1
|
Piszczatowska K, Czerwaty K, Dżaman K, Jermakow N, Brzost J, Kantor I, Ludwig N, Szczepański MJ. Evaluation of CNPase and TGFβ1/Smad Signalling Pathway Molecule Expression in Sinus Epithelial Tissues of Patients with Chronic Rhinosinusitis with (CRSwNP) and without Nasal Polyps (CRSsNP). J Pers Med 2024; 14:894. [PMID: 39338148 PMCID: PMC11433593 DOI: 10.3390/jpm14090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP, respectively) is a chronic inflammatory disease affecting almost 5 to 12% of the population and exhibiting high recurrence rates after functional endoscopic sinus surgery (FESS). TGFβ1-related pathways contribute to tissue remodelling, which is one of the key aspects of CRS pathogenesis. Additionally, adenosine signalling participates in inflammatory processes, and CNPase was shown to elevate adenosine levels by metabolizing cyclic monophosphates. Thus, the aim of this study was to assess the expression levels of Smad2, pSmad3, TGFβ1, and CNPase protein via immunohistochemistry in sinus epithelial tissues from patients with CRSwNP (n = 20), CRSsNP (n = 23), and non-CRS patients (n = 8). The expression of Smad2, pSmad3, TGFβ1, and CNPase was observed in the sinus epithelium and subepithelial area of all three groups of patients, and their expression correlated with several clinical symptoms of CRS. Smad2 expression was increased in CRSsNP patients compared to CRSwNP patients and controls (p = 0.001 and p < 0.001, respectively), pSmad3 expression was elevated in CRSwNP patients compared to controls (p = 0.007), TGFβ1 expression was elevated in CRSwNP patients compared to controls (p = 0.009), and CNPase was decreased in CRSsNP patients compared to controls (p = 0.03). To the best of our knowledge, we are the first to demonstrate CNPase expression in the upper airway epithelium of CRSwNP, CRSsNP, and non-CRS patients and point out a putative synergy between CNPase and TGFβ1/Smad signalling in CRS pathogenesis that emerges as a novel still undiscovered aspect of CRS pathogenesis; further studies are needed to explore its function in the course of the chronic inflammation of the upper airways.
Collapse
Affiliation(s)
- Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Nils Ludwig
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| |
Collapse
|
2
|
Bruchhage KL, Lupatsii M, Möllenkolk F, Leffers D, Kurabi A, Jürgens T, Graspeuntner S, Hollfelder D, Leichtle A. Hearing rehabilitation and microbial shift after middle ear surgery with Vibrant Soundbridge in patients with chronic otitis media. Eur Arch Otorhinolaryngol 2023; 280:3107-3118. [PMID: 36662266 DOI: 10.1007/s00405-022-07795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Patients with otitis media (OM) encounter significant functional hearing impairment with conductive, or a combined hearing loss and long-term sequelae involving impaired speech/language development in children, reduced academic achievement and irreversible disorders of middle and inner ear requiring a long time therapy and/or multiple surgeries. In its persistent chronic form, Otitis media (COM) can often only be treated by undergoing ear surgery for hearing restoration. The persistent inflammatory reaction plays a major role, often caused by multi-resistant pathogens in the ear. Herein, we present outcomes of patients implanted with currently the only FDA approved active Middle Ear Implant Vibrant Soundbridge (VSB), suffering from persistent COM. METHODS The study enrolled 42 patients, treated by performing middle ear (ME) surgery to different extents and implanted with the VSB to various structures in the ME. Included were 17 children and 25 adults that had recurrent and/or persisting OM and significant hearing loss. Preoperative and postoperative patients' audiometric data were evaluated and the benefit with VSB assessed using the Glasgow Benefit Inventory for adults and pediatric cohorts. The microbial spectrum of pathogens was assessed before and after surgery, exploring the colonization of the otopathogens, as well as the intestinal microbiome from individually burdened patients. RESULTS The mean functional gain is 29.7 dB HL (range from 10 to 56.2 dB HL) with a significant improvement in speech intelligibility in quiet. Following VSB implantation, no significant differences in coupling were observed at low complication rates. Postoperatively patients showed significantly increased benefit with VSB compared to the untreated situation, including less otorrhea, pain, medical visits, and medication intake, with no recurrent OM and significant bacterial shift in otopathogens. The analysis of the intestinal microbiome displayed a high abundance of bacterial strains that might be linked to chronic and persistent inflammation. CONCLUSIONS Functional ear surgery including rehabilitation with a VSB in patients suffering from COM present to be safe and effective. The successful acceptance accompanied by the improved audiological performance resulted in significant benefit with VSB, with a shift in the ear pathogens and altered microbiome and thus is a great opportunity to be treated.
