1
|
Fischbach W, Bornschein J, Hoffmann JC, Koletzko S, Link A, Macke L, Malfertheiner P, Schütte K, Selgrad DM, Suerbaum S, Schulz C. Update S2k-Guideline Helicobacter pylori and gastroduodenal ulcer disease of the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:261-321. [PMID: 38364851 DOI: 10.1055/a-2181-2225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
| | - Jan Bornschein
- Translational Gastroenterology Unit John, John Radcliffe Hospital Oxford University Hospitals, Oxford, United Kingdom
| | - Jörg C Hoffmann
- Medizinische Klinik I, St. Marien- und St. Annastiftskrankenhaus, Ludwigshafen, Deutschland
| | - Sibylle Koletzko
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU-Klinikum Munich, Munich, Deutschland
- Department of Paediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Alexander Link
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
| | - Lukas Macke
- Medizinische Klinik und Poliklinik II Campus Großhadern, Universitätsklinikum Munich, Munich, Deutschland
- Deutsches Zentrum für Infektionsforschung, Standort Munich, Munich, Deutschland
| | - Peter Malfertheiner
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
- Medizinische Klinik und Poliklinik II Campus Großhadern, Universitätsklinikum Munich, Munich, Deutschland
| | - Kerstin Schütte
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken Marienhospital Osnabrück, Osnabrück, Deutschland
| | - Dieter-Michael Selgrad
- Medizinische Klinik Gastroenterologie und Onkologie, Klinikum Fürstenfeldbruck, Fürstenfeldbruck, Deutschland
- Klinik für Innere Medizin 1, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Sebastian Suerbaum
- Universität Munich, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Deutschland
- Nationales Referenzzentrum Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Deutschland
- Deutsches Zentrum für Infektionsforschung, Standort Munich, Munich, Deutschland
| | - Christian Schulz
- Medizinische Klinik und Poliklinik II Campus Großhadern, Universitätsklinikum Munich, Munich, Deutschland
- Deutsches Zentrum für Infektionsforschung, Standort Munich, Munich, Deutschland
| |
Collapse
|
2
|
Shirani M, Pakzad R, Haddadi MH, Akrami S, Asadi A, Kazemian H, Moradi M, Kaviar VH, Zomorodi AR, Khoshnood S, Shafieian M, Tavasolian R, Heidary M, Saki M. The global prevalence of gastric cancer in Helicobacter pylori-infected individuals: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:543. [PMID: 37598157 PMCID: PMC10439572 DOI: 10.1186/s12879-023-08504-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastrointestinal pathogen that infects around half of the world's population. H. pylori infection is the most severe known risk factor for gastric cancer (GC), which is the second highest cause of cancer-related deaths globally. We conducted a systematic review and meta-analysis to assess the global prevalence of GC in H. pylori-infected individuals. METHODS We performed a systematic search of the PubMed, Web of Science, and Embase databases for studies of the prevalence of GC in H. pylori-infected individuals published from 1 January 2011 to 20 April 2021. Metaprop package were used to calculate the pooled prevalence with 95% confidence interval. Random-effects model was applied to estimate the pooled prevalence. We also quantified it with the I2 index. Based on the Higgins classification approach, I2 values above 0.7 were determined as high heterogeneity. RESULTS Among 17,438 reports screened, we assessed 1053 full-text articles for eligibility; 149 were included in the final analysis, comprising data from 32 countries. The highest and lowest prevalence was observed in America (pooled prevalence: 18.06%; 95% CI: 16.48 - 19.63; I2: 98.84%) and Africa (pooled prevalence: 9.52%; 95% CI: 5.92 - 13.12; I2: 88.39%). Among individual countries, Japan had the highest pooled prevalence of GC in H. pylori positive patients (Prevalence: 90.90%:95% CI: 83.61-95.14), whereas Sweden had the lowest prevalence (Prevalence: 0.07%; 95% CI: 0.06-0.09). The highest and lowest prevalence was observed in prospective case series (pooled prevalence: 23.13%; 95% CI: 20.41 - 25.85; I2: 97.70%) and retrospective cohort (pooled prevalence: 1.17%; 95% CI: 0.55 - 1.78; I 2: 0.10%). CONCLUSIONS H. pylori infection in GC patients varied between regions in this systematic review and meta-analysis. We observed that large amounts of GCs in developed countries are associated with H. pylori. Using these data, regional initiatives can be taken to prevent and eradicate H. pylori worldwide, thus reducing its complications.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahab Hassan Kaviar
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khoshnood
