1
|
Hernandez-Reyes M, Oo TT. From receptor to response: dissecting the TLR4 pathway in diabetic neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01774-2. [PMID: 40347407 DOI: 10.1007/s10787-025-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/12/2025]
Abstract
Diabetic neuropathy (DNP) is a common complication of diabetes that has a significant impact on the patient's quality of life. The primary objectives of clinical treatment for DNP these days are symptomatic pain management and glycemic control. Since there is currently no cure for nerve damage, the only objective is to alleviate discomfort and slow its progression. Pre-clinical research over the last decade has increasingly linked toll-like receptor 4 (TLR4)-mediated neuroinflammation as a major contributor to DNP development. The role of TLR4-mediated neuroinflammation in the pathophysiology of DNP is covered in this review, along with different therapeutic approaches that target TLR4-mediated neuroinflammation in DNP in pre-clinical research. Despite promising pre-clinical results, translating these findings into clinical practice remains a challenge, which we also discuss how to address and overcome in this review.
Collapse
Affiliation(s)
- Monserrat Hernandez-Reyes
- College of Advanced Studies Cuautitlan, National Autonomous University of Mexico, 54740, Cuautitlan Izcalli, State of Mexico, Mexico
| | - Thura Tun Oo
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madiso, Wisconsin, 53792, USA.
| |
Collapse
|
2
|
Izumi Y, O'Dell KA, Mennerick S, Zorumski CF. Effects of acute pro-inflammatory stimulation and 25-hydroxycholesterol on hippocampal plasticity and learning involve NLRP3 inflammasome and cellular stress responses. Sci Rep 2025; 15:6149. [PMID: 39979396 PMCID: PMC11842721 DOI: 10.1038/s41598-025-90149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Neuroinflammation is an increasingly important target for therapeutics in neuropsychiatry and contributes to cognitive dysfunction, disability and death across a range of illnesses. We previously found that acute effects of pro-inflammatory stimulation with lipopolysaccharide (LPS) on hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, requires synthesis of the oxysterol, 25-hydroxycholesterol (25HC) and exogenous 25HC mimics effects of LPS. However, downstream mechanisms engaged by LPS and 25HC remain uncertain. Here we use rat hippocampal slices and in vivo behavioral studies to provide evidence that acute modulation of synaptic plasticity by both LPS and 25HC requires activation of the NLRP3 inflammasome, caspase-1 and interleukin-1 receptor. Furthermore, both LPS and 25HC engage cellular stress responses including synthesis of 5α-reduced neurosteroids and effects on plasticity are prevented by modulators of these responses. In studies of acute learning using a one-trial inhibitory avoidance task, inhibition of learning by LPS and 25HC are prevented by pre-treatment with an inhibitor of NLRP3. The present studies provide strong support for the role of 25HC as a mediator of pro-inflammatory stimulation on hippocampal synaptic plasticity and for the importance of NLRP3 inflammasome and caspase-1 activation in the deleterious effects of acute inflammation.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Zuppe H, Reed E. Common cytokine receptor gamma chain family cytokines activate MAPK, PI3K, and JAK/STAT pathways in microglia to influence Alzheimer's Disease. Front Mol Neurosci 2024; 17:1441691. [PMID: 39324116 PMCID: PMC11422389 DOI: 10.3389/fnmol.2024.1441691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Dementia is an umbrella term used to describe deterioration of cognitive function. It is the seventh leading cause of death and is one of the major causes of dependence among older people globally. Alzheimer's Disease (AD) contributes to approximately 60-70% of dementia cases and is characterized by the accumulation of amyloid plaques and tau tangles in the brain. Neuroinflammation is now widely accepted as another disease hallmark, playing a role in both the response to and the perpetuation of disease processes. Microglia are brain-resident immune cells that are initially effective at clearing amyloid plaques but contribute to the damaging inflammatory milieu of the brain as disease progresses. Circulating peripheral immune cells contribute to this inflammatory environment through cytokine secretion, creating a positive feedback loop with the microglia. One group of these peripherally derived cytokines acting on microglia is the common cytokine receptor γ chain family. These cytokines bind heterodimer receptors to activate three major signaling pathways: MAPK, PI3K, and JAK/STAT. This perspective will look at the mechanisms of these three pathways in microglia and highlight the future directions of this research and potential therapeutics.
