1
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
2
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhou S, Sun Y, Wang K, Gao X, Dong K, Wang J, Wu X, Guo C. Polyvinylpyrrolidone-Polydatin nanoparticles protect against oxaliplatin induced intestinal toxicity in vitro and in vivo. Food Chem Toxicol 2024; 184:114427. [PMID: 38160781 DOI: 10.1016/j.fct.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXL) is a first-line drug for the treatment of colon cancer, with excellent efficacy. Intestinal toxicity is a common side effect of OXL, with unclear pathogenesis and a lack of effective treatment strategies. Polydatin (PD) has anti-inflammatory and antioxidant activities and is a potential drug for treating intestinal diseases, but its poor water solubility limits its application. In this study, polyvinylpyrrolidone (PVP) was used as a carrier to prepare nanoparticles loaded with PD (PVP-PD), with a particle size of 92.42 nm and exhibiting sustained release properties. In vitro results showed that PVP-PD protected NCM460 cells from OXL induced injury, mitochondrial membrane potential (MMP) disruption, and accumulation of reactive oxygen species (ROS). The in vivo results demonstrated the protective effect of PVP-PD on intestinal toxicity induced by OXL, such as alleviating weight loss and colon length reduction induced by OXL. Both in vivo and in vitro mechanisms indicated that OXL induced DNA damage and activated the cGAS-STING pathway, further inducing the expression of inflammatory factors such as IL-1β and TNF-α. PVP-PD alleviated the aforementioned changes induced by OXL by inhibiting the DNA damage-cGAS-STING pathway. In summary, our study demonstrated that the DNA damage-cGAS-STING pathway was involved in OXL induced intestinal toxicity, and PVP-PD provided a potential strategy for treating OXL induced intestinal toxicity.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuxuan Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaidi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
4
|
Fahmy MI, Khalaf SS, Yassen NN, Sayed RH. Nicorandil attenuates cisplatin-induced acute kidney injury in rats via activation of PI3K/AKT/mTOR signaling cascade and inhibition of autophagy. Int Immunopharmacol 2024; 127:111457. [PMID: 38160566 DOI: 10.1016/j.intimp.2023.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cisplatin is a highly effective antitumor agent, but its clinical use is limited due to critical adverse reactions including acute kidney injury (AKI). Nicorandil is an approved antianginal agent decreasing ischemia by potassium channel opening. The aim of this study was to investigate the nephroprotective effects of nicorandil and the possible role of activating PI3K/AKT/mTOR pathway in ameliorating cisplatin-induced AKI. Forty male Wistar rats were randomly allocated in 4 groups (n = 10). Group I: rats received the vehicle and served as control. Group II: rats received a single dose of cisplatin (7 mg/kg, i.p) on the 10th day of the experiment and served as AKI group. Group III: rats received cisplatin as in group II and nicorandil (3 mg/kg/day, p.o) for 14 days. Group IV: rats received cisplatin and nicorandil as in group III as well as wortmannin (15 μg/kg, i.v) for 14 days. Nicorandil exhibited obvious nephroprotective effects via the activation of PI3K/AKT/mTOR pathway. Moreover, nicorandil succeed to reduce the expression of the autophagy markers beclin-1 and LC-3II/I. In parallel, nicorandil showed anti-inflammatory and antiapoptotic effects via inhibition of NF-κB inflammatory pathway and depression of Bax/Bcl-2 ratio. Wortmannin, the PI3K inhibitor, was used to demonstrate the proposed pathway. Our study showed the nephroprotective effects of nicorandil in cisplatin-induced AKI in rats via activation of PI3K/AKT/mTOR signaling cascade, inhibition of autophagy, anti-inflammatory, anti-apoptotic, anti-oxidant activities. Thus, nicorandil could represent a promising renoprotective agent in cancer patients treated with cisplatin.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 12585, Giza, Egypt
| | - Samar S Khalaf
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rabab H Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| |
Collapse
|
5
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
6
|
Shi Y, Shi X, Zhao M, Chang M, Ma S, Zhang Y. Ferroptosis: A new mechanism of traditional Chinese medicine compounds for treating acute kidney injury. Biomed Pharmacother 2023; 163:114849. [PMID: 37172334 DOI: 10.1016/j.biopha.2023.114849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Acute kidney injury (AKI) is a major health concern owing to its high morbidity and mortality rates, to which there are no drugs or treatment methods, except for renal replacement therapy. Therefore, identifying novel therapeutic targets and drugs for treating AKI is urgent. Ferroptosis is an iron-dependent and lipid-peroxidation-driven regulatory form of cell death and is closely associated with the occurrence and development of AKI. Traditional Chinese medicine (TCM) has unique advantages in treating AKI due to its natural origin and efficacy. In this review, we summarize the mechanisms underlying ferroptosis and its role in AKI, and TCM compounds that play essential roles in the prevention and treatment of AKI by inhibiting ferroptosis. This review suggests ferroptosis as a potential therapeutic target for AKI, and that TCM compounds show broad prospects in the treatment of AKI by targeting ferroptosis.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
7
|
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H, Liu HB. Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med 2023; 29:42. [PMID: 37013504 PMCID: PMC10069074 DOI: 10.1186/s10020-023-00642-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway. METHODS Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined. RESULTS We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro. CONCLUSION Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway.
Collapse
Affiliation(s)
- Yi-Wei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Xiao-Kang Li
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Ting-Ting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Hui-Rong Li
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Hong-Bao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| |
Collapse
|
8
|
Yahiya YI, Hadi NR, Abu Raghif A, AL Habooby NGS. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. J Med Life 2023; 16:623-630. [PMID: 37305825 PMCID: PMC10251395 DOI: 10.25122/jml-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 06/13/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a common cause of kidney damage, characterized by oxidative stress and inflammation. In this study, we investigated the potential protective effects of IAXO-102, a chemical compound, on experimentally induced IRI in male rats. The bilateral renal IRI model was used, with 24 adult male rats randomly divided into four groups (N=6): sham group (laparotomy without IRI induction), control group (laparotomy plus bilateral IRI for 30 minutes followed by 2 hours of reperfusion), vehicle group (same as control but pre-injected with the vehicle), and treatment group (similar to control but pre-injected with IAXO-102). We measured several biomarkers involved in IRI pathophysiology using enzyme-linked immunosorbent assay (ELISA), including High mobility group box1 (HMGB1), nuclear factor kappa b-p65 (NF-κB p65), interleukin beta-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 8-isoprostane, Bcl-2 associated X protein (BAX), heat shock protein 27 (HSP27), and Bcl-2. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests. Our results showed that IAXO-102 significantly improved kidney function, reduced histological alterations, and decreased the inflammatory response (IL-1, IL-6, and TNF) caused by IRI. IAXO-102 also decreased apoptosis by reducing pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 without impacting HSP27. In conclusion, our findings suggest that IAXO-102 had a significant protective effect against IRI damage in the kidneys.
