020; 18:md18030147. [PMID: 32121638 PMCID: PMC7142576 DOI: 10.3390/md18030147] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.
Collapse
Affiliation(s)
| | | | - Janeusa T. Souto
- Correspondence: ; Tel.: +55-84-99908-7027; Fax: +55-84-3215-3311
| |
Collapse
|
13
|
Wali AF, Majid S, Rasool S, Shehada SB, Abdulkareem SK, Firdous A, Beigh S, Shakeel S, Mushtaq S, Akbar I, Madhkali H, Rehman MU. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J 2019; 27:767-777. [PMID: 31516319 PMCID: PMC6733955 DOI: 10.1016/j.jsps.2019.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022] Open
Abstract
Marine natural products have as of now been acknowledged as the most important source of bioactive substances and drug leads. Marine flora and fauna, such as algae, bacteria, sponges, fungi, seaweeds, corals, diatoms, ascidian etc. are important resources from oceans, accounting for more than 90% of the total oceanic biomass. They are taxonomically different with huge productive and are pharmacologically active novel chemical signatures and bid a tremendous opportunity for discovery of new anti-cancer molecules. The water bodies a rich source of potent molecules which improve existence suitability and serve as chemical shield against microbes and little or huge creatures. These molecules have exhibited a range of biological properties antioxidant, antibacterial, antitumour etc. In spite of huge resources enriched with exciting chemicals, the marine floras and faunas are largely unexplored for their anticancer properties. In recent past, numerous marine anticancer compounds have been isolated, characterized, identified and are under trials for human use. In this write up we have tried to compile about marine-derived compounds anticancer biological activities of diverse flora and fauna and their underlying mechanisms and the generous raise in these compounds examined for malignant growth treatment in the course of the most recent quite a long while.
Collapse
Affiliation(s)
- Adil Farooq Wali
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Shabhat Rasool
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Samar Bassam Shehada
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Shahad Khalid Abdulkareem
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Aimen Firdous
- Department of Processing Technology, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad 682506, Kerala, India
| | - Saba Beigh
- Institut de Biologie, Molecular et Cellulaire, CNRS, immunopathologie et Chimie Therapeutique, Strasbourg Cedex, France
| | - Sheeba Shakeel
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences, University of Kashmir, Srinagar 110006, J&K, India
| | - Saima Mushtaq
- Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama 190006, J&K, India
| | - Imra Akbar
- School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Hassan Madhkali
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| |
Collapse
|
14
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
15
|
Di X, Oskarsson JT, Omarsdottir S, Freysdottir J, Hardardottir I. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4 + T cells. PHARMACEUTICAL BIOLOGY 2017; 55:2116-2122. [PMID: 28876152 PMCID: PMC6130455 DOI: 10.1080/13880209.2017.1373832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. OBJECTIVE This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. MATERIALS AND METHODS Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4+ T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. RESULTS Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. DISCUSSION AND CONCLUSIONS These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.
Collapse
Affiliation(s)
- Xiaxia Di
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
| | - Jon T. Oskarsson
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Centre for Rheumatology Research, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | | | - Jona Freysdottir
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Centre for Rheumatology Research, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
- CONTACT Ingibjorg HardardottirFaculty of Medicine, Biomedical Center, University of Iceland, Vatnsmyrarvegur 16, 101Reykjavik, Iceland
| |
Collapse
|
16
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
17
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
18
|
Costantini S, Guerriero E, Teta R, Capone F, Caso A, Sorice A, Romano G, Ianora A, Ruocco N, Budillon A, Costantino V, Costantini M. Evaluating the Effects of an Organic Extract from the Mediterranean Sponge Geodia cydonium on Human Breast Cancer Cell Lines. Int J Mol Sci 2017; 18:ijms18102112. [PMID: 28991212 PMCID: PMC5666794 DOI: 10.3390/ijms18102112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
Marine sponges are an excellent source of bioactive secondary metabolites for pharmacological applications. In the present study, we evaluated the chemistry, cytotoxicity and metabolomics of an organic extract from the Mediterranean marine sponge Geodia cydonium, collected in coastal waters of the Gulf of Naples. We identified an active fraction able to block proliferation of breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB468 and to induce cellular apoptosis, whereas it was inactive on normal breast cells (MCF-10A). Metabolomic studies showed that this active fraction was able to interfere with amino acid metabolism, as well as to modulate glycolysis and glycosphingolipid metabolic pathways. In addition, the evaluation of the cytokinome profile on the polar fractions of three treated breast cancer cell lines (compared to untreated cells) demonstrated that this fraction induced a slight anti-inflammatory effect. Finally, the chemical entities present in this fraction were analyzed by liquid chromatography high resolution mass spectrometry combined with molecular networking.