Collapse
Affiliation(s)
- Hannah Zuppe
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Erin Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
4
|
Kaçaroğlu D, Yaylacı S. Enhancing the Regenerative Potential of Adipose-Derived Mesenchymal Stem Cells Through TLR4-Mediated Signaling. Curr Stem Cell Res Ther 2024; 19:1514-1524. [PMID: 38204244 DOI: 10.2174/011574888x283664231219080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Toll-like receptor 4 (TLR4) is a receptor that traditionally plays an important role in immunomodulation (regulation of the immune system) and the initiation of proinflammatory responses. TLR4 is used in the body to recognize molecular patterns of pathogens or damaged cells from outside. However, in recent years, it has also become clear that TLR4 can affect the immune system and the function of stem cells, especially mesenchymal stem cells. Therefore, understanding how TLR4 signaling works at the cellular and molecular level and using this knowledge in regenerative medicine could be potentially useful, especially in the treatment of adipose- derived mesenchymal stem cells (ADMSCs). How these cells can use TLR4 signaling when used to increase their regenerative potential and repair tissues is an area of research. AIMS This study aims to elucidate the multifaceted role of TLR4-mediated signaling in ADMSCs. METHODS Employing a comprehensive set of assays, including MTT for cell viability, flow cytometry for surface marker expression, and gene expression analysis, we demonstrate that TLR4 activation significantly modulates key aspects of ADMSC biology. Specifically, TLR4 signaling was found to regulate ADMSCs proliferation, surface marker expression, and regenerative capacity in a dose- and time-dependent manner. Furthermore, TLR4 activation conferred cytoprotective effects against Doxorubicin (DOX)-induced cellular apoptosis. RESULTS These findings suggest that TLR4 signaling could be used to enhance the regenerative abilities of ADMSCs and enable ADMSC-based therapies to be used more effectively for tissue engineering and therapeutic purposes. CONCLUSION However, it is important to note that research in this area needs more details and clinical studies.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
5
|
Kaçaroğlu D, Yaylacı S, Gurbuz N. Anti-tumorigenic effects of naive and TLR4-primed adipose-derived mesenchymal stem cells on pancreatic ductal adenocarcinoma cells. Cancer Med 2024; 13:e6964. [PMID: 38379331 PMCID: PMC10831913 DOI: 10.1002/cam4.6964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND One of the main reasons for the unsuccessful treatment of pancreatic cancer is the intense desmoplastic pancreatic microenvironment. In the literature, the effects of mesenchymal stem cells (MSCs) and their inflammatory phenotypes on cancer cells have been a subject of controversy. Therefore, it is crucial to elucidate the underlying mechanisms of this interaction, especially in the context of pancreatic cancer. We aimed to investigate the effects of naive, TLR4-activated, and TLR4-inhibited phenotypes of adipose-derived MSCs (ADMSC) on pancreatic ductal cell line (Panc-1). METHODS AND MATERIALS Adipose-derived MSCs were induced into a proinflammatory phenotype using a 0.5 μg/mL dose of TLR4 agonist, while an anti-inflammatory phenotype was generated in ADMSCs using a 25 μg/mL dose of TLR4 antagonist. We observed that the proliferation of Panc-1 cells was inhibited when naive ADMSCs:Panc-1(10:1) and proinflammatory ADMSCs:Panc-1(10:1) were directly cocultured. RESULTS In indirect coculture, both naive and proinflammatory ADMSCs exhibited a significant 10-fold increase in their inhibitory effect on the proliferation and colony forming capacity of Panc-1 cells, with the added benefit of inducing apoptosis. In our study, both naive and proinflammatory ADMSCs were found to regulate the expression of genes associated with metastasis (MMP2, KDR, MMP9, TIMP1, IGF2R, and COL1A1) and EMT (CDH1, VIM, ZEB1, and CLDN1) in Panc-1 cells. Remarkably, both naive and proinflammatory ADMSCs demonstrated antitumor effects on Panc-1 cells. However, it was observed that anti-inflammatory ADMSCs showed tumor-promoting effects instead. Furthermore, we observed a reciprocal influence between ADMSCs and Panc-1 cells on each other's proinflammatory cytokine expressions, suggesting a dynamic interplay within the tumor microenvironment. CONCLUSIONS These findings underscore the significance of both the naive state and different inflammatory phenotypes of MSCs in the microenvironment and represent a pivotal step toward the development of novel therapeutic approaches for pancreatic cancer. Understanding the intricate interactions between MSCs and cancer cells may open new avenues for targeted interventions in cancer therapy.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Department of Medical Biology, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
- Department of Medical Biology, Faculty of MedicineLokman Hekim UniversityAnkaraTurkey
| | - Seher Yaylacı
- Department of Medical Biology, Faculty of MedicineLokman Hekim UniversityAnkaraTurkey
| | - Nilgun Gurbuz
- Department of Medical Biology, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
6
|
Li Z, Chen A, Wan H, Gao X, Li C, Xiong L, Liang H. Immunohistochemical Localization of MD2, a Co-Receptor of TLR4, in the Adult Mouse Brain. ACS Chem Neurosci 2023; 14:400-417. [PMID: 36657737 PMCID: PMC9897217 DOI: 10.1021/acschemneuro.2c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Myeloid differentiation factor 2 (MD2) is a co-receptor of a classical proinflammatory protein TLR4 whose activation leads to neuroinflammation. It is widely accepted that TLR4 is expressed on the cell surface of microglia and astrocytes, and MD2 is expected to be expressed by these cells as well. However, our previous study showed that neurons from certain nuclei also expressed MD2. Whether MD2 is expressed by other brain nuclei is still unknown. It is the aim of the present study to map the distribution of MD2-positive cells in the adult mouse brain. Immunohistochemical staining against MD2 was completed to localize MD2-positive cells in the mouse brain by comparing the location of positive cells with the mouse brain atlas. MD2-positive cells were found in the majority of mouse brain nuclei with clusters of cells in the olfactory bulb, cortices, the red nucleus, and cranial nuclei. Subcortical nuclei had heterogeneous staining of MD2 with more prominent cells in the basolateral and the central amygdaloid nuclei. The ventral pallidum and the diagonal bands had positive cells with similar density and shape. Prominent cells were present in thalamic nuclei which were nearly homogeneous and in reticular formation of the brainstem where cells were dispersed with similar density. The hypothalamus had fewer outstanding cells compared with the thalamus. The red nucleus, the substantia nigra, and the ventral tegmental area in the pretectum had outstanding cells. Motor cranial nuclei also had outstanding MD2-positive cells, whereas raphe, sensory cranial, and deep cerebellar nuclei had MD2-positive cells with moderate density. The presence of MD2 in these nuclei may suggest the involvement of MD2 in their corresponding physiological functions.
