1
|
Sheela S, Kheder W, Samsudin ABR. Investigating the influence of titanium particle size and concentration on osteogenic response of human osteoblasts - in vitro study. Biomater Investig Dent 2024; 11:40843. [PMID: 38903775 PMCID: PMC11187976 DOI: 10.2340/biid.v11.40843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose The purpose of this study was to investigate the correlation between the size and concentration of titanium particles and the osteogenic response of human osteoblasts (HOB). Materials and Methods Different concentrations of titanium dioxide nano- and micro-particles were prepared and their biocompatibility on HOBs was analyzed using XTT assay. The changes in the actin cytoskeletal organization were studied by confocal laser scanning microscopy. The generation of intracellular reactive oxygen species (ROS) by HOBs after exposure to titanium dioxide particles was analyzed using ROS assay. Besides, the osteogenic potential represented by alkaline phosphatase activity, osteoprotegerin, macrophage colony stimulating factor levels, and biomineralization were analyzed. Results Short-term interaction of titanium dioxide nano- and micro-particles did not induce toxicity to HOBs. However, cells treated with 100 μg/mL titanium dioxide nano- and micro-particles demonstrated higher ROS generation compared to control. Besides, cells treated with 100 μg/mL titanium dioxide nanoparticles showed higher alkaline phosphatase activity, osteoprotegerin, macrophage colony stimulating factor levels and biomineralization compared to titanium dioxide microparticles. Conclusion Collectively, the study found titanium dioxide nanoparticles to be more biocompatible than microparticles providing an insight into the capability of nanostructures in supporting osteoblast differentiation and its plausibility in biomedical applications.
Collapse
Affiliation(s)
- Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Waad Kheder
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - A B Rani Samsudin
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Sefa S, Espiritu J, Ćwieka H, Greving I, Flenner S, Will O, Beuer S, Wieland DF, Willumeit-Römer R, Zeller-Plumhoff B. Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants. Bioact Mater 2023; 30:154-168. [PMID: 37575877 PMCID: PMC10412723 DOI: 10.1016/j.bioactmat.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.
Collapse
Affiliation(s)
- Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Susanne Beuer
- Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen, Germany
| | - D.C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
3
|
Ødegaard KS, Westhrin M, Afif AB, Ma Q, Mela P, Standal T, Elverum CW, Torgersen J. The effects of surface treatments on electron beam melted Ti-6Al-4V disks on osteogenesis of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2023; 147:213327. [PMID: 36841111 DOI: 10.1016/j.bioadv.2023.213327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Additive manufactured (AM) Titanium-6Aluminum-4Vanadium (Ti64) scaffolds display unique mechanical and biological properties for implant devices. The elastic modulus can be tailored by adjusting the porosity, further facilitating bone ingrowth. Although Ti64 implants are biocompatible, the effects of AM surfaces without porous structures, and how the topography and surface chemistry of the respective surfaces affect the osteogenesis of bone marrow-derived mesenchymal stromal cells (BMSCs) has not yet been revealed. In this paper, we cultured BMSCs on solid electron beam melted Ti64 disks subjected to three surface treatments: chemical etching (HF), atomic-layer deposition of TiO2 (TiO2), and polished (POL), or left untreated (AB). The biocompatibility and osteogenic properties of these surfaces were investigated, and the results were compared to cells cultured in regular tissue-culture polystyrene culturing wells (TCPS). The surfaces were hydrophobic, except for the polished surface which was hydrophilic. All surface treatments are biocompatible and allow for osteogenic differentiation, as revealed by viability assays and gene expression analysis. Scanning electron microscopy shows that cells adhere differently depending on the surface properties, with more filopodia on the rougher surfaces, AB and TiO2 disks, and more lamellipodia on the smoother surfaces, HF and POL disks. All groups stimulated with beta glycerophosphate, ascorbic acid, and dexamethasone, have elevated expression of genes related to matrix formation, where the cells cultured on the disks treated with TiO2, HF and POL have the overall highest expression. The AB group appears to be less favorable in regards to matrix formation. Considering the matrix mineralization, the rougher surfaces, AB and TiO2, are able to induce matrix mineralization, with an elevated gene expression of vitamin D receptors and calcium deposition of unstimulated cells. Finally, imaging at day 21 revealed an even amount of cells and matrix, covering most of the partially melted particles. Our results suggests that surface topography is more important to osteogenesis than the wettability of the surface. Overall, the present study contributes to the understanding of using surface modifications to AM Ti64 implant materials and reveals how they affect bone growth.