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Eliana Guerriero
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Roberta Teta
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Alessia Caso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Angela Sorice
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
19
|
Ma JC, Sun XW, Su H, Chen Q, Guo TK, Li Y, Chen XC, Guo J, Gong ZQ, Zhao XD, Qi JB. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer. World J Gastroenterol 2017; 23:5167-5178. [PMID: 28811711 PMCID: PMC5537183 DOI: 10.3748/wjg.v23.i28.5167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells.
METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells (HUVECs) were determined by enzyme-linked immunosorbent assay, and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/mTOR signaling by CXCL12 involved in the metastatic process of colon cancer.
RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration (P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells (P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/mTOR pathway.
CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells, and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/mTOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.
Collapse
|
20
|
Sorice A, Siano F, Capone F, Guerriero E, Picariello G, Budillon A, Ciliberto G, Paolucci M, Costantini S, Volpe MG. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules 2016; 21:molecules21101411. [PMID: 27775667 PMCID: PMC6273950 DOI: 10.3390/molecules21101411] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, a hydroalcoholic chestnut shell extract was characterized and tested on six different human cell lines. Gallic, ellagic, and syringic acids were the most abundant non-condensed compounds in the chestnut extract, as determined by high performance liquid chromatography (HPLC). Tannins were mainly represented by condensed monomeric units of epigallocatechin and catechin/epicatechin. After 48 h of treatment, only the human hepatoblastoma HepG2 cells reached an inhibition corresponding to IC50 with an increase of apoptosis and mitochondrial depolarization. The cytokinome evaluation before and after treatment revealed that the vascular endothelial growth factor (VEGF) and the tumor necrosis factor (TNF)-α decreased after the treatment, suggesting a potential anti-angiogenic and anti-inflammatory effect of this extract. Moreover, the metabolome evaluation by 1H-NMR evidenced that the polyphenols extracted from chestnut shell (PECS) treatment affected the levels of some amino acids and other metabolites. Overall, these data highlight the effects of biomolecules on cell proliferation, apoptosis, cell cycle and mitochondrial depolarization, and on cytokinomics and metabolomics profiles.
Collapse
Affiliation(s)
- Angela Sorice
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli 80131, Italy.
| | - Francesco Siano
- Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Alimentazione, Via Roma 64, Avellino 83100, Italy.
| | - Francesca Capone
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli 80131, Italy.
| | - Eliana Guerriero
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli 80131, Italy.
| | - Gianluca Picariello
- Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Alimentazione, Via Roma 64, Avellino 83100, Italy.
| | - Alfredo Budillon
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli 80131, Italy.
| | - Gennaro Ciliberto
- Direttore Scientifico, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", Napoli 80131, Italy.
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port'Arsa 11, Benevento 82100, Italy.
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli 80131, Italy.
| | - Maria Grazia Volpe
- Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Alimentazione, Via Roma 64, Avellino 83100, Italy.
| |
Collapse
|
21
|
Differential Response of Two Human Breast Cancer Cell Lines to the Phenolic Extract from Flaxseed Oil. Molecules 2016; 21:319. [PMID: 27005599 PMCID: PMC6274312 DOI: 10.3390/molecules21030319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
Many studies have evidenced that the phenolic components from flaxseed (FS) oil have potential health benefits. The effect of the phenolic extract from FS oil has been evaluated on two human breast cancer cell lines, MCF7 and MDA-MB231, and on the human non-cancerous breast cell line, MCF10A, by SRB assay, cellular death, cell cycle, cell signaling, lipid peroxidation and expression of some key genes. We have evidenced that the extract shows anti-proliferative activity on MCF7 cells by inducing cellular apoptosis, increase of the percentage of cells in G0/G1 phase and of lipid peroxidation, activation of the H2AX signaling pathway, and upregulation of a six gene signature. On the other hand, on the MDA-MB2131 cells we verified only an anti-proliferative activity, a weak lipid peroxidation, the activation of the PI3K signaling pathway and an up-regulation of four genes. Overall these data suggest that the extract has both cytotoxic and pro-oxidant effects only on MCF7 cells, and can act as a metabolic probe, inducing differences in the gene expression. For this purpose, we have performed an interactomic analysis, highlighting the existing associations. From this approach, we show that the phenotypic difference between the two cell lines can be explained through their differential response to the phenolic extract.
Collapse
|