Collapse
Affiliation(s)
- Zhen Li
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Aiwen Chen
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Hanxi Wan
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Xiaofei Gao
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunguang Li
- NICM
Health Research Institute, Western Sydney
University, Penrith, New South Wales 2751, Australia
| | - Lize Xiong
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Huazheng Liang
- Clinical
Research Center for Anesthesiology and Perioperative Medicine, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai
Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai
Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| |
Collapse
|
7
|
Binding of Gamma-Glutamyl Transferase to TLR4 Signalling Allows Tissue Factor Activation in Monocytes. Int J Mol Sci 2022; 23:ijms232012207. [PMID: 36293061 PMCID: PMC9603380 DOI: 10.3390/ijms232012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Gamma-glutamyl transferase (GGT) is involved in the progression of atherosclerosis, since its enzymatic activity promotes the generation of reactive oxygen species (ROS). Besides, GGT may act as a prothrombotic factor by inducing tissue factor (TF) expression, independently of its enzymatic activity. The aim of this study was to assess whether GGT-induced TF stimulation was a consequence of binding to toll-like receptor 4 (TLR4) expressed on monocytes, the precursors of macrophages and foam cells which colocalize with GGT activity within atherosclerotic plaques. Experiments were performed in human peripheral blood mononuclear cells (PBMCs), THP-1 cells (a monocytic cellular model), and HEK293 cells, which were genetically modified to study the activation of TLR4. TF procoagulant activity was assessed by a one-stage clotting time test, and TF protein expression was estimated by western blot. Human recombinant (hr) GGT protein increased TF procoagulant activity and protein expression in both PBMCs and THP-1 cells. The GGT-induced TF stimulation was prevented by cellular pretreatment with TLR4/NF-κB inhibitors (LPS-Rs, CLI-095, and BAY-11-7082), and HEK293 cells lacking TLR4 confirmed that TLR4 is essential for GGT-induced activation of NF-κB. In conclusion, hrGGT induced TF expression in monocytes through a cytokine-like mechanism that involved the activation of TLR4/NF-κB signaling.
Collapse
|
8
|
Luo S, He L, Zhang H, Li Z, Liu C, Chen T. Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food Funct 2022; 13:7707-7719. [PMID: 35758533 DOI: 10.1039/d2fo00569g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rice bran is an important by-product of the milling industry. Arabinoxylan extracted from rice bran (RAX) is available in large quantities and is structurally different from other arabinoxylans from cereals. The anti-obesity effects of RAX and the role of microbiota have not been studied. In this work, we investigated the beneficial effects of RAX in C57BL/6J mice fed a high-fat diet (HFD). We found that supplementation of RAX significantly ameliorated HFD-induced obesity. RAX decreased HFD induced lipid accumulation and regulated genes related to hepatic fatty acid metabolism. Regulated lipid metabolism is associated with reduced systemic inflammation as indicated by TNF-α and IL-6. RAX normalized the gut microbiota and its major metabolites short-chain fatty acids (SCFAs). RAX restored the alpha diversity of the gut microbiota and increased the relative abundance of anti-inflammatory bacteria including Bifidobacterium and Akkermansia. RAX decreased pro-inflammatory bacteria including Anaerotruncus, Helicobacter, Coprococcus, and Desulfovibrio. Our results suggest that systemic inflammation bridges to the gut microbiota through LPS and SCFAs. RAX modulates the gut microbiota and SCFA production in the large intestine, thereby reducing systemic inflammation and ameliorating obesity. In brief, RAX prevented obesity through a mechanism related to the modulation of the microbiota and its metabolites.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Li He
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Huibin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chengmei Liu
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Tingting Chen
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
9
|
Ghazanfari D, Courreges MC, Belinski L, Bergmeier SC, McCall KD, Goetz DJ. Evidence for investigating GSK-3 inhibitors as potential therapeutics for severe COVID-19. Biochem Biophys Res Commun 2022; 605:171-176. [PMID: 35367865 PMCID: PMC8924054 DOI: 10.1016/j.bbrc.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
A key component of severe COVID-19 is a "cytokine storm" i.e., the excessive expression of unneeded cytokines. Previous studies suggest that SARS-CoV-2 proteins can induce macrophages to secrete pro-inflammatory cytokines; a process that may involve Toll-like receptors (TLRs). Glycogen synthase kinase-3 (GSK-3) has been implicated in TLR signal transduction and a selective GSK-3 inhibitor, termed COB-187, dramatically attenuates cytokine expression induced by the TLR ligand lipopolysaccharide (LPS). In the present study, we provide evidence that the SARS-CoV-2 spike protein (S) and the S2 subunit (S2) induce production of CXCL10 (a chemokine elevated in severe COVID-19) by a human macrophage cell line. Further, we report that two clinically relevant GSK-3 inhibitors and COB-187 attenuate S and S2 protein-induced CXCL10 production. Combined, our observations provide impetus for investigating GSK-3 inhibitors as potential therapeutics for severe COVID-19.