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahnaz Shafieian
- Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Ronia Tavasolian
- Department of Medicine, Faculty of Nutrition Science, University of Cheste, Chester, UK
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Karayiannis I, Martinez-Gonzalez B, Kontizas E, Kokkota AV, Petraki K, Mentis A, Kollia P, Sgouras DN. Induction of MMP-3 and MMP-9 expression during Helicobacter pylori infection via MAPK signaling pathways. Helicobacter 2023; 28:e12987. [PMID: 37139985 DOI: 10.1111/hel.12987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Helicobacter pylori (H. pylori)-induced gastric pathology involves remodeling of extracellular matrix mediated by aberrant activity of matrix metalloproteinases (MMPs). We have previously shown that in vitro H. pylori infection leads to MMP-3 and MMP-9 overexpression, associated with phosphorylation of bacterial oncoprotein CagA. We extended these findings in an in vivo model of H. pylori infection and further assessed the involvement of MAPK pathways in MMP expression. MATERIALS AND METHODS C57BL/6 mice were infected with H. pylori strains HPARE, HPARE ΔCagA, and SS1, for 6 and 9 months. Transcriptional expression of Mmp-3 and Mmp-9 was evaluated via qPCR while respective protein levels in the gastric mucosa were determined immunohistochemically. Epithelial cell lines AGS and GES-1 were infected with H. pylori strain P12 in the presence of chemical inhibitors of JNK, ERK1/2, and p38 pathways, for 24 h. mRNA and protein expression of MMP-3 and MMP-9 were determined via qPCR and Western blot, respectively. RESULTS We observed transcriptional activation of Mmp-3 and Mmp-9 as well as aberrant MMP-3 and MMP-9 protein expression in murine gastric tissue following H. pylori infection. CagA expression was associated with MMP upregulation, particularly during the early time points of infection. We found that inhibition of ERK1/2 resulted in reduced mRNA and protein expression of MMP-3 and MMP-9 during H. pylori infection, in both cell lines. Expressed protein levels of both MMPs were also found reduced in the presence of JNK pathway inhibitors in both cell lines. However, p38 inhibition resulted in a more complex effect, probably attributed to the accumulation of phospho-p38 and increased phospho-ERK1/2 activity due to crosstalk between MAPK pathways. CONCLUSIONS H. pylori colonization leads to the upregulation of MMP-3 and MMP-9 in vivo, which primarily involves ERK1/2 and JNK pathways. Therefore, their inhibition may potentially offer a protective effect against gastric carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Genetics and Biotechnology, Faculty of Biology, School of Physical Sciences, University of Athens, Athens, Greece
| | | | | | | | | | - Andreas Mentis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, School of Physical Sciences, University of Athens, Athens, Greece
| | | |
Collapse
|
4
|
Autoren, Collaborators:. Aktualisierte S2k-Leitlinie Helicobacter
pylori und gastroduodenale Ulkuskrankheit der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – Juli 2022 – AWMF-Registernummer: 021–001. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:544-606. [PMID: 37146633 DOI: 10.1055/a-1975-0414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
5
|
Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. In Silico Screening and In Vitro Assessment of Natural Products with Anti-Virulence Activity against Helicobacter pylori. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010020. [PMID: 35011255 PMCID: PMC8746548 DOI: 10.3390/molecules27010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is one of the most frequent human pathogens and a leading etiological agent of various gastric diseases. As stringent response, coordinated by a SpoT protein, seems to be crucial for the survivability of H. pylori, the main goal of this article was to use in silico computational studies to find phytochemical compounds capable of binding to the active site of SpoT from H. pylori and confirm the ability of the most active candidates to interfere with the virulence of this bacterium through in vitro experiments. From 791 natural substances submitted for the virtual screening procedure, 10 were chosen and followed for further in vitro examinations. Among these, dioscin showed the most interesting parameters (the lowest MIC, the highest anti-biofilm activity in static conditions, and a relatively low stimulation of morphological transition into coccoids). Therefore, in the last part, we extended the research with a number of further experiments and observed the ability of dioscin to significantly reduce the formation of H. pylori biofilm under Bioflux-generated flow conditions and its capacity for additive enhancement of the antibacterial activity of all three commonly used antibiotics (clarithromycin, metronidazole, and levofloxacin). Based on these results, we suggest that dioscin may be an interesting candidate for new therapies targeting H. pylori survivability and virulence.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