Collapse
Affiliation(s)
- Yahiya Ibrahim Yahiya
- Department of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abu Raghif
- Deptartment of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
9
|
Tiba AT, Qassam H, Hadi NR. Semaglutide in renal ischemia-reperfusion injury in mice. J Med Life 2023; 16:317-324. [PMID: 36937464 PMCID: PMC10015556 DOI: 10.25122/jml-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 03/21/2023] Open
Abstract
Ischemia and reperfusion injury (I/R) is a serious condition leading to organ failure, characterized by poor blood supply followed by rapid resuscitation of blood flow and reoxygenation. Renal failure caused by renal ischemia has high mortality and morbidity. This study aimed to explore the potential role of Semaglutide as a novel and effective therapeutic strategy for acute renal failure. Additionally, we aimed to assess the possible protective effect of Semaglutide on kidney I/R injury in mice through modulation of the inflammatory and oxidative pathways via phosphatidylinositol 3-kinase/adenosine triphosphate (PI3K/AKT) activation. We employed twenty-eight albino mice to induce the I/R injury model by clamping the renal artery for 30 min followed by a period of reperfusion for 2 hours. The control group was exposed to I/R injury, while the Semaglutide-treated group was pretreated with the drug 12 hours before induction of ischemia at a dose of 100 nmol/L/kg via the intraperitoneal route (i.p). In addition, the DMSO-treated group was subjected to similar conditions to the Semaglutide-treated group. At the end of the experiments, kidneys and blood samples were collected for investigation. Semaglutide could act as a protective agent against acute kidney injury by reducing inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and its cognate receptor, TNF-α R, interleukine-6 (IL-6). Furthermore, Semaglutide reduced F8 isoprostane levels, increased PI3K and AKT levels in renal tissues, and mitigated renal damage. Semaglutide had renoprotective effects via modulation of the inflammatory response and oxidative pathway by targeting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Al-Tameemi Tiba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Heider Qassam
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
- Corresponding Author: Najah Rayish Hadi, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| |
Collapse
|
10
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
11
|
Ghafil FA, Kadhim SAA, Majeed S, Qassam H, Hadi NR. Nephroprotective effects of Candesartan Cilexetil against Cyclosporine A-induced nephrotoxicity in a rat model. J Med Life 2022; 15:1553-1562. [PMID: 36762326 PMCID: PMC9884341 DOI: 10.25122/jml-2021-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 02/11/2023] Open
Abstract
Cyclosporine A (CsA), a well-known immunosuppressive drug, has been prescribed after organ transplantation and in a variety of disorders with an immunological origin. Nephrotoxicity is one of the most frequently stated problems associated with CsA, and therefore the treatment with CsA remains a big challenge. This study sets out to assess the ameliorative influences of Candesartan Cilexetil (CC) on oxidative stress and the nephrotoxic effect of CsA in a rat model. Twenty-four Wister Albino rats, 7-8-week-old, weighing 150-250g, were randomly categorized into three groups (eight animals in each group). These groups were the (1) CsA-treated group, (2) vehicle-treated group, and (3) CC-treated group. Bodyweights were assessed at the start and end of experiments. Renal function test and levels of glutathione peroxidase 1 catalase -CAT (Gpx1), catalase (CAT), superoxide dismutase (SOD), interleukin -2 (IL-2), and malondialdehyde (MDA) were investigated in renal tissues. Histological changes in kidneys were also evaluated. Data showed that levels of urea and creatinine in serum and levels of IL-2 and MDA in renal tissues were elevated in the CsA-treated group, with severe histological changes compared with the control group. Furthermore, tissue levels of Gpx1, CAT, and SOD were significantly decreased in CsA-treated in comparison with the control group. Treatment with CC for the rats subjected to CSA resulted in a marked reduction in levels of serum urea and creatinine and tissue levels of IL-2 and MDA. Levels of Gpx1, CAT, and SOD in renal tissues were greater in the CC-treatment group compared with the CsA-treated group. CC treatment reduced the deterioration of renal morphology compared with CsA treatment. The findings of this study suggest that CC could prevent CSA-induced nephrotoxicity through its anti-inflammatory and antioxidant influences. Considerably more work needs to be done to determine the mechanistic insight behind the ameliorative effect of CC.
Collapse
Affiliation(s)
- Fadhaa Abdulameer Ghafil
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | | | - Sahar Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Heider Qassam
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq,Corresponding Author: Najah Rayish Hadi, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq. E-mail:
| |
Collapse
|
12
|
Liang Y, Zhang D, Gong J, He W, Jin J, He Q. Mechanism study of Cordyceps sinensis alleviates renal ischemia–reperfusion injury. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Cordyceps sinensis (C. sinensis) is a kind of traditional Chinese medicine commonly used to protect renal function and relieve kidney injury. This study aimed to reveal the renal protective mechanism of C. sinensis in renal ischemia–reperfusion injury (RIRI). First, we obtained 8 active components and 99 common targets of C. sinensis against RIRI from public databases. Second, we have retrieved 38 core targets through STRING database analysis. Third, Gene Ontology analysis of 38 core targets is indicated that C. sinensis treatment RIRI may related hormone regulation, oxidative stress, cell proliferation, and immune regulation. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of 38 core targets is indicated that C. sinensis treatment RIRI may involve in PI3K–Akt, HIF-1, and MAPK signaling pathways, as well as advanced glycation end product (AGE)–receptor for AGE (RAGE) signaling pathway in diabetic complications. Lastly, molecular docking was used to detect the binding activity and properties of active components and core target using molecular docking. And the results showed that eight active components of C. sinensis had low affinity with core targets. In conclusion, C. sinensis may improve RIRI by regulating oxidative stress and immunity through PI3K–Akt, HIF-1, and MAPK pathways.
Collapse
Affiliation(s)
- Yan Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Di Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Qiang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| |
Collapse
|
13
|
Polydatin Ameliorates High Fructose-Induced Podocyte Oxidative Stress via Suppressing HIF-1α/NOX4 Pathway. Pharmaceutics 2022; 14:pharmaceutics14102202. [PMID: 36297636 PMCID: PMC9609044 DOI: 10.3390/pharmaceutics14102202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Long-term high fructose intake drives oxidative stress, causing glomerular podocyte injury. Polydatin, isolated from Chinese herbal medicine Polygonum cuspidatum, is used as an antioxidant agent that protects kidney function. However, it remains unclear how polydatin prevents oxidative stress-driven podocyte damage. In this study, polydatin attenuated high fructose-induced high expression of HIF-1α, inhibited NOX4-mediated stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4) axis activation, reduced reactive oxygen species (ROS) production in rat glomeruli and cultured podocytes. As a result, polydatin up-regulated nephrin and podocin, down-regulated transient receptor potential cation channel 6 (TRPC6) in these animal and cell models. Moreover, the data from HIF-1α siRNA transfection showed that high fructose increased NOX4 expression and aggravated SDF-1α/CXCR4 axis activation in an HIF-1α-dependent manner, whereas polydatin down-regulated HIF-1α to inhibit NOX4 and suppressed SDF-1α/CXCR4 axis activation, ameliorating high fructose-induced podocyte oxidative stress and injury. These findings demonstrated that high fructose-driven HIF-1α/NOX4 pathway controlled podocyte oxidative stress damage. Intervention of this disturbance by polydatin could help the development of the therapeutic strategy to combat podocyte damage associated with high fructose diet.
Collapse
|
14
|
He M, Feng L, Chen Y, Gao B, Du Y, Zhou L, Li F, Liu H. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol 2022; 13:927794. [PMID: 36277194 PMCID: PMC9585250 DOI: 10.3389/fphys.2022.927794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The activation of Yes-associated protein (YAP) pathway is mutually causal with the increase of extracellular matrix (ECM) stiffness. Polydatin (PD) has been proved to have anti-fibrosis effect in diabetic kidney disease (DKD), but it is still a mystery whether PD participates in YAP-related mechano-transduction. Therefore, this study intends to solve the following two problems: 1) To construct an in vitro system of polyacrylamide hydrogels (PA gels) based on the true stiffness of kidneys in healthy and DKD rats, and observe the effect of PD on pathological matrix stiffness-induced YAP expression in renal fibroblasts; 2) Compared with verteporfin (VP), a pharmacological inhibitor of YAP, to explore whether the therapeutic effect of PD on DKD in vivo model is related to the regulation of YAP. In this study, the in vitro system of PA gels with 3 kPa, 12 kPa and 30 kPa stiffness was constructed and determined for the first time to simulate the kidney stiffness of healthy rats, rats with DKD for 8 weeks and 16 weeks, respectively. Compared with the PA gels with 3 kPa stiffness, the PA gels with 12 kPa and 30 kPa stiffness significantly increased the expression of YAP, α-smooth muscle actin (α-SMA) and collagen I, and the production of reactive oxygen species (ROS) in renal fibroblasts, and the PA gels with 30 kPa stiffness were the highest. PD significantly inhibited the above-mentioned changes of fibroblasts induced by pathological matrix stiffness, suggesting that the inhibition of PD on fibroblast-to-myofibroblast transformation and ECM production was at least partially associated with regulating YAP-related mechano-transduction pathway. Importantly, the inhibitory effect of PD on YAP expression and nuclear translocation in kidneys of DKD rats is similar to that of VP, but PD is superior to VP in reducing urinary protein, blood glucose, blood urea nitrogen and serum creatinine, as well as decreasing the expression of α-SMA and collagen I, ROS overproduction and renal fibrosis. Our results prove for the first time from the biomechanical point of view that PD is a potential therapeutic strategy for delaying the progression of renal fibrosis by inhibiting YAP expression and nuclear translocation.