Collapse
Affiliation(s)
- Davoud Ghazanfari
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, United States
| | | | - Lydia Belinski
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, United States
| | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, United States; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Kelly D McCall
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, United States; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, United States; The Diabetes Institute, Ohio University, Athens, OH, 45701, United States
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, United States; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, United States.
| |
Collapse
|
10
|
Sun L, Guo L, Xu G, Li Z, Appiah MO, Yang L, Lu W. Quercetin Reduces Inflammation and Protects Gut Microbiota in Broilers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103269. [PMID: 35630745 PMCID: PMC9147699 DOI: 10.3390/molecules27103269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the effects of quercetin on inflammatory response and intestinal microflora in broiler chicken jejuna. A total of 120 broiler chickens were allocated into 3 groups: saline-challenged broilers fed a basal diet (CTR group), lipopolysaccharide (LPS)-challenged broilers fed a basal diet (L group) and LPS-challenged broilers fed a basal diet supplemented with 200 mg/kg quercetin (LQ group). Our results showed that LPS significantly increased expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, toll-like receptor (TLR)-4, Bax, Caspase-3 and diamine oxidase activity (DAO), and decreased expression of zona occludens-1 (ZO-1), Occludin and Bcl-2 in the jejunum, while dietary quercetin prevented the adverse effects of LPS injection. LPS injection significantly decreased the number of Actinobacteria, Armatimonadetes and Fibrobacteriae at the phylum level when compared to the CTR group. Additionally, at genus level, compared with the CTR group, the abundance of Halomonas, Micromonospora, Nitriliruptor, Peptococcus, Rubellimicrobium, Rubrobacter and Slaclda in L group was significantly decreased, while dietary quercetin restored the numbers of these bacteria. In conclusion, our results demonstrated that dietary quercetin could alleviate inflammatory responses of broiler chickens accompanied by modulating jejunum microflora.
Collapse
|
11
|
Afroz R, Kumarapperuma H, Nguyen QVN, Mohamed R, Little PJ, Kamato D. Lipopolysaccharide acting via toll-like receptor 4 transactivates the TGF-β receptor in vascular smooth muscle cells. Cell Mol Life Sci 2022; 79:121. [PMID: 35122536 PMCID: PMC8817999 DOI: 10.1007/s00018-022-04159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) recognise pathogen‑associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial-derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-β receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4-mediated Smad2 carboxy terminal phosphorylation dependent on the transactivation of the TGFBR1. The in vitro model used human aortic vascular smooth muscle cells to assess the implications of TLR4 transactivation of the TGFBR1 in vascular pathophysiology. We show that LPS-mediated Smad2 carboxy terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor, SB431542. Treatment with MyD88 and TRIF pathway antagonists does not affect LPS-mediated phosphorylation of Smad2 carboxy terminal; however, LPS-mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001, and unaffected in the presence of ROCK inhibitor Y27632 or ROS/NOX inhibitor DPI. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Hirushi Kumarapperuma
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Quang V N Nguyen
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Peter J Little
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.,Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Danielle Kamato
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
12
|
Chapman PA, Gilbert CB, Devine TJ, Hudson DT, Ward J, Morgan XC, Beck CW. Manipulating the microbiome alters regenerative outcomes in Xenopus laevis tadpoles via lipopolysaccharide signalling. Wound Repair Regen 2022; 30:636-651. [PMID: 35212086 PMCID: PMC9790228 DOI: 10.1111/wrr.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Xenopus laevis tadpoles can regenerate functional tails, containing the spinal cord, notochord, muscle, fin, blood vessels and nerves, except for a brief refractory period at around 1 week of age. At this stage, amputation of the tadpole's tail may either result in scarless wound healing or the activation of a regeneration programme, which replaces the lost tissues. We recently demonstrated a link between bacterial lipopolysaccharides and successful tail regeneration in refractory stage tadpoles and proposed that this could result from lipopolysaccharides binding to Toll-like receptor 4 (TLR4). Here, we have used 16S rRNA sequencing to show that the tadpole skin microbiome is highly variable between sibships and that the community can be altered by raising embryos in the antibiotic gentamicin. Six Gram-negative genera, including Delftia and Chryseobacterium, were over-represented in tadpoles that underwent tail regeneration. Lipopolysaccharides purified from a commensal Chryseobacterium spp. XDS4, an exogenous Delftia spp. or Escherichia coli, could significantly increase the number of antibiotic-raised tadpoles that attempted regeneration. Conversely, the quality of regeneration was impaired in native-raised tadpoles exposed to the antagonistic lipopolysaccharide of Rhodobacter sphaeroides. Editing TLR4 using CRISPR/Cas9 also reduced regeneration quality, but not quantity, at the level of the cohort. However, we found that the editing level of individual tadpoles was a poor predictor of regenerative outcome. In conclusion, our results suggest that variable regeneration in refractory stage tadpoles depends at least in part on the skin microbiome and lipopolysaccharide signalling, but that signalling via TLR4 cannot account for all of this effect.