Collapse
Affiliation(s)
- Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Friederike Möllenkolk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine, La Jolla, San Diego, USA
| | - Tim Jürgens
- Institute of Acoustics, University of Applied Sciences Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Daniela Hollfelder
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany.
| |
Collapse
|
3
|
Leichtle A, Kurabi A, Leffers D, Därr M, Draf CS, Ryan AF, Bruchhage KL. Immunomodulation as a Protective Strategy in Chronic Otitis Media. Front Cell Infect Microbiol 2022; 12:826192. [PMID: 35433505 PMCID: PMC9005906 DOI: 10.3389/fcimb.2022.826192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Major features of the pathogenesis in otitis media, the most common disease in childhood, include hyperplasia of the middle ear mucosa and infiltration by leukocytes, both of which typically resolve upon bacterial clearance via apoptosis. Activation of innate immune receptors during the inflammatory process leads to the activation of intracellular transcription factors (such as NF-κB, AP-1), which regulate both the inflammatory response and tissue growth. We investigated these leading signaling pathways in otitis media using mouse models, human samples, and human middle ear epithelial cell (HMEEC) lines for therapeutic immunomodulation. Methods A stable otitis media model in wild-type mice and immunodeficient KO-mice, as well as human tissue samples from chronic otitis media, skin from the external auditory canal and middle ear mucosa removed from patients undergoing ear surgery, were studied. Gene and protein expression of innate immune signaling molecules were evaluated using microarray, qPCR and IHC. In situ apoptosis detection determined the apoptotic rate. The influence of bacterial infection on immunomodulating molecules (TNFα, MDP, Tri-DAP, SB203580, Cycloheximide) in HMEEC was evaluated. HMEEC cells were examined after bacterial stimulation/inhibition for gene expression and cellular growth. Results Persistent mucosal hyperplasia of the middle ear mucosa in chronic otitis media resulted from gene and protein expression of inflammatory and apoptotic genes, including NODs, TNFα, Casp3 and cleaved Casp3. In clinical chronic middle ear samples, these molecules were modulated after a specific stimulation. They also induced a hyposensitive response after bacterial/NOD-/TLR-pathway double stimulation of HMEEC cells in vitro. Hence, they might be suitable targets for immunological therapeutic approaches. Conclusion Uncontrolled middle ear mucosal hyperplasia is triggered by TLRs/NLRs immunoreceptor activation of downstream inflammatory and apoptotic molecules.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
- *Correspondence: Anke Leichtle,
| | - Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Clara Sophia Draf
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Allen Frederic Ryan
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- Research Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, United States
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Abstract
Objective Otitis media (OM) is a common reason for children to be prescribed antibiotics and undergo surgery but a thorough understanding of disease mechanisms is lacking. We evaluate the evidence of a dysregulated immune response in the pathogenesis of OM. Methods A comprehensive systematic review of the literature using search terms [otitis media OR glue ear OR AOM OR OME] OR [middle ear AND (infection OR inflammation)] which were run through Medline and Embase via Ovid, including both human and animal studies. In total, 82 955 studies underwent automated filtering followed by manual screening. One hundred studies were included in the review. Results Most studies were based on in vitro or animal work. Abnormalities in pathogen detection pathways, such as Toll-like receptors, have confirmed roles in OM. The aetiology of OM, its chronic subgroups (chronic OM, persistent OM with effusion) and recurrent acute OM is complex; however, inflammatory signalling mechanisms are frequently implicated. Host epithelium likely plays a crucial role, but the characterisation of human middle ear tissue lags behind that of other anatomical subsites. Conclusions Translational research for OM presently falls far behind its clinical importance. This has likely hindered the development of new diagnostic and treatment modalities. Further work is urgently required; particularly to disentangle the respective immune pathologies in the clinically observed phenotypes and thereby work towards more personalised treatments.