Collapse
Affiliation(s)
- Kristin S Ødegaard
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marita Westhrin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abdulla Bin Afif
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianli Ma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute for Biomedical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christer W Elverum
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Torgersen
- Chair of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany.
| |
Collapse
|
4
|
Surface Modification of Additively Fabricated Titanium-Based Implants by Means of Bioactive Micro-Arc Oxidation Coatings for Bone Replacement. J Funct Biomater 2022; 13:jfb13040285. [PMID: 36547545 PMCID: PMC9781821 DOI: 10.3390/jfb13040285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.
Collapse
|
5
|
Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11020235. [PMID: 35203837 PMCID: PMC8868456 DOI: 10.3390/antibiotics11020235] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Regarded as one of the best solutions to replace missing teeth in the oral cavity, dental implants have been the focus of plenty of studies and research in the past few years. Antimicrobial coatings are a promising solution to control and prevent bacterial infections that compromise the success of dental implants. In the last few years, new materials that prevent biofilm adhesion to the surface of titanium implants have been reported, ranging from improved methods to already established coating surfaces. The purpose of this review is to present the developed antimicrobial and antibiofilm coatings that may have the potential to reduce bacterial infections and improve the success rate of titanium dental implants. All referred coating surfaces showed high antimicrobial properties with effectiveness in biofilm control, while maintaining implant biocompatibility. We expect that by combining the use of oligonucleotide probes as a covering material with novel peri-implant adjuvant therapies, we will be able to avoid the downsides of other covering materials (such as antibiotic resistance), prevent bacterial infections, and raise the success rate of dental implants. The existing knowledge on the optimal coating material for dental implants is limited, and further research is needed before more definitive conclusions can be drawn.
Collapse
|
6
|
Dinu C, Berce C, Todea M, Vulpoi A, Leordean D, Bran S, Mitre I, Lazar MA, Crisan B, Crisan L, Rotaru H, Onisor F, Vacaras S, Barbur I, Baciut G, Baciut M, Armencea G. Bone quality around implants: a comparative study of coating with hydroxyapatite and SIO 2-TIO 2 of TI 6AL 7NB implants. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1636916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C. Dinu
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C. Berce
- Laboratory Animal Facility – Centre for Experimental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Todea
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - A. Vulpoi
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - D. Leordean
- Department of Manufacturing Engineering, Technical University, Cluj-Napoca, Romania
| | - S. Bran
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Mitre
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. A. Lazar
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - B. Crisan
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L. Crisan
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H. Rotaru
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - F. Onisor
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S. Vacaras
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Barbur
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Baciut
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Baciut
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Armencea
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Scandurra R, Scotto d’Abusco A, Longo G. A Review of the Effect of a Nanostructured Thin Film Formed by Titanium Carbide and Titanium Oxides Clustered around Carbon in Graphitic Form on Osseointegration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1233. [PMID: 32599955 PMCID: PMC7353133 DOI: 10.3390/nano10061233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Improving the biocompatibility of implants is an extremely important step towards improving their quality. In this review, we recount the technological and biological process for coating implants with thin films enriched in titanium carbide (TiC), which provide improved cell growth and osseointegration. At first, we discuss the use of a Pulsed Laser Ablation Deposition, which produced films with a good biocompatibility, cellular stimulation and osseointegration. We then describe how Ion Plating Plasma Assisted technology could be used to produce a nanostructured layer composed by graphitic carbon, whose biocompatibility is enhanced by titanium oxides and titanium carbide. In both cases, the nanostructured coating was compact and strongly bound to the bulk titanium, thus particularly useful to protect implants from the harsh oxidizing environment of biological tissues. The morphology and chemistry of the nanostructured coating were particularly desirable for osteoblasts, resulting in improved proliferation and differentiation. The cellular adhesion to the TiC-coated substrates was much stronger than to uncoated surfaces, and the number of philopodia and lamellipodia developed by the cells grown on the TiC-coated samples was higher. Finally, tests performed on rabbits confirmed in vivo that the osseointegration process of the TiC-coated implants is more efficient than that of uncoated titanium implants.