Collapse
Affiliation(s)
- Manlin He
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| |
Collapse
|
15
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
16
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury via SIRT6-Mediated Autophagy Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9035547. [PMID: 36160707 PMCID: PMC9507782 DOI: 10.1155/2022/9035547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
In the treatment of malignant tumors, the effectiveness of cisplatin (CP) is limited by its nephrotoxicity, leading to cisplatin-induced acute kidney injury (CP-AKI). Polydatin (PD) has been demonstrated to regulate autophagy in tumors, sepsis, and diabetes. We have recently confirmed that PD attenuated CP-AKI by inhibiting ferroptosis, but it is not clear whether PD can regulate autophagy to protect from CP-AKI. The purpose of this study was to investigate the effect of PD on autophagy in CP-treated HK-2 cells and CP-AKI mouse models, exploring the role of sirtuin 6 (SIRT6) upregulated by PD. In this study, the blocking of autophagy flux was observed in both CP-treated HK-2 cells in vitro and CP-AKI mouse models in vivo, whereas this blocking was reversed by PD, which was characterized by the increase of autophagy microtubule-associated protein light chain 3 II expression and autophagolysosome/autophagosome ratio and the decrease of p62 expression. Furthermore, PD also significantly increased the expression of SIRT6 in vivo and in vitro. The protective effect of PD manifested by the stimulating of autophagy flux, with the reducing of inflammatory response and oxidative stress, which included downregulation of tumor necrosis factor-α and interleukin-1β, decreased activity of myeloperoxidase and content of malondialdehyde, and increased activity of superoxide dismutase and level of glutathione, both in vivo and in vitro, was reversed by either inhibition of autophagy flux by chloroquine or downregulation of SIRT6 by OSS-128167. Taken together, the present findings provide the first evidence demonstrating that PD exhibited nephroprotective effects on CP-AKI by restoring SIRT6-mediated autophagy flux mechanisms.
Collapse
|
17
|
Inhibition of Xanthine Oxidase Protects against Sepsis-Induced Acute Kidney Injury by Ameliorating Renal Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4326695. [PMID: 35873795 PMCID: PMC9307393 DOI: 10.1155/2022/4326695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1β in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.
Collapse
|
18
|
Lin WH, Jiang WP, Chen CC, Lee LY, Tsai YS, Chien LH, Chou YN, Deng JS, Huang GJ. Renoprotective Effect of Pediococcus acidilactici GKA4 on Cisplatin-Induced Acute Kidney Injury by Mitigating Inflammation and Oxidative Stress and Regulating the MAPK, AMPK/SIRT1/NF-κB, and PI3K/AKT Pathways. Nutrients 2022; 14:2877. [PMID: 35889833 PMCID: PMC9323173 DOI: 10.3390/nu14142877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Acute kidney injury (AKI) describes a sudden loss of kidney function and is associated with a high mortality. Pediococcus acidilactici is a potent producer of bacteriocin and inhibits the growth of pathogens during fermentation and food storage; it has been used in the food industry for many years. In this study, the potential of P. acidilactici GKA4 (GKA4) to ameliorate AKI was investigated using a cisplatin-induced animal model. First, mice were given oral GKA4 for ten days and intraperitoneally injected with cisplatin on the seventh day to create an AKI mode. GKA4 attenuated renal histopathological alterations, serum biomarkers, the levels of inflammatory mediators, and lipid oxidation in cisplatin-induced nephrotoxicity. Moreover, GKA4 significantly decreased the expression of inflammation-related proteins and mitogen-activated protein kinase (MAPK) in kidney tissues. Eventually, GKA4 also increased the levels of related antioxidant enzymes and pathways. Consistently, sirtuin 1 (SIRT1) upregulated the level of autophagy-related proteins (LC3B, p62, and Beclin1). Further studies are needed to check our results and advance our knowledge of the mechanism whereby PI3K inhibition (wortmannin) reverses the effect of GKA4 on cisplatin-treated AKI. Taken together, GKA4 provides a therapeutic target with promising clinical potential after cisplatin treatment by reducing oxidative stress and inflammation via the MAPK, AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor kappa B (NF-κB), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) axes.
Collapse
Affiliation(s)
- Wen-Hsin Lin
- College of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
19
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9947191. [PMID: 35075382 PMCID: PMC8783728 DOI: 10.1155/2022/9947191] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
Cisplatin is widely used in the treatment of solid tumors, but its application is greatly limited due to its nephrotoxicity; thus, there is still no effective medicine for the treatment of cisplatin-induced acute kidney injury (Cis-AKI). We previously identified that polydatin (PD) exerts nephroprotective effects by antioxidative stress in AKI models. Recent evidence suggests that oxidative stress-induced molecular events overlap with the process of ferroptosis and that there are common molecular targets, such as glutathione (GSH) depletion and lipid peroxidation. Nevertheless, whether the nephroprotective effect of PD is related to anti-ferroptosis remains unclear. In this study, the inhibitory effect of PD on ferroptosis was observed in both cisplatin-treated HK-2 cells (20 μM) in vitro and a Cis-AKI mouse model (20 mg/kg, intraperitoneally) in vivo, characterized by the reversion of excessive intracellular free iron accumulation and reactive oxygen species (ROS) generation, a decrease in malondialdehyde (MDA) content and GSH depletion, and an increase in glutathione peroxidase-4 (GPx4) activity. Remarkably, PD dose-dependently alleviated cell death induced by the system Xc− inhibitor erastin (10 μM), and the effect of the 40 μM dose of PD was more obvious than that of ferrostatin-1 (1 μM) and deferoxamine (DFO, 100 μM), classical ferroptosis inhibitors. Our results provide insight into nephroprotection with PD in Cis-AKI by inhibiting ferroptosis via maintenance of the system Xc−-GSH-GPx4 axis and iron metabolism.
Collapse
|
20
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, Chen ZY, Wang L, Liu XH. Knockdown of TRIM8 Protects HK-2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Inhibiting Oxidative Stress-Mediated Apoptosis and Pyroptosis via PI3K/Akt Signal Pathway. Drug Des Devel Ther 2021; 15:4973-4983. [PMID: 34916780 PMCID: PMC8670861 DOI: 10.2147/dddt.s333372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute kidney injury (AKI) emerges as an acute and critical disease. Tripartite motif 8 (TRIM8), one number of the TRIM protein family, is proved to participate in ischemia/reperfusion (I/R) injury. However, whether TRIM8 is involved in renal I/R injury and the associated mechanisms are currently unclear. Purpose This study aimed to investigate the precise role of TRIM8 and relevant mechanisms in renal I/R injury. Materials and Methods In this study, human renal proximal tubular epithelial cells (HK-2 cells) underwent 12 hours of hypoxia and 2 h, 3 h or 4 h of reoxygenation to establish an in vitro hypoxia/reoxygenation (H/R) model. The siRNAs specific to TRIM8 (si-TRIM8) were transfected into HK-2 cells to knockdown TRIM8. The cell H/R model included various groups including Control, H/R, H/R+DMSO, H/R+NAC, si-NC+H/R, si-TRIM8+H/R and si-TRIM8+LY294002+H/R. The cell viability and levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), mRNA, apoptotic proteins, pyroptosis-related proteins and PI3K/AKT pathway-associated proteins were assessed. Results In vitro, realtime-quantitative PCR and western-blot analysis showed that the mRNA and protein expression of TRIM8 were obviously upregulated after H/R treatment in HK-2 cells. Compared with the H/R model group, knockdown of TRIM8 significantly increased cell viability and reduced the levels of ROS, H2O2, apoptotic proteins (Cleaved caspasebase-3 and BAX) and pyroptosis-related proteins (NLRP3, ASC, Caspase-1, Caspase-11, IL-1β and GSDMD-N). Western-blot analysis also authenticated that PI3K/AKT pathway was activated after TRIM8 inhibition. The application of 5 mM N-acetyl-cysteine, one highly efficient ROS inhibitor, significantly suppressed the expression of apoptotic proteins and pyroptosis-related proteins. Moreover, the combined treatment of TRIM8 knockdown and LY294002 reversed the effects of inhibiting oxidative stress. Conclusion Knockdown of TRIM8 can alleviate H/R-induced oxidative stress by triggering the PI3K/AKT pathway, thus attenuating pyropyosis and apoptosis in vitro.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
22
|
Aal-Aaboda MS, Abu Raghif AR, Hadi NR. Renoprotective Potential of the Ultra-Pure Lipopolysaccharide from Rhodobacter Sphaeroides on Acutely Injured Kidneys in an Animal Model. ARCHIVES OF RAZI INSTITUTE 2021; 76:1755-1764. [PMID: 35546979 PMCID: PMC9083871 DOI: 10.22092/ari.2021.356202.1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 06/15/2023]
Abstract
One of the main causes of acute kidney injury is ischemic reperfusion injury (IRI). Inflammatory response, apoptotic damages, and oxidative stress-related injuries are all involved in the pathogenesis of IRI. Toll-like receptors (TLR) are strongly associated with IRIs, especially TLR4, which is markedly induced in response to IRI. Accordingly, the current study aimed to investigate the potential renoprotective effect of ultrapure lipopolysaccharide from Rhodobacter sphaeroides (ULPS-RS) at two doses in an animal model of bilateral IRI. A total of 30 adult male rats were divided randomly into five equal groups of control (laparotomy plus bilateral renal IRI), vehicle (same as the control group, but pretreated with the vehicle), sham (laparotomy only), ULPS-RS (same as the control group, but pretreated with 0.1 mg/kg of ULPS-RS), and ULPS-RSH (same as the control group, but pretreated with 0.2 mg/kg of ULPS-RS). Subsequent to 30 min of ischemia and 2 h of reperfusion, serum samples were collected for measuring urea, creatinine, and neutrophil gelatinase-associated lipocalin. Afterward, tissue samples were obtained from all animals to measure inflammatory mediators (interleukin 6, interleukin 1β, and tumor necrosis factor α), oxidative stress marker (8-isoprostane), apoptosis mediators (B cell lymphoma 2 [Bcl2]), and Bcl2-associated X protein (Bax). In the control group, all of the measured parameters were significantly elevated in response to IRI, except for Bcl2, which decreased significantly. On the other hand, exactly opposite effects were observed in the ULPS-RS treated groups indicating the nephroprotective effect of this compound against IRI at both tested doses. The findings reveal for the first time that ULPS-RS has the therapeutic potential of attenuating the renal dysfunction induced by IRI.