| | - Ryszard Adamski
- Laboratory of Microscopic Techniques, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63, 50-001 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Abstract
Background: Various microorganisms such as bacteria, virus, and fungi can infect humans and cause not just a simple infection but septic conditions, organ dysfunction, and precancerous conditions or cancer involving various organ systems. After the discovery of the microscope, it was easier to discover and study such microorganisms, as in the case of Helicobacter pylori, a pathogen that was seen in the distant era of the nineteenth century but without being recognized as such. It took 100 years to later discover the pathogenesis and the cancer that this bacterium can cause. Since it was discovered, until today, there has been a continuous search for the understanding of its pathogenetic mechanisms, and the therapeutic approach is continuously updated. Methods: We investigated how diagnosis and therapy were dealt with in the past and how researchers sought to understand, exactly, the pathogenetic biomolecular mechanisms of H. pylori, from the genesis of the infection to the current knowledge, with an analysis of carcinogenic mechanisms in the stomach. We have examined the scientific evolution of the knowledge of the disease over these 40 years in the gastroenterological and pharmacological fields. This was possible through a search in the databases of Medline, the WHO website, the Centers for Disease Control and Prevention (CDC) website, PubMed, and Web of Science to analyze the earlier and the latest data regarding H. pylori. Results: With the scientific discoveries over time, thanks to an increasing number of progressions in scientific research in the analysis of the gastric mucosa, the role of Helicobacter pylori in peptic ulcer, carcinogenesis, and in some forms of gastric lymphoma was revealed. Furthermore, over the years, the biomolecular mechanism involvement in some diseases has also been noted (such as cardiovascular ones), which could affect patients positive for H. pylori. Conclusions: Thanks to scientific and technological advances, the role of the bacterium H. pylori in carcinogenesis has been discovered and demonstrated, and new prospective research is currently attempting to investigate the role of other factors in the stomach and other organs. Cancer from H. pylori infection had a high incidence rate compared to various types of cancer, but in recent years, it is improving thanks to the techniques developed in the detection of the bacterium and the evolution of therapies. Thus, although it has become an increasingly treatable disease, there is still continuous ongoing research in the field of treatment for resistance and pharma compliance. Furthermore, in this field, probiotic therapy is considered a valid adjuvant.
Collapse
|
7
|
Holmes L, Rios J, Berice B, Benson J, Bafford N, Parson K, Halloran D. Predictive Effect of Helicobacter pylori in Gastric Carcinoma Development: Systematic Review and Quantitative Evidence Synthesis. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8010001. [PMID: 33466356 PMCID: PMC7824775 DOI: 10.3390/medicines8010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen implicated in gastritis, gastric ulceration, and gastric carcinoma. This study aimed to synthesize literature in providing evidence on the causative role of H. pylori in gastric carcinoma development. This study is based on assessing public literature using an applied meta-analysis, namely, quantitative evidence synthesis (QES). The analytic procedure uses DerSimonian-Laird, including assessing heterogeneity. The QES also utilizes meta-regression and the environmental effect associated with H. pylori in gastric cancer development. Eighteen studies are included in the QES. There is increased prevalence of H. pylori exposure among the cases. The heterogeneity between the CES and individual effect sizes is also significant. Despite controlling for the confoundings, there is increased exposure to H. pylori among the gastric cancer cases, regardless of the differences in the geographic location. H. pylori in this synthesized literature illustrates the contributory role of this microbe in gastric carcinoma. Additionally, regardless of geographic locale, namely, South Korea or Spain, H. pylori is implicated in gastric cancer development.