Collapse
Affiliation(s)
- Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche-Istituto di Struttura della Materia, Via del Fosso del Cavaliere, 00133 Roma, Italy;
| |
Collapse
|
8
|
Yu YJ, Zhu WQ, Xu LN, Ming PP, Shao SY, Qiu J. Osseointegration of titanium dental implant under fluoride exposure in rabbits: Micro-CT and histomorphometry study. Clin Oral Implants Res 2019; 30:1038-1048. [PMID: 31348555 DOI: 10.1111/clr.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aims to investigate the influence of fluoride exposure on implant osseointegration. METHODS A total of 24 male New Zealand white rabbits were randomly divided into the control group and the fluoride exposure group. Rabbits in the control group were fed with tap water, while those in the fluoride exposure group were given 200 mg/L sodium fluoride solution. After 2-month feeding, implants were inserted into the extraction socket immediately after extraction of rabbit mandibular anterior teeth. Four rabbits in each group were sacrificed to collect the implants samples at 1, 2, and 3 months post-implantation, respectively. Radiographic and histomorphometry examinations were performed to evaluate the condition of implant osseointegration. RESULTS Bone volume around the implants increased in a time-dependent manner in both groups. Micro-CT images illustrated that the bone mineral density (BMD) in the fluoride exposure group was significantly lower than that in the control group after implantation for 2 and 3 months. The bone-implant contact ratio (BIC) in the fluoride exposure group was much lower than that of the control group at 3 months post-implantation according to histomorphometry examination. CONCLUSIONS In rabbit animal model, high fluoride exposure affected the quality of bone surrounding the implant and significantly reduced bone integration of the implant, especially in the late stage of osseointegration.
Collapse
Affiliation(s)
- Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Pan-Pan Ming
- Department of Stomatology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based On Polysulfone-Quartz Fiber Grafted with Nano-TiO 2. NANOMATERIALS 2019; 9:nano9070985. [PMID: 31288413 PMCID: PMC6669488 DOI: 10.3390/nano9070985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
The polymer-inorganic nanoparticles composite membranes are the latest solutions for multiple physicochemical resistance and selectivity requirements of membrane processes. This paper presents the production of polysulfone-silica microfiber grafted with titanium dioxide nanoparticles (PSf-SiO2-TiO2) composite membranes. Silica microfiber of length 150-200 μm and diameter 12-15 μm were grafted with titanium dioxide nanoparticles, which aggregated as microspheres of 1-3 μm, applying the sol-gel method. The SiO2 microfibers grafted with nano-TiO2 were used to prepare 12% polysulfone-based nanocomposite membranes in N-methyl pyrrolidone through the inversion phase method by evaporation. The obtained nanocomposite membranes, PSf-SiO2-TiO2, have flux characteristics, retention, mechanical characteristics, and chemical oxidation resistance superior to both the polysulfone integral polymer membranes and the PSf-SiO2 composite membranes. The antimicrobial tests highlighted the inhibitory effect of the PSf-SiO2-TiO2 composite membranes on five Gram (-) microorganisms and did not allow the proliferation of Candida albicans strain, proving that they are suitable for usage in the oral environment. The designed membrane met the required characteristics for application as a functional barrier in guided bone regeneration.