Collapse
Affiliation(s)
- M S Aal-Aaboda
- Department of Pharmacology, Faculty of Pharmacy, University of Misan, Iraq
| | - A R Abu Raghif
- Department of Pharmacology, Faculty of Medicine, Al-Nahrain University, Iraq
| | - N R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| |
Collapse
|
23
|
Aal-Aaboda M, Abu Raghif AR, Hadi NR. Effect of Lipopolysaccharide from Rhodobacter sphaeroides on Inflammatory Pathway and Oxidative Stress in Renal Ischemia/Reperfusion Injury in Male Rats. ARCHIVES OF RAZI INSTITUTE 2021; 76:1013-1024. [PMID: 35096337 PMCID: PMC8791000 DOI: 10.22092/ari.2021.356003.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood flow to the particular organ. The IRI of the kidneys is one of the main causes of acute kidney injury. A vigorous inflammatory and oxidative stress response to hypoxia and reperfusion usually happens as IRI consequences that disturb the organ function. The current study aimed to investigate the effect of antagonizing toll-like receptors (TLRs) effects by lipopolysaccharide obtained from Rhodobacter sphaeroides (LPS-RS) on this critical condition. In total, 28 adult male Wistar rats were divided into four groups (n=7) as follows: the sham group which underwent only laparotomy; control group that underwent laparotomy and IRI induction; vehicle group which was similar to the control group plus vehicle treatment, LPS-RS group that was similar to the control group but was pretreated with 0.5 mg/kg of LPS-RS. The results of the current research showed that LPS-RS reduced interleukin-1β, interleukin-6, tumor necrosis factor α, and 8-isoprostane levels, compared to the control IRI group. However, LPS-RS did not ameliorate the kidney injury as manifested by the elevated levels of urea, creatinine, and neutrophil gelatinase-associated lipocalin. Taken together, the present study demonstrated that LPS-RS at the tested dose failed to offer a renoprotective effect against the IRI in rats.
Collapse
Affiliation(s)
- M Aal-Aaboda
- Department of Pharmacology, Faculty of Pharmacy, University of Misan, Amarah, Iraq
| | - A. R Abu Raghif
- Department of Pharmacology, Faculty of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - N. R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
24
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|
25
|
Zhan Y, Zhu M, Liu S, Lu J, Ni Z, Cai H, Zhang W. MicroRNA‑93 inhibits the apoptosis and inflammatory response of tubular epithelial cells via the PTEN/AKT/mTOR pathway in acute kidney injury. Mol Med Rep 2021; 24:666. [PMID: 34296286 PMCID: PMC8335745 DOI: 10.3892/mmr.2021.12305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cell injury is the main cause of septic acute kidney injury (AKI), which is characterized by the excessive inflammatory response and apoptosis. Numerous studies have demonstrated that miRNAs are associated with inflammatory response and apoptosis in numerous diseases. The present study mainly focuses on investigating the association between microRNA (miRNA/miR) expression and inflammatory response and apoptosis in the pathogenesis of AKI. In vitro and in vivo models of AKI were simulated using Escherichia coli lipopolysaccharide (LPS)‑administrated kidney epithelial cells and mice, respectively. The miRNA expression profile was examined using miRNA microarray in kidney tissues. Next, the effects of miR‑93 upregulation on the apoptosis, cytokine expression and oxidative stress in the LPS‑stimulated TCMK‑1 were tested. The target genes of this miRNA were investigated, and the regulatory association between miR‑93 and the AKT/mTOR pathway was investigated. The results demonstrated that miR‑93 was the most downregulated miRNA in mice kidney. Furthermore, in LPS‑induced renal tubular epithelial cells (TECs) injury model, that upregulation of miR‑93 was found to attenuate the apoptosis and inflammatory response, as well as reactive oxygen species generation. Mechanistically, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was identified as a target of miR‑93. Further experiments revealed that LPS‑induced the decrease of phosphorylated (p)‑AKT and p‑mTOR protein expression in vitro are reversed by the overexpression of miR‑93. The results of the present study suggested that the protective effect of miR‑93 on AKI may be associated with the activation of PTEN/AKT/mTOR pathway. miR‑93 may serve as a potential therapeutic target in sepsis‑induced AKI.
Collapse
Affiliation(s)
- Yaping Zhan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Minxia Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Shang Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Jiayue Lu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Hong Cai
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Weiming Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| |
Collapse
|
26
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Zhao M, Yu Y, Wang R, Chang M, Ma S, Qu H, Zhang Y. Mechanisms and Efficacy of Chinese Herbal Medicines in Chronic Kidney Disease. Front Pharmacol 2021; 11:619201. [PMID: 33854427 PMCID: PMC8039908 DOI: 10.3389/fphar.2020.619201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
As the current treatment of chronic kidney disease (CKD) is limited, it is necessary to seek more effective and safer treatment methods, such as Chinese herbal medicines (CHMs). In order to clarify the modern theoretical basis and molecular mechanisms of CHMs, we reviewed the knowledge based on publications in peer-reviewed English-language journals, focusing on the anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated and antifibrotic effects of CHMs commonly used in kidney disease. We also discussed recently published clinical trials and meta-analyses in this field. Based on recent studies regarding the mechanisms of kidney disease in vivo and in vitro, CHMs have anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated, and antifibrotic effects. Several well-designed randomized controlled trials (RCTs) and meta-analyses demonstrated that the use of CHMs as an adjuvant to conventional medicines may benefit patients with CKD. Unknown active ingredients, low quality and small sample sizes of some clinical trials, and the safety of CHMs have restricted the development of CHMs. CHMs is a potential method in the treatment of CKD. Further study on the mechanism and well-conducted RCTs are urgently needed to evaluate the efficacy and safety of CHMs.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Yu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Wang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Renal-Protective Effects and Potential Mechanisms of Traditional Chinese Medicine after Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5579327. [PMID: 33680054 PMCID: PMC7910071 DOI: 10.1155/2021/5579327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Renal ischemia-reperfusion (I/R) injury mainly causes acute kidney injury (AKI) after renal transplantation, trauma, sepsis, and hypovolemic shock. Patients with renal I/R injury are frequently associated with a poor prognosis. Traditional Chinese medicine (TCM) has been used for the prevention and treatment of various diseases in China and other Asian countries for centuries. Many studies have shown the protective effect of TCM on renal I/R injury, due to its diverse bioactive components. The potential mechanisms of TCMs on renal I/R injury include anti-inflammation, antioxidative effect, anti-cell death, downregulation of adhesion molecule expression, regulation of energy metabolism by restoring Na+-K+-ATPase activity, and mitochondrial fission. This review summarizes the major developments in the effects and underlying mechanisms of TCMs on the renal I/R injury.