Collapse
Affiliation(s)
| | | | - Thomas J. Devine
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Daniel T. Hudson
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Joanna Ward
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Xochitl C. Morgan
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|
13
|
Anti-Oxidant and Anti-Inflammatory Effects of Lipopolysaccharide from Rhodobacter sphaeroides against Ethanol-Induced Liver and Kidney Toxicity in Experimental Rats. Molecules 2021; 26:molecules26247437. [PMID: 34946518 PMCID: PMC8707101 DOI: 10.3390/molecules26247437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the protective effects of lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) against ethanol-induced hepatotoxicity and nephrotoxicity in experimental rats. The study involved an intact control group, LPS-RS group, two groups were given ethanol (3 and 5 g/kg/day) for 28 days, and two other groups (LPS-RS + 3 g/kg ethanol) and (LPS-RS + 5 g/kg ethanol) received a daily dose of LPS-RS (800 μg/kg) before ethanol. Ethanol significantly increased the expression of nuclear factor kappa B (NF-κB) and levels of malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the liver tissue and decreased anti-oxidant enzymes. Hepcidin expression was downregulated in the liver, with increased serum levels of ferritin and iron. Prior-administration of LPS-RS alleviated the increase in oxidative stress and inflammatory markers, and preserved iron homeostasis markers. In the kidney, administration of ethanol caused significant increase in the expression of NF-κB and the levels of TNF-α and kidney injury markers; whereas LPS-RS + ethanol groups had significantly lower levels of those parameters. In conclusion; this study reports anti-oxidant, anti-inflammatory and iron homeostasis regulatory effects of the toll-like receptor 4 (TLR4) antagonist LPS-RS against ethanol induced toxicity in both the liver and the kidney of experimental rats.
Collapse
|
14
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
15
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020; 57:4825-4844. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Arriola Benitez PC, Pesce Viglietti AI, Elizalde MM, Giambartolomei GH, Quarleri JF, Delpino MV. Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection. Pathogens 2020; 9:527. [PMID: 32629846 PMCID: PMC7399813 DOI: 10.3390/pathogens9070527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and -II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| |
Collapse
|
17
|
Vargas-Caraveo A, Sayd A, Robledo-Montaña J, Caso JR, Madrigal JLM, García-Bueno B, Leza JC. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. J Neuroinflammation 2020; 17:6. [PMID: 31906991 PMCID: PMC6945636 DOI: 10.1186/s12974-019-1690-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background The circumventricular organs (CVOs) are blood-brain-barrier missing structures whose activation through lipopolysaccharide (LPS) is a starting point for TLR-driven (Toll-like receptors) neuroinflammation. The aim of this study was to evaluate in the CVO area postrema (AP), subfornical organ (SFO), and median eminence (ME), the inflammatory response to two TLR4 agonists: LPS from Escherichia coli (EC-LPS), the strongest endotoxin molecule described, and LPS from Porphyromonas gingivalis (PG-LPS), a pathogenic bacteria present in the periodontium related to neuroinflammation in neurodegenerative/psychiatric diseases. The response to LPS from the cyanobacteria Rhodobacter sphaeroides (RS-LPS), a TLR4 antagonist with an interesting anti-inflammatory potential, was also assessed. Methods LPSs were intraperitoneally administered to Wistar rats and, as indicatives of neuroinflammation in CVOs, the cellular localization of the nuclear factor NF-κB was studied by immunofluorescence, and microglia morphology was quantified by fractal and skeleton analysis. Results Data showed that EC-LPS increased NF-κB nuclear translocation in the three CVOs studied and PG-LPS only induced NF-κB nuclear translocation in the ME. RS-LPS showed no difference in NF-κB nuclear translocation compared to control. Microglia in the three CVOs showed an ameboid-shape after EC-LPS exposure, whereas PG-LPS only elicited a mild tendency to induce an ameboid shape. On the other hand, RS-LPS produced a markedly elongated morphology described as “rod” microglia in the three CVOs. Conclusions In conclusion, at the doses tested, EC-LPS induces a stronger neuroinflammatory response than PG-LPS in CVOs, which might be related to their different potency as TLR4 agonists. The non-reduction of basal NF-κB activation and induction of rod microglia by RS-LPS, a cell morphology only present in severe brain injury and infections, suggests that this molecule must be carefully studied before being proposed as an anti-inflammatory treatment for neuroinflammation related to neurodegenerative/psychiatric diseases.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain. .,Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Campus Lerma, 52005, Lerma, Mexico.
| | - Aline Sayd
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier Robledo-Montaña
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
18
|
Iqbal S, Parker LM, Everest-Dass AV, Moh ESX, Sayyadi N, Hutchinson MR, Packer NH. Lipopolysaccharide and Morphine-3-Glucuronide-Induced Immune Signalling Increases the Expression of Polysialic Acid in PC12 Cells. Mol Neurobiol 2019; 57:964-975. [PMID: 31646464 DOI: 10.1007/s12035-019-01791-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
Polysialic acid (polySia), a long homopolymer of 2,8-linked sialic acids, is abundant in the embryonic brain and is restricted largely in adult brain to regions that exhibit neurogenesis and structural plasticity. In the central nervous system (CNS), polySia is highly important for cell-cell interactions, differentiation, migration and cytokine responses, which are critical neuronal functions regulating intercellular interactions that underlie immune signalling in the CNS. In recent reports, a metabolite of morphine, morphine-3-glucuronide (M3G), has been shown to cause immune signalling in the CNS. In this study, we compared the effects of neurite growth factor (NGF), lipopolysaccharide (LPS) and M3G exposure on the expression of polySia in PC12 cells using immunocytochemistry and Western blot analysis. PolySia was also extracted from stimulated cell proteins by endo-neuraminidase digestion and quantitated using fluorescent labelling followed by HPLC analysis. PolySia expression was significantly increased following NGF, M3G or LPS stimulation when compared with unstimulated cells or cells exposed to the TLR4 antagonist LPS-RS. Additionally, we analyzed the effects of test agent exposure on cell migration and the oxidative stress response of these cells in the presence and absence of polySia expression on their cell surface. We observed an increase in oxidative stress in cells without polySia as well as following M3G or LPS stimulation. Our study provides evidence that polySia expression in neuronal-like PC12 cells is influenced by M3G and LPS exposure alike, suggestive of a role of TLR4 in triggering these events.