Collapse
|
10
|
Jain S, Williamson RS, Janorkar AV, Griggs JA, Roach MD. Osteoblast response to nanostructured and phosphorus-enhanced titanium anodization surfaces. J Biomater Appl 2019; 34:419-430. [PMID: 31126206 DOI: 10.1177/0885328219852741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sakshi Jain
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - Jason A Griggs
- University of Mississippi Medical Center, Jackson, MS, USA
| | | |
Collapse
|
11
|
Tong C, Xia J, Xie B, Li M, Du F, Li C, Li Y, Shan Z, Qi Z. Immunogenicity analysis of decellularized cardiac scaffolds after transplantation into rats. Regen Med 2019; 14:447-464. [PMID: 31070505 DOI: 10.2217/rme-2018-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Cardiac extracellular matrix (cECM) scaffolds are promising biomaterials for clinical applications. Our aim is to determine the immunogenicity of decellularized scaffolds from different sources for use as artificial organs during organ transplantation. Materials & methods: We transplanted Lewis rats with syngeneic (Lewis rat cECM), allogeneic (BN rat cECM) or xenogeneic (hamster cECM) decellularized cardiac scaffolds. Acute vascular and cellular rejection was quantified by immunohistochemistry and immune cell infiltration. Results: BN rat and hamster hearts were rejected following transplantation. BN and hamster cECMs had similarly low immunogenicity compared with Lewis rat cECMs and did not lead to increased rejection. Conclusion: We found that scaffolds from all sources did not induce vascular or cellular rejection and exhibited low immunogenicity.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Fujian, 361102, China.,Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Baiyi Xie
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Minghui Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Cheng Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Yaguang Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Fujian, 361003, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| |
Collapse
|
12
|
A New Highly Hydrophilic Electrochemical Implant Titanium Surface: A Histological and Biomechanical In Vivo Study. IMPLANT DENT 2018; 26:429-437. [PMID: 28492424 DOI: 10.1097/id.0000000000000605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim was to compare the osseointegration degree and secondary implant stability between implants with different surface treatments. MATERIALS AND METHODS A novel electrochemical treatment was applied to modify the sandblasted and acid-etched surface (SLA) to obtain the new hydrophilic Feeling (FEL) surface presenting a highly soluble and homogenous film made of calcium and phosphorus nanocrystals. Twenty 3.8 × 10-mm dynamix implants (Cortex) were inserted in sheep iliac crests. Sheep were killed after 2 months. Bone-to-implant contact percentage (%BIC) and biomechanical parameters, such as implant stability quotient (ISQ) and value of actual micromotion (VAM), were evaluated for each implants. RESULTS No implant failures were observed. Implants of test group showed %BIC value 30% higher in respect with control group (P = 0.001). No statistical differences were detected between the 2 groups in VAM and ISQ values. CONCLUSION Both surface treatments were highly osteoconductive because they were able to significantly increase the bone density onto implant surface in respect with that in which they were inserted (D4 bone density). The hydrophilic FEL surface demonstrated an increase of about 216% in BIC in respect with host bone density and an additional 30% more in respect with SLA surface. Faster osseointegration process is desirable in case of early implant loading protocol.