Collapse
|
29
|
Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG. Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 2021; 1761:147399. [PMID: 33662337 DOI: 10.1016/j.brainres.2021.147399] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The cerebral ischemic reperfusion injury may leads to morbidity and mortality in patients. phosphatidylinositol 3-kinase (PI3K) signaling pathway has been believed to work in association with its downstream targets, other receptors, and pathways that may offer antioxidant, anti-inflammatory, anti-apoptotic effects, neuroprotective role in neuronal excitotoxicity. This review elaborates the mechanistic interventions of the PI3K pathway in cerebral ischemic injury in context to nuclear factor erythroid 2-related factor 2 (Nrf2) regulation, Hypoxia-inducible factor 1 signaling (HIF-1), growth factors, Endothelial NOS (eNOS) proinflammatory cytokines, Erythropoietin (EPO), Phosphatase and tensin homologous protein of chromosome 10 gene (PTEN) signaling, NF-κB/Notch signaling, c-Jun N-terminal kinase (JNK) and Glycogen synthase kinase-3β (GSK-3β) signaling pathway. Evidences showing the activation of PI3K inhibits apoptotic pathway, which results in its neuroprotective effect in ischemic injury. Despite discussing the therapeutic role of the PI3K pathway in treating cerebral ischemic injury, the review also enlighten the selective modulation of PI3K pathway with activators and inhibitors which may provide promising results in clinical and preclinical settings.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anjali Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
30
|
Yang J, Li X, Yang H, Long C. Oleanolic Acid Improves the Symptom of Renal Ischemia Reperfusion Injury via the PI3K/AKT Pathway. Urol Int 2020; 105:215-220. [PMID: 33291121 DOI: 10.1159/000506778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the therapeutic effect of oleanolic acid (OA) on the renal ischemia reperfusion injury (RIRI) and the possible mechanism. METHODS The RIRI model was successfully established in rats. OA, LY294002 (a PI3K inhibitor), and OA combined with LY294002 were dosed to rats in 3 therapeutic groups, respectively. The blood was collected to detect the concentration of Cr and BUN by ELISA. The kidney of each rat was collected to detect the concentration of renal injury factor (Kim-1) and the HE staining was performed. Western blot was used to detect the expression level of PI3K, p-AKT, AKT, PDK1, Skp2, and p27 in the renal tissue homogenate. RESULTS The symptom of vacuolar degeneration and interstitial edema was greatly improved in the rat kidney from the 3 therapeutic groups, compared with that from the RIRI model group. No significant difference was observed among the 3 therapeutic groups. The concentration of Cr in the 3 therapeutic groups was greatly lower than that in the RIRI model group. The expression level of p-AKT/AKT, PI3K, PDK1, Skp2, and p27 in OA group, LY294002 group, and OA combined with LY294002 group was significantly lower than that in the RIRI model group, respectively. CONCLUSION OA could improve the symptom of RIRI, possibly by inhibiting PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- JinRan Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Hua Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Chenmei Long
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China,
| |
Collapse
|
31
|
Kim IY, Park YK, Song SH, Seong EY, Lee DW, Bae SS, Lee SB. Akt1 is involved in tubular apoptosis and inflammatory response during renal ischemia-reperfusion injury. Mol Biol Rep 2020; 47:9511-9520. [PMID: 33247386 DOI: 10.1007/s11033-020-06021-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). Although Akt is involved in renal IRI, it is unclear as to which Akt isoform plays an important role in renal IRI. In this study, we investigated the role of Akt1 in renal IRI. We subjected the C57BL/6 male mice to unilateral IRI with contralateral nephrectomy. Two days after IRI, IRI-kidneys were harvested. The mice were divided into four groups: wild type (WT) IRI, Akt1-/- IRI, WT sham, and Akt1-/- sham. We found that Akt1, not Akt2 or Akt3, was markedly activated in WT IRI than in WT sham mice. The histologic damage score and serum creatinine level significantly increased in WT IRI mice, the increase being the highest in Akt1-/- IRI mice. The number of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells and expression of cleaved caspase-3/Bax were higher in Akt1-/- IRI mice than in WT IRI mice. The expression of Bcl-2 was lower in Akt1-/- IRI mice than in WT IRI mice. The expression of tumor necrosis factor-α/interleukin-6/interleukin-1β and number of F4/80-positive macrophages were markedly higher in Akt1-/- IRI than in WT IRI mice. The expression of phosphorylated nuclear factor-κB p65 was also higher in Akt1-/- IRI mice than in WT IRI mice. Our results show that Akt1 deletion exacerbates kidney damage as it increases tubular apoptosis and inflammatory response during renal IRI. Akt1 could be a potential therapeutic target for developing treatments against IRI-induced AKI.
Collapse
Affiliation(s)
- Il Young Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yeon Kyeong Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Young Seong
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dong Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Soo Bong Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
32
|
Protective Effect of Polydatin on Jejunal Mucosal Integrity, Redox Status, Inflammatory Response, and Mitochondrial Function in Intrauterine Growth-Retarded Weanling Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7178123. [PMID: 33101591 PMCID: PMC7576365 DOI: 10.1155/2020/7178123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Intrauterine growth retardation (IUGR) delays the gut development of neonates, but effective treatment strategies are still limited. This study used newborn piglets as a model to evaluate the protective effect of polydatin (PD) against IUGR-induced intestinal injury. In total, 36 IUGR piglets and an equal number of normal birth weight (NBW) littermates were fed either a basal diet or a PD-supplemented diet from 21 to 35 days of age. Compared with NBW, IUGR induced jejunal damage and barrier dysfunction of piglets, as indicated by observable bacterial translocation, enhanced apoptosis, oxidative and immunological damage, and mitochondrial dysfunction. PD treatment decreased bacterial translocation and inhibited the IUGR-induced increases in circulating diamine oxidase activity (P = 0.039) and D-lactate content (P = 0.004). The apoptotic rate (P = 0.024) was reduced by 35.2% in the PD-treated piglets, along with increases in villus height (P = 0.033) and in ratio of villus height to crypt depth (P = 0.049). PD treatment promoted superoxide dismutase (P = 0.026) and glutathione S-transferase activities (P = 0.006) and reduced malondialdehyde (P = 0.015) and 8-hydroxy-2′-deoxyguanosine accumulation (P = 0.034) in the jejunum. The PD-treated IUGR piglets showed decreased jejunal myeloperoxidase activity (P = 0.029) and tumor necrosis factor alpha content (P = 0.035) than those received a basal diet. PD stimulated nuclear sirtuin 1 (P = 0.028) and mitochondrial citrate synthase activities (P = 0.020) and facilitated adenosine triphosphate production (P = 0.009) in the jejunum of piglets. Furthermore, PD reversed the IUGR-induced declines in mitochondrial DNA content (P = 0.048), the phosphorylation of adenosine monophosphate-activated protein kinase alpha (P = 0.027), and proliferation-activated receptor gamma coactivator 1 alpha expression (P = 0.033). Altogether, the results indicate that PD may improve jejunal integrity, mitigate mucosal oxidative and immunological damage, and facilitate mitochondrial function in IUGR piglets.