Collapse
|
5
|
Leichtle A, Leffers D, Daerr MG, Draf C, Kurabi A, Ryan AF, Rupp J, Bruchhage KL. [Immunomodulation in Cholesteatoma]. Laryngorhinootologie 2021; 101:310-319. [PMID: 34233375 DOI: 10.1055/a-1516-4447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The etiopathogenesis of chronic otitis media epitympanalis/cholesteatoma and its proliferative destructive course with possible complications such as destruction of bony structures with hearing loss, vestibular dysfunction, facial nerve paralysis and intracranial complications are still unexplained. Surgery is still the way to go. New studies are increasingly looking at the innate immune system. METHODS Our studies were carried out in a mouse model in WT mice and immundeficient KO-mice, as well as in cholestatoma and healthy ear canal skin and middle ear tissue, which was removed during ear surgery. The expression analyses were carried out at the gene and protein level using TNF as the major target for therapy evaluation. By means of TUNEL staining and immunohistochemistry the level of apoptosis was evaluated. RESULTS The uncontrolled undirected cholesteatoma growth shows an immunomodulatory profile with up and down-regulation of various gene networks, especially those involved in TNF downstream and upstream signaling pathways. TNF in cholesteatoma is modulated both inflammatorily and apoptotically and therefore is suitable as a possible therapeutic approach in various models. CONCLUSIONS Cholestatoma might be immunomodulatory regulated.
Collapse
Affiliation(s)
- Anke Leichtle
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Schleswig-Holstein Campus Lübeck HNO Klinik, Lubeck, Germany
| | - David Leffers
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Schleswig-Holstein Campus Lübeck HNO Klinik, Lubeck, Germany
| | - Markus Georg Daerr
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Schleswig-Holstein Campus Lübeck HNO Klinik, Lubeck, Germany
| | - Clara Draf
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, United States
| | - Arwa Kurabi
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, United States
| | - Allen F Ryan
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, United States
| | - Jan Rupp
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Luebeck, Germany
| | - Karl-Ludwig Bruchhage
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Schleswig-Holstein Campus Lübeck HNO Klinik, Lubeck, Germany
| |
Collapse
|
6
|
Zhang C, Chen M, Chi Z. Cytokine secretion and pyroptosis of cholesteatoma keratinocytes mediated by AIM2 inflammasomes in response to cytoplasmic DNA. Mol Med Rep 2021; 23:344. [PMID: 33760111 PMCID: PMC7974272 DOI: 10.3892/mmr.2021.11983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Cholesteatoma constitutes an acquired benign epidermal non-permanent bone lesion that is locally destructive and patients often relapse. Inflammasomes, which mediate the maturation and production of IL-18 and IL-1β, resulting in pyroptosis, have been documented to serve a core function in multiple inflammatory conditions. Absent in melanoma 2 (AIM2) is an inflammasome that identifies cytoplasmic DNA and has previously been reported as a pivotal modulator of inflammatory responses. Therefore, the present study aimed to determine the expression levels of AIM2 in human cholesteatoma tissues, and elucidate its function in modulating cytokine production. The expression levels of IL-18, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β, AIM2 and caspase-1 were markedly elevated in cholesteatoma tissues. Protein expression levels of AIM2, caspase-1 and ASC were localized in the cellular cytoplasm, primarily in the granular and prickle-cell layers in the cholesteatoma epithelium. Induction using IFN-γ, as well as cytoplasmic DNA markedly activated the AIM2 inflammasome and elevated the release of IL-18 and IL-1β in human cholesteatoma keratinocytes. IFN-γ was found to enhance poly(dA:dT)-induced pyroptosis of cells and cytokine production. The results of the present study revealed that AIM2 expressed in human cholesteatoma serves a vital function in the inflammatory response by initiating the inflammasome signaling cascade in cholesteatoma.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
7
|