Collapse
Affiliation(s)
- Sameera Iqbal
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Lindsay M Parker
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Arun V Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Edward S X Moh
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Nima Sayyadi
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia.
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
19
|
Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019; 23:865-882. [PMID: 31580163 DOI: 10.1080/14728222.2019.1676416] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Adverse immune activation contributes to many central nervous system (CNS) disorders. All main CNS cell types express toll-like receptor 4 (TLR 4). This receptor is critical for a myriad of immune functions such as cytokine secretion and phagocytic activity of microglia; however, imbalances in TLR 4 activation can contribute to the progression of neurodegenerative diseases. Areas covered: We considered available evidence implicating TLR 4 activation in the following CNS pathologies: Alzheimer's disease, Parkinson's disease, ischemic stroke, traumatic brain injury, multiple sclerosis, multiple systems atrophy, and Huntington's disease. We reviewed studies reporting effects of TLR 4-specific antagonists and agonists in models of peripheral and CNS diseases from the perspective of possible future use of TLR 4 ligands in CNS disorders. Expert opinion: TLR 4-specific antagonists could suppress neuroinflammation by reducing overproduction of inflammatory mediators; however, they may interfere with protein clearance mechanisms and myelination. Agonists that specifically activate myeloid differentiation primary-response protein 88 (MyD88)-independent pathway of TLR 4 signaling could facilitate beneficial glial phagocytic activity with limited activity as inducers of proinflammatory mediators. Deciphering the disease stage-specific involvement of TLR 4 in CNS pathologies is crucial for the future clinical development of TLR 4 agonists and antagonists.
Collapse
Affiliation(s)
- Gunnar R Leitner
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Nick Marshall
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| |
Collapse
|
20
|
Peters L, Weidenfeld I, Klemm U, Loeschcke A, Weihmann R, Jaeger KE, Drepper T, Ntziachristos V, Stiel AC. Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nat Commun 2019; 10:1191. [PMID: 30867430 PMCID: PMC6416252 DOI: 10.1038/s41467-019-09081-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism. Current optoacoustic probes for cancer imaging have limitations including background noise, long-term toxicity and scarce imaging depth in living tissue. Here the authors use Rhodobacter, purple bacteria rich in bacteriochlorophyll a, as an optoacoustic reporter to image tumor-associated macrophages in mice in vivo.
Collapse
Affiliation(s)
- Lena Peters
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Robin Weihmann
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München, München, 81675, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.
| |
Collapse
|
21
|
Kim ID, Lee H, Kim SW, Lee HK, Choi J, Han PL, Lee JK. Alarmin HMGB1 induces systemic and brain inflammatory exacerbation in post-stroke infection rat model. Cell Death Dis 2018; 9:426. [PMID: 29555931 PMCID: PMC5859283 DOI: 10.1038/s41419-018-0438-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/13/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
Abstract
Post-stroke infection (PSI) is known to worsen functional outcomes of stroke patients and accounts to one-third of stroke-related deaths in hospital. In our previous reports, we demonstrated that massive release of high-mobility group box protein 1 (HMGB1), an endogenous danger signal molecule, is promoted by N-methyl-D-aspartic acid-induced acute damage in the postischemic brain, exacerbating neuronal damage by triggering delayed inflammatory processes. Moreover, augmentation of proinflammatory function of lipopolysaccharides (LPS) by HMGB1 via direct interaction has been reported. The aim of this study was to investigate the role of HMGB1 in aggravating inflammation in the PSI by exacerbating the function of LPS. PSI animal model was produced by administrating a low-dose LPS at 24 h post-middle cerebral artery occlusion (MCAO). Profound aggravations of inflammation, deterioration of behavioral outcomes, and infarct expansion were observed in LPS-injected MCAO animals, in which serum HMGB1 surge, especially disulfide type, occurred immediately after LPS administration and aggravated brain and systemic inflammations probably by acting in synergy with LPS. Importantly, blockage of HMGB1 function by delayed administrations of therapeutic peptides known to inhibit HMGB1 (HMGB1 A box, HPep1) or by treatment with LPS after preincubation with HMGB1 A box significantly ameliorated damages observed in the rat PSI model, demonstrating that HMGB1 plays a crucial role. Furthermore, administration of Rhodobacter sphaeroides LPS, a selective toll-like receptor 4 antagonist not only failed to exert these effects but blocked the effects of LPS, indicating its TLR4 dependence. Together, these results indicated that alarmin HMGB1 mediates potentiation of LPS function, exacerbating TLR4-dependent systemic and brain inflammation in a rat PSI model and there is a positive-feedback loop between augmentation of LPS function by HMGB1 and subsequent HMGB1 release/serum. Therefore, HMGB1 might be a valuable therapeutic target for preventing post-stroke infection.