Collapse
Affiliation(s)
- Laurens Holmes
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-(302)-298-7741
| | - Jasmine Rios
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- History of Science and Medicine Department, Yale University, New Haven, CT 06511, USA
| | - Betyna Berice
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Master of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Jacqueline Benson
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Master of Public Health Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nastocia Bafford
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
| | - Kadedrah Parson
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
| | - Daniel Halloran
- Nemours Healthcare System for Children, Wilmington, DE 19803, USA; (J.R.); (B.B.); (J.B.); (N.B.); (K.P.); (D.H.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
George S, Lucero Y, Torres JP, Lagomarcino AJ, O'Ryan M. Gastric Damage and Cancer-Associated Biomarkers in Helicobacter pylori-Infected Children. Front Microbiol 2020; 11:90. [PMID: 32117120 PMCID: PMC7029740 DOI: 10.3389/fmicb.2020.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is well-known to be involved in gastric carcinogenesis, associated with deregulation of cell proliferation and epigenetic changes in cancer-related genes. H. pylori infection is largely acquired during childhood, persisting long-term in about half of infected individuals, a subset of whom will go on to develop peptic ulcer disease and eventually gastric cancer, however, the sequence of events leading to disease is not completely understood. Knowledge on carcinogenesis and gastric damage-related biomarkers is abundant in adult populations, but scarce in children. We performed an extensive literature review focusing on gastric cancer related biomarkers identified in adult populations, which have been detected in children infected with H. pylori. Biomarkers were related to expression levels (RNA or protein) and/or methylation levels (DNA) in gastric tissue or blood of infected children as compared to non-infected controls. In this review, we identified 37 biomarkers of which 24 are over expressed, three are under expressed, and ten genes are significantly hypermethylated in H. pylori-infected children compared to healthy controls in at least 1 study. Only four of these biomarkers (pepsinogen I, pepsinogen II, gastrin, and SLC5A8) have been studied in asymptomatically infected children. Importantly, 13 of these biomarkers (β-catenin, C-MYC, GATA-4, DAPK1, CXCL13, DC-SIGN, TIMP3, EGFR, GRIN2B, PIM2, SLC5A8, CDH1, and VCAM-1.) are consistently deregulated in infected children and in adults with gastric cancer. Future studies should be designed to determine the clinical significance of these changes in infection-associated biomarkers in children and their persistence over time. The effect of eradication therapy over these biomarkers in children if proven significant, could lead to modifications in treatment guidelines for younger populations, and eventually promote the development of preventive strategies, such as vaccination, in the near future.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Anne J Lagomarcino
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (IMII), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Rahmati A, Shakeri R, Khademi H, Poustchi H, Pourshams A, Etemadi A, Khoshnia M, Sohrabpour AA, Aliasgari A, Jafari E, Islami F, Semnani S, Gharavi S, Abnet CC, Pharoah PDP, Brennan P, Boffetta P, Dawsey SM, Malekzadeh R, Kamangar F. Mortality from respiratory diseases associated with opium use: a population-based cohort study. Thorax 2017; 72:1028-1034. [PMID: 27885167 PMCID: PMC5759041 DOI: 10.1136/thoraxjnl-2015-208251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 09/11/2016] [Accepted: 10/16/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies have suggested that opium use may increase mortality from cancer and cardiovascular diseases. However, no comprehensive study of opium use and mortality from respiratory diseases has been published. We aimed to study the association between opium use and mortality from respiratory disease using prospectively collected data. METHODS We used data from the Golestan Cohort Study, a prospective cohort study in northeastern Iran, with detailed, validated data on opium use and several other exposures. A total of 50 045 adults were enrolled from 2004 to 2008, and followed annually until June 2015, with a follow-up success rate of 99%. We used Cox proportional hazard regression models to evaluate the association between opium use and outcomes of interest. RESULTS During the follow-up period, 331 deaths from respiratory disease were reported (85 due to respiratory malignancies and 246 due to non-malignant aetiologies). Opium use was associated with an increased risk of death from any respiratory disease (adjusted HR 95% CI 3.13 (2.42 to 4.04)). The association was dose-dependent with a HR of 3.84 (2.61 to 5.67) for the highest quintile of cumulative opium use versus never use (Ptrend<0.001). The HRs (95% CI) for the associations between opium use and malignant and non-malignant causes of respiratory mortality were 1.96 (1.18 to 3.25) and 3.71 (2.76 to 4.96), respectively. CONCLUSIONS Long-term opium use is associated with increased mortality from both malignant and non-malignant respiratory diseases.