Collapse
|
33
|
Wu M, Li X, Wang S, Yang S, Zhao R, Xing Y, Liu L. Polydatin for treating atherosclerotic diseases: A functional and mechanistic overview. Biomed Pharmacother 2020; 128:110308. [PMID: 32480216 DOI: 10.1016/j.biopha.2020.110308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
With the advancement of science and technology, the living standards of human beings have continuously improved, but the incidence and mortality from atherosclerosis worldwide have also increased by year. Although interventional surgery and the continuous development of new drugs have significant therapeutic effects, their side effects cannot be ignored. Polydatin, an active ingredient isolated from the natural medicine Polygonum cuspidatum, has been shown to have a prominent role in the treatment of cardiovascular diseases. Polydatin treats atherosclerosis mainly from three aspects: anti-inflammatory, regulating lipid metabolism and anti-oxidative stress. This article will review the pharmacological mechanism of polydatin in anti-atherosclerosis, the biological characteristics of Polygonum cuspidatum, the toxicology and pharmacokinetics of polydatin and will provide ideas for further research.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Xiang H, Xue W, Li Y, Zheng J, Ding C, Dou M, Wu X. C1q/TNF-related protein 6 (CTRP6) attenuates renal ischaemia-reperfusion injury through the activation of PI3K/Akt signalling pathway. Clin Exp Pharmacol Physiol 2020; 47:1030-1040. [PMID: 32027040 DOI: 10.1111/1440-1681.13274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family that has been reported to exhibit a nephroprotective effect. However, the role of CTRP6 in renal ischaemia/reperfusion (I/R) injury (IRI) remains unclear. In the present study, we aimed to explore the protective effect of CTRP6 in renal IRI and the potential mechanism. We found that CTRP6 expression was markedly decreased in the kidneys of mice subjected to I/R and HK-2 cells in response to hypoxia/reoxygenation (H/R) stimulation. Recombinant CTRP6 protein protected against renal I/R injury by the reduction of blood urea nitrogen (BUN) and creatinine levels. The increased production of ROS and malondialdehyde (MDA), as well the decreased activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) caused by H/R induction were mitigated by CTRP6 in HK-2 cells. The caspase-3 activity and apoptotic rate were both decreased in CTRP6-overexpressing HK-2 cells. In addition, we also found that knockdown of CTRP6 aggravated H/R-caused oxidative stress and cell apoptosis in HK-2 cells. Moreover, CTRP6 overexpression enhanced the H/R-stimulated activation of PI3K/Akt pathway in HK-2 cells. Inhibition of PI3K reversed the nephroprotective effects of CTRP6 in HK-2 cells. Taken together, CTRP6 exerted protective effects against H/R-caused oxidative injury in HK-2 cells via activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Heli Xiang
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wujun Xue
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Li
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Zheng
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenguang Ding
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Dou
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Sun Z, Wang X. Protective effects of polydatin on multiple organ ischemia-reperfusion injury. Bioorg Chem 2020; 94:103485. [DOI: 10.1016/j.bioorg.2019.103485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/09/2023]
|
36
|
Sherif IO, Al-Shaalan NH, Sabry D. Ginkgo Biloba Extract Alleviates Methotrexate-Induced Renal Injury: New Impact on PI3K/Akt/mTOR Signaling and MALAT1 Expression. Biomolecules 2019; 9:biom9110691. [PMID: 31684190 PMCID: PMC6920877 DOI: 10.3390/biom9110691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
Renal injury induced by the chemotherapeutic agent methotrexate (MTX) is a serious adverse effect that has limited its use in the treatment of various clinical conditions. The antioxidant activity of Ginkgo biloba extract (GB) was reported to mitigate renal injury induced by MTX. Our research was conducted to examine the nephroprotective role of GB versus MTX-induced renal injury for the first time through its impact on the regulation of phosphatidylinositol 3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling together with the renal level of TGF-β mRNA and long non-coding RNA-metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) expression. A group of adult rats was intraperitoneally (ip) injected with MTX 20 mg/kg as a single dose to induce kidney injury (MTX group). The other group of rats was orally administered with GB 60 mg/kg every day for 10 days (GB+ MTX group). The MTX increased the serum creatinine and urea levels, renal TGF-β mRNA and MALAT1 expression, in addition to dysregulation of the PI3K/Akt/mTOR signaling when compared with normal control rats that received saline only (NC group). Moreover, renal damage was reported histopathologically in the MTX group. The GB ameliorated the renal injury induced by MTX and reversed the changes of these biochemical analyses. The involvement of PI3K/Akt/mTOR signaling and downregulation of TGF-β mRNA and MALAT1 renal expressions were firstly reported in the nephroprotective molecular mechanism of GB versus MTX-induced renal injury.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
37
|
Propofol can suppress renal ischemia-reperfusion injury through the activation of PI3K/AKT/mTOR signal pathway. Gene 2019; 708:14-20. [DOI: 10.1016/j.gene.2019.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
|
38
|
Gonsalez SR, Cortês AL, Silva RCD, Lowe J, Prieto MC, Silva Lara LD. Acute kidney injury overview: From basic findings to new prevention and therapy strategies. Pharmacol Ther 2019; 200:1-12. [PMID: 30959059 PMCID: PMC10134404 DOI: 10.1016/j.pharmthera.2019.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
Acute kidney injury (AKI) is defined as a decrease in kidney function within hours, which encompasses both injury and impairment of renal function. AKI is not considered a pathological condition of single organ failure, but a syndrome in which the kidney plays an active role in the progression of multi-organ dysfunction. The incidence rate of AKI is increasing and becoming a common (8-16% of hospital admissions) and serious disease (four-fold increased hospital mortality) affecting public health costs worldwide. AKI also affects the young and previously healthy individuals affected by infectious diseases in Latin America. Because of the multifactorial pathophysiological mechanisms, there is no effective pharmacological therapy that prevents the evolution or reverses the injury once established; therefore, renal replacement therapy is the only current alternative available for renal patients. The awareness of an accurate and prompt recognition of AKI underlying the various clinical phenotypes is an urgent need for more effective therapeutic interventions to diminish mortality and socio-economic impacts of AKI. The use of biomarkers as an indicator of the initial stage of the disease is critical and the cornerstone to fulfill the gaps in the field. This review discusses emerging strategies from basic science toward the anticipation of features, treatment of AKI, and new treatments using pharmacological and stem cell therapies. We will also highlight bioartificial kidney studies, addressing the limitations of the development of this innovative technology.
Collapse
Affiliation(s)
- Sabrina Ribeiro Gonsalez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Aline Leal Cortês
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Raquel Costa da Silva
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, sala I2-035, Rio de Janeiro, RJ 21941-902, Brazil
| | - Minolfa C Prieto
- Department of Physiology & Tulane Renal and Hypertension Center of Excellence, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lucienne da Silva Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
39
|
Shah FA, Kury LA, Li T, Zeb A, Koh PO, Liu F, Zhou Q, Hussain I, Khan AU, Jiang Y, Li S. Polydatin Attenuates Neuronal Loss via Reducing Neuroinflammation and Oxidative Stress in Rat MCAO Models. Front Pharmacol 2019; 10:663. [PMID: 31293416 PMCID: PMC6606791 DOI: 10.3389/fphar.2019.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is characterized by permanent or transient obstruction of blood flow, which initiates a cascading pathological process, starting from acute ATP loss and ionic imbalance to subsequent membrane depolarization, glutamate excitotoxicity, and calcium overload. These initial events are followed by neuroinflammation and oxidative stress, eventually causing neuronal neurosis and apoptosis. Complicated interplays exist between these steps happening across various stages, which not only represent the complicated nature of ischemic pathology but also warrant a detailed delineation of the underlying molecular mechanisms to develop better therapeutic options. In the present study, we examined the neuroprotective effects of polydatin against ischemic brain injury using a rat model of permanent middle cerebral artery occlusion (MCAO). Our results demonstrated that polydatin treatment reduced the infarction volume and mitigated the neurobehavioral deficits, sequentially rescued neuronal apoptosis. Ischemic stroke induced an elevation of neuroinflammation and reactive oxygen species, which could be attenuated by polydatin via the reduced activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. In addition, polydatin upregulated the endogenous antioxidant nuclear factor erythroid 2-related factor 2, heme oxygenase-1, the thioredoxin pathway, and eventually reversed ischemic-stroke-induced elevation of ROS and inflammation in ischemic cortical tissue. The diverse and broad actions of polydatin suggested that it could be a multiple targeting neuroprotective agent in ameliorating the detrimental effects of MCAO, such as neuroinflammation, oxidative stress, and neuronal apoptosis. As repetitive clinical trials of neuroprotectants targeting a single step of stroke pathological process have failed previously, our results suggested that a neuroprotective strategy of acting at different stages may be more advantageous to intervene in the vicious cycles in MCAO.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Qiang Zhou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | | | - Arif Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress. Redox Biol 2019; 24:101195. [PMID: 31004990 PMCID: PMC6475721 DOI: 10.1016/j.redox.2019.101195] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role in renal I/R injury in mice. Inhibiting Brd4 with either JQ1 or genetic knockdown resulted in reduction of endoplasmic reticulum stress (ERS)-associated protein and proapoptotic protein expression both in I/R-induced injury and hypoxia/reoxygenation (H/R) stimulation in HK-2 cells. H/R-induced apoptosis and ERS depended on oxidative stress in vitro. Moreover, FoxO4, which is involved in the generation of hydrogen peroxide, was up-regulated during H/R stimulation-mediated apoptosis and ERS, and this upregulation could be abolished by Brd4 inhibition. Consistently, FoxO4-mediated ROS generation was attenuated upon inhibition of Brd4 with JQ1 or siRNA against Brd4. Further, the transcriptional activity of FoxO4 was suppressed by PI3K and AKT phosphorylation, which are upstream signals of FoxO4 expression, and were enhanced by Brd4 both in vivo and in vitro. In conclusion, our results proved that Brd4 inhibition blocked renal apoptotic and ERS protein expression by preventing FoxO4-dependent ROS generation through the PI3K/AKT pathway, indicating that Brd4 could be a potential therapeutic target for renal I/R injury. Brd4 was up-regulated in renal I/R injury. Brd4 inhibitor JQ1 alleviated renal I/R injury. Brd4 inhibition blocked H/R-induced oxidative stress, apoptosis and ERS through FoxO4. Brd4 regulated FoxO4 through the PI3K/AKT pathway.