Collapse
|
13
|
Peñarrieta-Juanito GM, Costa M, Cruz M, Miranda G, Henriques B, Marques J, Magini R, Mata A, Caramês J, Silva F, Souza JCM. Bioactivity of novel functionally structured titanium-ceramic composites in contact with human osteoblasts. J Biomed Mater Res A 2018; 106:1923-1931. [DOI: 10.1002/jbm.a.36394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Gabriella M. Peñarrieta-Juanito
- Post-Graduate Program in Dentistry (PPGO), School of Dentistry; Federal University of Santa Catarina (UFSC); Florianópolis SC 88040-900 Brazil
| | - Mafalda Costa
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho; Guimarães 4800-058 Portugal
| | - Mariana Cruz
- School of Dentistry; University of Lisbon; Lisboa 1649-003 Portugal
| | - Georgina Miranda
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho; Guimarães 4800-058 Portugal
| | - Bruno Henriques
- Post-Graduate Program in Dentistry (PPGO), School of Dentistry; Federal University of Santa Catarina (UFSC); Florianópolis SC 88040-900 Brazil
| | - Joana Marques
- School of Dentistry; University of Lisbon; Lisboa 1649-003 Portugal
| | - Ricardo Magini
- Post-Graduate Program in Dentistry (PPGO), School of Dentistry; Federal University of Santa Catarina (UFSC); Florianópolis SC 88040-900 Brazil
| | - Antonio Mata
- School of Dentistry; University of Lisbon; Lisboa 1649-003 Portugal
| | - João Caramês
- School of Dentistry; University of Lisbon; Lisboa 1649-003 Portugal
| | - Filipe Silva
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho; Guimarães 4800-058 Portugal
| | - Júlio C. M. Souza
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho; Guimarães 4800-058 Portugal
| |
Collapse
|
14
|
Liu L, Bhatia R, Webster TJ. Atomic layer deposition of nano-TiO 2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int J Nanomedicine 2017; 12:8711-8723. [PMID: 29263665 PMCID: PMC5724422 DOI: 10.2147/ijn.s148065] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or infection. The aim of this in vitro study was to endow an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostructured titanium dioxide (TiO2) coating on Ti-based implants has been proposed as a potential way to enhance tissue-implant interactions while inhibiting bacterial colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial properties. In this paper, temperature-controlled atomic layer deposition (ALD) was introduced for the first time to provide unique nanostructured TiO2 coatings on Ti substrates. The effect of nano-TiO2 coatings with different morphology and structure on human osteoblast and fibroblast functions and bacterial activities was investigated. In vitro results indicated that the TiO2 coating stimulated osteoblast adhesion and proliferation while suppressing fibroblast adhesion and proliferation compared to uncoated materials. In addition, the introduction of nano-TiO2 coatings was shown to inhibit gram-positive bacteria (Staphylococcus aureus), gram-negative bacteria (Escherichia coli), and antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus), all without resorting to the use of antibiotics. Our results suggest that the increase in nanoscale roughness and greater surface hydrophilicity (surface energy) together could contribute to increased protein adsorption selectively, which may affect the cellular and bacterial activities. It was found that ALD-grown TiO2-coated samples with a moderate surface energy at 38.79 mJ/m2 showed relatively promising antibacterial properties and desirable cellular functions. The ALD technique provides a novel and effective strategy to produce TiO2 coatings with delicate control of surface nanotopography and surface energy to enhance the interfacial biocompatibility and mitigate bacterial infection, and could potentially be used for improving numerous orthopedic implants.
Collapse
Affiliation(s)
- Luting Liu
- Department of Chemical Engineering, Northeastern University, Boston
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
15
|
Veronesi F, Giavaresi G, Fini M, Longo G, Ioannidu CA, Scotto d'Abusco A, Superti F, Panzini G, Misiano C, Palattella A, Selleri P, Di Girolamo N, Garbarino V, Politi L, Scandurra R. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:264-271. [DOI: 10.1016/j.msec.2016.08.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
|
16
|
Longo G, Ioannidu CA, Scotto d’Abusco A, Superti F, Misiano C, Zanoni R, Politi L, Mazzola L, Iosi F, Mura F, Scandurra R. Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon. PLoS One 2016; 11:e0152566. [PMID: 27031101 PMCID: PMC4816526 DOI: 10.1371/journal.pone.0152566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/16/2016] [Indexed: 01/27/2023] Open
Abstract
Introduction Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. Results The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. Conclusion In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.
Collapse
Affiliation(s)
- Giovanni Longo
- Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133, Roma, Italy
- Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015, Lausanne, Switzerland
- * E-mail:
| | - Caterina Alexandra Ioannidu
- Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Anna Scotto d’Abusco
- Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Fabiana Superti
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma, Italy
| | | | - Robertino Zanoni
- Dipartimento di Chimica, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Laura Politi
- Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Luca Mazzola
- Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Francesca Iosi
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma, Italy
| | - Francesco Mura
- Dipartimento di Chimica, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Roberto Scandurra
- Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|