Collapse
Affiliation(s)
- Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Seung-Woo Kim
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hye-Kyung Lee
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Kyeong Lee
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea. .,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea.
| |
Collapse
|
22
|
Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol 2017; 54:375-384. [PMID: 29202301 DOI: 10.1016/j.intimp.2017.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Repeated exposure to the fungal pathogen Aspergillus fumigates triggers spleen tyrosine kinase (SYK) signalling through dectin-1 activation, which is associated with deleterious airway inflammation. β-Glucan-induced dectin-1 signalling activates the NLRP3 inflammasome, which in turn rapidly produces IL-1β, a master regulator of inflammation. IL-1β expression results in Th17/Treg imbalance, pulmonary inflammation, and bystander tissue injury. This study reports that 3,4 methylenedioxy-β-nitrostyrene (MNS), a potent SYK inhibitor, markedly decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines in vitro. Furthermore, SYK inhibition markedly decreased β-glucan-induced IL-1β expression, suggesting that SYK is indispensable for NLRP3 inflammasome activation. Decreased IL-1β expression correlated with reduced Th17 response and enhanced immunosuppressive Treg response. Notably, SYK inhibition ameliorated inflammation caused by repeated intranasal β-glucan challenge in BALB/C mice. SYK inhibition also restored the Th17/Treg balance via decreased Th17 and increased Treg responses, as evidenced by decreased IL-17 and ror-γ levels. Additionally, inhibition of SYK increased IL-10 secreting CD4+FOXP3+ T cells that accompanied reduced T cell proliferation. Decreased IgA in the Bronchoalveolar lavage (BAL) fluid and serum also indicated the immunosuppressive potential of SYK inhibition. Histopathology data revealed that repeated β-glucan challenge caused substantial pulmonary damage, as indicated by septal thickening and interstitial lymphocytic, neutrophil and granulocyte recruitment. These processes were effectively prevented by SYK inhibition, resulting in lung protection. Collectively, our findings suggest that SYK inhibition ameliorates dectin-1- mediated detrimental pulmonary inflammation and subsequent tissue damage. Therefore, SYK can be a new target gene in the therapeutic approach against fungal induced airway inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Naveen Challagundla
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
23
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
24
|
Rodríguez AM, Delpino MV, Miraglia MC, Costa Franco MM, Barrionuevo P, Dennis VA, Oliveira SC, Giambartolomei GH. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia 2017; 65:1137-1151. [PMID: 28398652 DOI: 10.1002/glia.23149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis.
Collapse
Affiliation(s)
- Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Cruz Miraglia
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam M Costa Franco
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Vida A Dennis
- Center for Nano Biotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Köstlin N, Vogelmann M, Spring B, Schwarz J, Feucht J, Härtel C, Orlikowsky TW, Poets CF, Gille C. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype. Immunology 2017; 152:89-101. [PMID: 28464218 DOI: 10.1111/imm.12751] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Infections are a leading cause of perinatal morbidity and mortality. The outstandingly high susceptibility to infections early in life is mainly attributable to the compromised state of the neonatal immune system. One important difference to the adult immune system is a bias towards T helper type 2 (Th2) responses in newborns. However, mechanisms regulating neonatal T-cell responses are incompletely understood. Granulocytic myeloid-derived suppressor cells (GR-MDSC) are myeloid cells with a granulocytic phenotype that suppress various functions of other immune cells and accumulate under physiological conditions during pregnancy in maternal and fetal blood. Although it has been hypothesized that GR-MDSC accumulation during fetal life could be important for the maintenance of maternal-fetal tolerance, the influence of GR-MDSC on the immunological phenotype of neonates is still unclear. Here, we investigated the impact of GR-MDSC isolated from cord blood (CB-MDSC) on the polarization of Th cells. We demonstrate that CB-MDSC inhibit Th1 responses and induced Th2 responses and regulatory T (Treg) cells. Th1 inhibition was cell-contact dependent and occurred independent of other cell types, while Th2 induction was mediated independently of cell contact through expression of ArgI and reactive oxygen species by CB-MDSC and partially needed the presence of monocytes. Treg cell induction by CB-MDSC also occurred cell-contact independently but was partially mediated through inducible nitric oxide synthase. These results point towards a role of MDSC in regulating neonatal immune responses. Targeting MDSC function in neonates could be a therapeutic opportunity to improve neonatal host defence.
Collapse
Affiliation(s)
- Natascha Köstlin
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Margit Vogelmann
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Bärbel Spring
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Judith Feucht
- Department of Paediatrics I, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christoph Härtel
- Department of Paediatrics, University Clinic Schleswig Holstein, Lübeck, Germany
| | | | - Christian F Poets
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| |
Collapse
|
26
|
Döring C, Regen T, Gertig U, van Rossum D, Winkler A, Saiepour N, Brück W, Hanisch UK, Janova H. A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia. Glia 2017; 65:1176-1185. [DOI: 10.1002/glia.23151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Christin Döring
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
| | - Tommy Regen
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
- Institute of Molecular Medicine, University of Mainz; Mainz 55131 Germany
| | - Ulla Gertig
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
| | - Denise van Rossum
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
- Sartorius-Stedim Biotech GmbH; Göttingen 37079 Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
| | - Nasrin Saiepour
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
- Paul-Flechsig-Institute for Brain Research, University of Leipzig; Leipzig 04103 Germany
| | - Hana Janova
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen 37075 Germany
- Clinical Neuroscience, Max-Planck-Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
27
|
Gaikwad S, Patel D, Agrawal-Rajput R. CD40 Negatively Regulates ATP-TLR4-Activated Inflammasome in Microglia. Cell Mol Neurobiol 2017; 37:351-359. [PMID: 26961545 PMCID: PMC11482137 DOI: 10.1007/s10571-016-0358-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023]
Abstract
During acute brain injury and/or sterile inflammation, release of danger-associated molecular patterns (DAMPs) activates pattern recognition receptors (PRRs). Microglial toll-like receptor (TLR)-4 activated by DAMPs potentiates neuroinflammation through inflammasome-induced IL-1β and pathogenic Th17 polarization which critically influences brain injury. TLR4 activation accompanies increased CD40, a cognate costimulatory molecule, involved in microglia-mediated immune responses in the brain. During brain injury, excessive release of extracellular ATP (DAMPs) is involved in promoting the damage. However, the regulatory role of CD40 in microglia during ATP-TLR4-mediated inflammasome activation has never been explored. We report that CD40, in the absence of ATP, synergizes TLR4-induced proinflammatory cytokines but not IL-1β, suggesting that the response is independent of inflammasome. The presence of ATP during TLR4 activation leads to NLRP3 inflammasome activation and caspase-1-mediated IL-1β secretion which was inhibited during CD40 activation, accompanied with inhibition of ERK1/2 and reactive oxygen species (ROS), and elevation in p38 MAPK phosphorylation. Experiments using selective inhibitors prove indispensability of ERK 1/2 and ROS for inflammasome activation. The ATP-TLR4-primed macrophages polarize the immune response toward pathogenic Th17 cells, whereas CD40 activation mediates Th1 response. Exogenous supplementation of IFN-γ (a Th1 cytokine and CD40 inducer) results in decreased IL-1β, suggesting possible feedback loop mechanism of inflammasome inhibition, whereby IFN-γ-mediated increase in CD40 expression and activation suppress neurotoxic inflammasome activation required for Th17 response. Collectively, the findings indicate that CD40 is a novel negative regulator of ATP-TLR4-mediated inflammasome activation in microglia, thus providing a checkpoint to regulate excessive inflammasome activation and Th17 response during DAMP-mediated brain injury.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India.