Collapse
|
41
|
Basta-Kaim A, Ślusarczyk J, Szczepanowicz K, Warszyński P, Leśkiewicz M, Regulska M, Trojan E, Lasoń W. Protective effects of polydatin in free and nanocapsulated form on changes caused by lipopolysaccharide in hippocampal organotypic cultures. Pharmacol Rep 2019; 71:603-613. [PMID: 31176102 DOI: 10.1016/j.pharep.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Polydatin (PD) is a compound, originally isolated from the root and rhizome of the Chinese herb Polygonum cuspidatum. To date, various biological properties of this compound, such as analgesic, anti-pyretic or diuretic effects, have been shown. Recently, anti-oxidant and anti-inflammatory properties have been widely postulated, yet PD instability and low bioavailability limit its beneficial actions. Therefore, it has been suggested that an encapsulation process may be a promising strategy for overcoming these limitations and increasing the therapeutic efficacy of PD. METHODS We examined the effects of PD in two forms, including free and in PD-loaded polymeric nanocapsules, on lipopolysaccharide (LPS)-induced changes in hippocampal organotypic cultures. RESULTS Our results indicated that free and encapsulated PD diminished cell death processes and attenuated the secretion of pro-inflammatory cytokines induced by LPS administration. Additionally, PD in both forms strongly inhibited the production of nitric oxide and down-regulated the level of iNOS enzyme in LPS-stimulated hippocampal cultures. CONCLUSION Taken together, our study showed that PD exerts anti-inflammatory and anti-oxidant properties in LPS-treated hippocampal organotypic cultures. Furthermore, we show that the encapsulation procedure preserved the features of the free form of this compound, and therefore, the polymeric nanocapsules containing PD may be used as a novel and promising delivery system in therapeutic strategies.
Collapse
Affiliation(s)
- Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Regulska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
42
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
43
|
Wang X, Wang W, Wang JZ, Yang C, Liang CZ. Effect of apigenin on apoptosis induced by renal ischemia/reperfusion injury in vivo and in vitro. Ren Fail 2018; 40:498-505. [PMID: 30278824 PMCID: PMC6171452 DOI: 10.1080/0886022x.2018.1497517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This study aims to investigate the effects and molecular mechanisms of apigenin (ApI) on renal ischemia/reperfusion (I/R) injury in vivo and in vitro. Methods:In vivo, the left renal artery was clamped for 45 min and the right kidney was removed to study renal I/R injury on Sprague-Dawley (SD) rats. ApI was injected at 60 min before renal ischemia. In vitro, renal tubular epithelial cells (HK-2) were pretreated with or without ApI (20 uM) for 60 min and then treated with hypoxia/reoxygenation (H/R). Renal function, histology, cells apoptosis, and cell viability were tested. Furthermore, the potential molecular mechanisms were assessed. Results: ApI pretreatment could significantly alleviated the renal function and the pathological damage as well as cells apoptosis after I/R injury. Meanwhile, ApI treatment protects H/R induced HK-2 cell apoptosis in vitro. The results of Western blot showed that ApI significantly increased the expressions of B-cell lymphoma 2 (Bcl-2) and phosphor-AKt (p-AKt), Phosphoinositide 3-kinase (PI3K), while down-regulated the expressions of Caspase3 and Bax induced by H/R injury. Conclusions: ApI pretreatment can protect renal function against I/R injury and prevent renal tubular cells from apoptosis in vivo and in vitro which might through PI3K/Akt mediated mitochondria-dependent apoptosis signaling pathway.
Collapse
Affiliation(s)
- Xiao Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China.,c Department of Urology, Fuyang People's Hospital , Fuyang , PR China
| | - Wei Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China
| | - Jian-Zhong Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China
| | - Cheng Yang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China
| | - Chao-Zhao Liang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China
| |
Collapse
|
44
|
Kamel KM, Gad AM, Mansour SM, Safar MM, Fawzy HM. Novel Anti-arthritic Mechanisms of Polydatin in Complete Freund's Adjuvant-Induced Arthritis in Rats: Involvement of IL-6, STAT-3, IL-17, and NF-кB. Inflammation 2018; 41:1974-1986. [PMID: 29982962 DOI: 10.1007/s10753-018-0841-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Articular manifestations are the main hall mark for rheumatoid arthritis; inflammation and oxidative stress are involved in its pathogenesis. This study was designed to figure out the possible therapeutic potential of polydatin on experimentally induced arthritis in rats. Polydatin (POLY) was administered (200 mg/kg, p.o.) for 21 days to complete Freund's adjuvant (CFA; 0.1 ml, s.c.)-induced arthritic rats. Meanwhile, methotrexate (MTX; 0.75 mg/kg, i.p.) was given as a reference standard disease-modifying anti-rheumatic drug (DMARD). Both POLY and MTX significantly attenuated articular damage associated with CFA-induced arthritis. This was manifested by reducing levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), and matrix metalloproteinase-3 (MMP-3), paralleled with marked decrease in hind paw and ankle diameters. Moreover, POLY and MTX downregulated gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) as well as signal transducer and activator of transcription-3 (STAT3) besides hampering immunohistochemical staining of vascular endothelial growth factor (VEGF) and nuclear factor kappa-B (NF-κB). Furthermore, substantial decline in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level associated with significant rise in reduced glutathione content (GSH) was observed. These findings provide an innovative therapeutic approach of POLY as a natural anti-arthritic drug through modulating IL-6/STAT-3/IL-17/NF-кB cascade. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kamel M Kamel
- Pharmacology Department, National Organization for Drug Control and Research, 6 Abou Hazem St., Pyramids Ave., Giza, Egypt.
| | - Amany M Gad
- Pharmacology Department, National Organization for Drug Control and Research, 6 Abou Hazem St., Pyramids Ave., Giza, Egypt
| | - Suzan M Mansour
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
- Pharmacology, Toxicology & Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, End of 90th St., Fifth Settlement, New Cairo, Egypt
| | - Marwa M Safar
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo, 11837, Egypt
| | - Hala M Fawzy
- Pharmacology Department, National Organization for Drug Control and Research, 6 Abou Hazem St., Pyramids Ave., Giza, Egypt
| |
Collapse
|
45
|
Polydatin ameliorates dextran sulfate sodium-induced colitis by decreasing oxidative stress and apoptosis partially via Sonic hedgehog signaling pathway. Int Immunopharmacol 2018; 64:256-263. [PMID: 30218952 DOI: 10.1016/j.intimp.2018.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/11/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammation, oxidative stress and epithelial barrier dysfunction have been implicated in inflammatory bowel disease (IBD) pathology. The targeted inhibition of these features may represent a promising therapeutic strategy for IBD. Polydatin is an effective natural antioxidant that possesses strong antioxidant and anti-apoptotic properties. Thus, we studied the protective effects of polydatin treatments on a mouse model of experimental colitis. METHODS Acute colitis was experimentally induced by adding 3% dextran sulfate sodium (DSS) to the drinking water provided to mice for 7 days and by administering different doses of polydatin (15, 30, or 45 mg/kg) during the same period. Mice were also treated with the Sonic hedgehog (Shh) pathway inhibitor cyclopamine to estimate the efficacy of polydatin and Shh inhibitors on colitis. The disease activity index (DAI), colon length, histology, levels of oxidative and apoptotic mediators and levels of Shh pathway components were evaluated. RESULTS The polydatin treatment significantly attenuated the DAI, colon shortening and histological damage. In addition, polydatin administration effectively decreased malondialdehyde (MDA) levels and increased the activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Polydatin also inhibited apoptosis in mice with colitis by downregulating the expression of the pro-apoptotic proteins Bax, caspase 3 and cleaved caspase 3 and increasing the expression of the anti-apoptotic protein Bcl-2. Furthermore, polydatin modulated Shh signaling pathway activation. After polydatin treatment, the main components of the Shh pathway, including Shh, Patched (Ptc), Smoothened (Smo), and glioblastoma-1 (Gli1), were upregulated at the mRNA and protein levels. Blockade of the Shh pathway using cyclopamine abolished the effects of polydatin on mice with colitis. CONCLUSION Based on these observations, polydatin may suppress experimental colitis at least partially by regulating the Shh signaling pathway.
Collapse
|
46
|
Dong D, Zhang D, Pan L, Zhao K, Zhou H. Protective effects of the AKT activator SC79 on renal ischemia-reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4571-4578. [PMID: 31949855 PMCID: PMC6962971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS SC79, an AKT activator, has been reported to protect experimental ischemia-elicited neuronal death, brain injury, and myocardiocyte hypoxia/reoxygenation (H/R) injury. However, the protection of SC79 from renal ischemia-reperfusion (I/R) injury and the precise mechanisms involved are unknown. Here, we investigated the effects of SC79 in renal tubular epithelial cells in vitro and in mouse kidney in vivo following hypoxia-reoxygenation (H/R) and renal I/R injury. METHODS The kidneys of Sprague-Dawley rats were subjected to 30 min of warm ischemia followed by 24 h of reperfusion. Murine renal tubular epithelial NRK-52E cells were subjected to hypoxia for 6 h and reoxygenation for 24 h. The NRK-52E cells and the renal I/R injury model were treated with SC79 and/or LY294002 at different times and concentrations. Serum creatinine (Cr) concentration, renal histology, cellular viability, and cell apoptosis were assessed. Levels of phospho-Akt, bad, Bim, bax, bcl-2, and bcl-XL in NRK-52E cells and renal tissues were determined by western blotting. RESULTS SC79 improved viability and inhibited apoptosis in NRK-52E cells following H/R. SC79 decreased serum Cr and markedly improved pathology and decreased cell apoptosis in kidneys following I/R. In addition, SC79 promoted the expression of phospho-Akt, bcl-2, and bcl-XL, and decreased the expression levels of bid, bax, and bim. PI3K inhibitor (LY294002) pre-treatment completely abolished these effects of SC79. CONCLUSIONS The protective role of SC79 against H/R of NRK-52E cells or renal I/R injury is related to activation of phosphorylation of AKT, resulting in a decrease in the pro-apoptotic proteins bim, bax, and bad and an increase in the anti-apoptotic proteins bcl-2 and bcl-XL induced by cell H/R and renal I/R injury.