Collapse
Affiliation(s)
- Atieh Rahmati
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shakeri
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hooman Khademi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Masoud Khoshnia
- Golestan Research Center of Gastroenterology& Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Ali Sohrabpour
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Aliasgari
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Islami
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- American Cancer Society, Atlanta, USA
| | - Shahryar Semnani
- Golestan Research Center of Gastroenterology& Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Samad Gharavi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Golestan Research Center of Gastroenterology& Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paul DP Pharoah
- Departments of Oncology and Public Health and Primary Care University of Cambridge, Cambridge, UK
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Paolo Boffetta
- The Tisch Cancer Institute and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanford M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Public Health Analysis, School of Community Health and Policy, Morgan State University, Baltimore, MD
| |
Collapse
|
10
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
11
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
12
|
Comparative Genomics of H. pylori and Non-Pylori Helicobacter Species to Identify New Regions Associated with Its Pathogenicity and Adaptability. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6106029. [PMID: 28078297 PMCID: PMC5203880 DOI: 10.1155/2016/6106029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023]
Abstract
The genus Helicobacter is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. Helicobacter pylori (H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of H. pylori that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative H. pylori and 24 non-pylori Helicobacter genomes. There were 1173 conserved protein families of H. pylori and 673 of all 99 Helicobacter genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the H. pylori but lacked in non-pylori Helicobacter species. The operons, genes, and sRNAs within the H. pylori unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.
Collapse
|
13
|
Zhang Y, Wang S, Hu B, Zhao F, Xiang P, Ji D, Chen F, Liu X, Yang F, Wu Y, Kong M, Nan L, Miao Y, Jiang W, Fang Y, Zhang J, Bao Z, Olszewski MA, Zhao H. Direct detection of Helicobacter pylori in biopsy specimens using a high-throughput multiple genetic detection system. Future Microbiol 2016; 11:1521-1534. [PMID: 27599152 DOI: 10.2217/fmb-2016-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM We evaluated the direct high-throughput multiple genetic detection system (dHMGS) for Helicobacter pylori in gastric biopsies. MATERIALS & METHODS One hundred and thirty-three specimens were concurrently analyzed by dHMGS, rapid urease test, culture and sequencing. RESULTS dHMGS was highly sensitive and specific for H. pylori identification compared with culture and rapid urease test. The correlation coefficient of the quantitative standard curve was R2 = 0.983. A significant difference in the relative H. pylori DNA abundance was found in different gastroduodenal diseases. Concordance rates between dHMGS and sequencing for resistance mutations were 97.1, 100.0, 85.3 and 97.1%, respectively. Finally, dHMGS could efficiently distinguish mixed infection in biopsy specimens. CONCLUSION The dHMGS could efficiently diagnose and quantify H. pylori burden in biopsies, simultaneously screening for virulence, antibiotic resistance and presence of the multistrain infections.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China.,Research Center on Aging & Medicine, Fudan University, Shanghai 200040, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Binjie Hu
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Fuju Zhao
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Ping Xiang
- Department of Endoscopy, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Danian Ji
- Department of Endoscopy, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Fei Chen
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Feng Yang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Yong Wu
- Ningbo HEALTH Gene Technologies Co., Ltd, Ningbo 315000, PR China
| | - Mimi Kong
- Ningbo HEALTH Gene Technologies Co., Ltd, Ningbo 315000, PR China
| | - Li Nan
- Ningbo HEALTH Gene Technologies Co., Ltd, Ningbo 315000, PR China
| | - Yingxin Miao
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Wenrong Jiang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Yi Fang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Zhijun Bao
- Department of Gastroenterology, Gerontology Institute of Shanghai affiliated to Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China
| | - Michal A Olszewski