| |
Collapse
|
28
|
Eason RJ, Bell KS, Marshall FA, Rodgers DT, Pineda MA, Steiger CN, Al-Riyami L, Harnett W, Harnett MM. The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKCδ. Sci Rep 2016; 6:37276. [PMID: 27869138 PMCID: PMC5116678 DOI: 10.1038/srep37276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that ES-62, a phosphorylcholine (PC)-containing glycoprotein secreted by the parasitic filarial nematode Acanthocheilonema viteae targets dendritic cell (DC) responses, specifically by suppressing TLR4 signalling to inhibit Th1/Th17-driven inflammation. We have now investigated the molecular mechanisms underpinning such immunomodulation and show here that ES-62-mediated downregulation of protein kinase C-δ (PKC-δ), a TLR4-associated signalling mediator required for full activation of LPS-driven pro-inflammatory responses, is associated with induction of a low level of autophagic flux, as evidenced by upregulation and trafficking of p62 and LC3 and their consequent autophagolysosomal degradation. By contrast, the classical TLR4 ligand LPS, strongly upregulates p62 and LC3 expression but under such canonical TLR4 signalling this upregulation appears to reflect a block in autophagic flux, with these elements predominantly degraded in a proteasomal manner. These data are consistent with autophagic flux acting to homeostatically suppress proinflammatory DC responses and indeed, blocking of PKC-δ degradation by the autophagolysosomal inhibitors, E64d plus pepstatin A, results in abrogation of the ES-62-mediated suppression of LPS-driven release of IL-6, IL-12p70 and TNF-α by DCs. Thus, by harnessing this homeostatic regulatory mechanism, ES-62 can protect against aberrant inflammation, either to promote parasite survival or serendipitously, exhibit therapeutic potential in inflammatory disease.
Collapse
Affiliation(s)
- Russell J. Eason
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Kara S. Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Fraser A. Marshall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - David T. Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Christina N. Steiger
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
29
|
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:736-744. [PMID: 27235712 DOI: 10.1016/j.phymed.2016.03.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-β secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-β receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.
Collapse
Affiliation(s)
- C R Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India..
| |
Collapse
|
30
|
Gaikwad S, Naveen C, Agrawal-Rajput R. Toll-like receptor-4 antagonism mediates benefits during neuroinflammation. Neural Regen Res 2016; 11:552-3. [PMID: 27212907 PMCID: PMC4870903 DOI: 10.4103/1673-5374.180732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Challagundla Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
31
|
Huang CB, Alimova Y, Ebersole JL. Macrophage polarization in response to oral commensals and pathogens. Pathog Dis 2016; 74:ftw011. [PMID: 26884502 DOI: 10.1093/femspd/ftw011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 01/03/2023] Open
Abstract
Macrophages have been identified in the periodontium. Data have phenotypically described these cells, demonstrated changes with progressing periodontal disease, and identified their ability to function in antigen-presentation critical for adaptive immune responses to individual oral bacterium. Recent evidence has emphasized an important role for the plasticity of macrophage phenotypes, not only in the resulting function of these cells in various tissues, but also clear differences in the stimulatory signals that result in M1 (classical activation, inflammatory) and M2 (alternative activation/deactivated, immunomodulatory) cells. This investigation hypothesized that the oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce M1-type cells, while oral commensal bacteria primarily elicit macrophage functions consistent with an M2 phenotype. However, we observed that the M1 output from P. gingivalis challenge, showed exaggerated levels of pro-inflammatory cytokines, with a much lower production of chemokines related to T-cell recruitment. This contrasted with A. actinomycetemcomitans infection that increased both the pro-inflammatory cytokines and T-cell chemokines. Thus, it appears that P. gingivalis, as an oral pathogen, may have a unique capacity to alter the programming of the M1 macrophage resulting in a hyperinflammatory environment and minimizing the ability for T-cell immunomodulatory influx into the lesions.
Collapse
Affiliation(s)
- Chifu B Huang
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Yelena Alimova
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|