Collapse
Affiliation(s)
- Dahai Dong
- Department of Urology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Dianlong Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Lixiao Pan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Hui Zhou
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| |
Collapse
|
47
|
Amano MT, Castoldi A, Andrade-Oliveira V, Latancia MT, Terra FF, Correa-Costa M, Breda CNS, Felizardo RJF, Pereira WO, da Silva MB, Miyagi MYS, Aguiar CF, Hiyane MI, Silva JS, Moura IC, Camara NOS. The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression. Int Immunopharmacol 2018; 64:151-161. [PMID: 30176533 DOI: 10.1016/j.intimp.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are major concerns in worldwide public health, and their pathophysiology involves immune cells activation, being macrophages one of the main players of both processes. It is suggested that metabolic pathways could contribute to macrophage modulation and phosphatidylinositol‑3 kinase (PI3K) pathway was shown to be activated in kidneys subjected to ischemia and reperfusion as well as unilateral ureteral obstruction (UUO). Although PI3K inhibition is mostly associated with anti-inflammatory response, its use in kidney injuries has been shown controversial results, which indicates the need for further studies. Our aim was to unveil the role of PI3Kγ in macrophage polarization and in kidney diseases development. We analyzed bone-marrow macrophages polarization from wild-type (WT) and PI3Kγ knockout (PI3K KO) animals. We observed increased expression of M1 (CD86, CCR7, iNOS, TNF, CXCL9, CXCL10, IL-12 and IL-23) and decreased of M2 (CD206, Arg-1, FIZZ1 and YM1) markers in the lack of PI3Kγ. And this modulation was accompanied by higher levels of inflammatory cytokines in PI3K KO M1 cells. PI3K KO mice had increased M1 in steady state kidneys, and no protection was observed in these mice after acute and chronic kidney insults. On the contrary, they presented higher levels of protein-to-creatinine ratio and Kim-1 expression and increased tubular injury. In conclusion, our findings demonstrated that the lack of PI3Kγ favors M1 macrophages polarization providing an inflammatory-prone environment, which does not prevent kidney diseases progression.
Collapse
Affiliation(s)
- Mariane T Amano
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, Sao Paulo, Brazil.
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcela T Latancia
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Fernanda F Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristiane N S Breda
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael J F Felizardo
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Welbert O Pereira
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, Sao Paulo, Brazil
| | - Marina B da Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Y S Miyagi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristhiane F Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Meire I Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Medical School Ribeirão Preto, FMRP, University of Sao Paulo, Sao Paulo, Brazil
| | - Ivan C Moura
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France; Paris Descartes - Sorbonne Paris Cité University, Paris, France; CNRS ERL 8254, Imagine Institute, Laboratory of Excellence GR-Ex, Paris, France
| | - Niels O S Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Renal Pathology, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
48
|
Li R, Li J, Huang Y, Li H, Yan S, Lin J, Chen Y, Wu L, Liu B, Wang G, Lan T. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int J Biol Sci 2018; 14:1411-1425. [PMID: 30262993 PMCID: PMC6158724 DOI: 10.7150/ijbs.26086] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022] Open
Abstract
Scope: Non-alcoholic steatohepatitis (NASH) is characterized by lipid accumulation in hepatocytes and inflammatory cell infiltration. In view of the anti-oxidative and anti-inflammatory effects of polydatin, the current study aimed to investigate the pharmacological effects of polydatin on NASH and its related fibrosis. Methods: C57BL/6 mice were fed with methionine-choline deficient (MCD) diet to induce NASH and liver fibrosis, and treated with or without polydatin (5 mg/kg, every other day, i.p) for 4 weeks. HepG2 cells induced by palmitic acid (PA) were treated with polydatin. Results: The elevations of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), active caspase-3, TUNEL-positive cells, and triglyceride content were decreased by polydatin treatment. In addition, administration of polydatin to MCD-fed mice reduced oxidative stress by down-regulating NOX4 enzymes. Furthermore, the reduction in inflammation and CD68 macrophage activation correlated with inhibition of toll-like receptor (TLR)-4/NF-κB p65 signaling pathway by polydatin treatment. Polydatin also attenuated lipid accumulation, inflammation and apoptosis in HepG2 cells challenged by palmitic acid (PA) combined with or without lipopolysaccharide (LPS). Finally, the reduction of hepatic fibrosis by polydatin treatment corresponded to a reduction in hepatic gene expression of fibrosis markers. Conclusions: These results suggest that polydatin prevents NASH and fibrosis via inhibition of oxidative stress and inflammation, highlighting polydatin as a potential therapeutic agent for prevention and treatment of NASH.
Collapse
Affiliation(s)
- Rui Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingzhi Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiji Huang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Li
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Sun Yat-sen University; Guangzhou 510630, China
| | - Sishan Yan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaxin Lin
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Limin Wu
- Guangdong ShowYong Nature Medical Technology Co., Ltd., Foshan 528000, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Genshu Wang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Sun Yat-sen University; Guangzhou 510630, China
| | - Tian Lan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
49
|
Kamel KM, Gad AM, Mansour SM, Safar MM, Fawzy HM. Novel Anti-arthritic Mechanisms of Polydatin in Complete Freund’s Adjuvant-Induced Arthritis in Rats: Involvement of IL-6, STAT-3, IL-17, and NF-кB. Inflammation 2018. [DOI: https://doi.org/10.1007/s10753-018-0841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Zhang G, Wang Q, Wang W, Yu M, Zhang S, Xu N, Zhou S, Cao X, Fu X, Ma Z, Liu R, Mao J, Lai EY. Tempol Protects Against Acute Renal Injury by Regulating PI3K/Akt/mTOR and GSK3β Signaling Cascades and Afferent Arteriolar Activity. Kidney Blood Press Res 2018; 43:904-913. [PMID: 29870982 PMCID: PMC6065105 DOI: 10.1159/000490338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Free radical scavenger tempol is a protective antioxidant against ischemic injury. Tubular epithelial apoptosis is one of the main changes in the renal ischemia/reperfusion (I/R) injury. Meanwhile some proteins related with apoptosis and inflammation are also involved in renal I/R injury. We tested the hypothesis that tempol protects against renal I/R injury by activating protein kinase B/mammalian target of rapamycin (PKB, Akt/mTOR) and glycogen synthase kinase 3β (GSK3β) pathways as well as the coordinating apoptosis and inflammation related proteins. METHODS The right renal pedicle of C57Bl/6 mouse was clamped for 30 minutes and the left kidney was removed in the study. The renal injury was assessed with serum parameters by an automatic chemistry analyzer. Renal expressions of Akt/mTOR and GSK3β pathways were measured by western blot in I/R mice treated with saline or tempol (50mg/kg) and compared with sham-operated mice. RESULTS The levels of blood urea nitrogen (BUN), creatinine and superoxide anion (O2.-) increased, and superoxide dismutase (SOD) and catalase (CAT) decreased significantly after renal I/R injury. However, tempol treatment prevented the changes. Besides, I/R injury reduced renal expression of p-Akt, p-GSK3β, p-mTOR, Bcl2 and increased NF-κB, p-JNK and p53 in kidney, tempol significantly normalized these changes. In addition, renal I/R injury reduced the response of afferent arteriole to Angiotensin II (Ang II), while tempol treatment improved the activity of afferent arteriole. CONCLUSION Tempol attenuates renal I/R injury. The protective mechanisms seem to relate with activation of PI3K/Akt/mTOR and GSK3β pathways, inhibition of cellular damage markers and inflammation factors, as well as improvement of afferent arteriolar activity.
Collapse
Affiliation(s)
- Gensheng Zhang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Wang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suping Zhang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xu
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suhan Zhou
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Cao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Jianhua Mao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|