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Michigan Medical School & Veterans' Affairs Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital affiliated to Fudan University, No. 221 Yanan West Road, Shanghai 200040, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China.,Research Center on Aging & Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
14
|
Shakeri R, Malekzadeh R, Nasrollahzadeh D, Pawlita M, Murphy G, Islami F, Sotoudeh M, Michel A, Etemadi A, Waterboer T, Poustchi H, Brennan P, Boffetta P, Dawsey SM, Kamangar F, Abnet CC. Multiplex H. pylori Serology and Risk of Gastric Cardia and Noncardia Adenocarcinomas. Cancer Res 2015; 75:4876-4883. [PMID: 26383162 PMCID: PMC4792189 DOI: 10.1158/0008-5472.can-15-0556] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023]
Abstract
The reported associations with gastric adenocarcinoma and seropositivity to different Helicobacter pylori antigens using multiplex serology have not been consistent across studies. We aimed to investigate the association between 15 different multiplex serology antigens and the risk of gastric cardia (GCA) and gastric noncardia (GNCA) adenocarcinomas in northeastern Iran, a population with high rates of gastric adenocarcinoma. We included 272 cases of gastric adenocarcinoma (142 GCA, 103 GNCA, and 27 unspecified) and 524 controls who were individually matched to cases for age, sex, and place of residence in a population-based case-control study. Seropositivity to H. pylori was assessed using both multiplex serology and H. pylori IgG ELISA. Ninety-five percent of controls were seropositive to H. pylori. Of the 15 antibodies in the multiplex assay, 11 showed no significant association with gastric adenocarcinomas. CagA and VacA were associated with a significantly increased risk of all gastric adenocarcinoma and GNCA in multivariate models. Surprisingly, GroEL and NapA were significantly associated with a reduced risk of these tumors. Only CagA antigen was associated with significantly elevated risk of GCA. We found no associations between H. pylori seropositivity overall either by whole-cell ELISA test or multiplex serology, likely due to the high prevalence of seropositivity. Individual antigen testing showed that CagA positivity was associated with increased risk of both noncardia and cardia adenocarcinoma, which is similar to some other Asian populations, whereas two antigens were associated with lower risk of gastric cancer. This latter result was unexpected and should be retested in other populations.
Collapse
Affiliation(s)
- Ramin Shakeri
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Dariush Nasrollahzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | - Gwen Murphy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Farhad Islami
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. American Cancer Society, Atlanta
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Hossein Poustchi
- Digestive Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Paolo Boffetta
- Institute for Translational Epidemiology and Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Sanford M Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. Department of Public Health Analysis, School of Community Health and Policy, Morgan State University, Baltimore, Maryland
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
15
|
Haley KP, Gaddy JA. Metalloregulation of Helicobacter pylori physiology and pathogenesis. Front Microbiol 2015; 6:911. [PMID: 26388855 PMCID: PMC4557348 DOI: 10.3389/fmicb.2015.00911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes over half of the world's population. Chronic H. pylori infection is associated with increased risk for numerous disease outcomes including gastritis, dysplasia, neoplasia, B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma), and invasive adenocarcinoma. The complex interactions that occur between pathogen and host are dynamic and exquisitely regulated, and the relationship between H. pylori and its human host are no exception. To successfully colonize, and subsequently persist, within the human stomach H. pylori must temporally regulate numerous genes to ensure localization to the gastric lumen and coordinated expression of virulence factors to subvert the host's innate and adaptive immune response. H. pylori achieves this precise gene regulation by sensing subtle environmental changes including host-mediated alterations in nutrient availability and responding with dramatic global changes in gene expression. Recent studies revealed that the presence or absence of numerous metal ions encountered in the lumen of the stomach, or within host tissues, including nickel, iron, copper and zinc, can influence regulatory networks to alter gene expression in H. pylori. These expression changes modulate the deployment of bacterial virulence factors that can ultimately influence disease outcome. In this review we will discuss the environmental stimuli that are detected by H. pylori as well as the trans regulatory elements, specifically the transcription regulators and transcription factors, that allow for these significant transcriptional shifts.
Collapse
Affiliation(s)
- Kathryn P Haley
- Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| |
Collapse
|