Kurabi A, Cooper M, Spriggs M, Xu Y, Schaerer D, Ryan AF. Molecular Screening Strategy to Identify a Non-invasive Delivery Mechanism for the Treatment of Middle Ear Disorders. Front Med (Lausanne) 2020; 7:503819. [PMID: 33392211 PMCID: PMC7775502 DOI: 10.3389/fmed.2020.503819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Middle ear ailments include a broad range of pathological conditions. Otitis media is the leading middle ear disease of childhood, which incurs significant health care resources in developed countries and, in developing countries, causes significant mortality and morbidity. Recurrent and chronic infections of the middle ear lead to the prolonged presence of inflammatory factors and cellular infiltrates resulting in temporary hearing loss. However, long-term alteration of the middle ear space can pose the risk of permanent damage to the delicate ear structures and cause tissue remodeling. While the etiopathogenesis of middle ear diseases is multifactorial, targeting the biological mechanisms and molecular networks that drive disease development is critical. Yet, a pivotal step in realizing the potential of molecular therapies is the development of methods for local drug delivery, since systemic application risks side effects. Utilizing bacteriophage display in the rat, we discovered rare peptides that are able to transit the intact tympanic membrane from the external canal to the middle ear cavity by an active process. An in vitro assay demonstrated that transport occurs across the tympanic membranes of humans and that the peptides cross the membrane independent of phage. Transport of phage, which is ~900 nm in length, suggests that these peptides could non-invasively deliver drug packages or gene therapy vectors into the middle ear.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Molly Cooper
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Meghan Spriggs
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Yuge Xu
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Daniel Schaerer
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, UCSD School of Medicine, San Diego, CA, United States.,Department of Neurosciences, UCSD School of Medicine, San Diego, CA, United States.,San Diego VA Healthcare System, San Diego, CA, United States
| |
Collapse
|
8
|
Zhang C, Frye MD, Sun W, Sharma A, Manohar S, Salvi R, Hu BH. New insights on repeated acoustic injury: Augmentation of cochlear susceptibility and inflammatory reaction resultant of prior acoustic injury. Hear Res 2020; 393:107996. [PMID: 32534268 DOI: 10.1016/j.heares.2020.107996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
In industrial and military settings, individuals who suffer from one episode of acoustic trauma are likely to sustain another episode of acoustic stress, creating an opportunity for a potential interaction between the two stress conditions. We previously demonstrated that acoustic overstimulation perturbs the cochlear immune environment. However, how the cochlear immune system responds to repeated acoustic overstimulation is unknown. Here, we used a mouse model to investigate the cochlear immune response to repeated stress. We reveal that exposure to an intense noise at 120 dB SPL for 1 h activates the cochlear immune response in a time-dependent fashion with substantial expansion and activation of the macrophage population in the cochlea at 2-days post-exposure. At 20-days post-exposure, the number and pro-inflammatory phenotypes of cochlear macrophages have significantly subsided, but have yet to return to homeostatic levels. Monocytes with anti-inflammatory phenotypes are recruited into the cochlea. With the presence of this residual immune activation, a second exposure to the same noise provokes an exaggerated inflammatory response as evidenced by exacerbated maturation of macrophages. Furthermore, the second noise causes greater sensory cell pathogenesis. Unlike the first noise-induced damage that occurs mainly between 0 and 2 days post-exposure, the second noise-induced damage occurs more frequently between 2 and 20 days post-exposure, the period when secondary damage takes place. These observations suggest that repeated acoustic overstimulation exacerbates cochlear inflammation and secondary sensory cell pathogenesis. Together, our results suggest that the cochlear immune system plays an important role in modulating cochlear responses to repeated acoustic stress.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA, 14214.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
9
|
Guo L, Liu J, Zhang Y, Fu S, Qiu Y, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. The Effect of Baicalin on the Expression Profiles of Long Non-Coding RNAs and mRNAs in Porcine Aortic Vascular Endothelial Cells Infected with Haemophilus parasuis. DNA Cell Biol 2020; 39:801-815. [PMID: 32096672 DOI: 10.1089/dna.2019.5340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis can elicit serious inflammatory responses, which contribute to huge economic losses to the swine industry. However, the pathogenic mechanisms underlying inflammation-related damage induced by H. parasuis remain unclear. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have important functions in the regulation of autoimmune disorders. Baicalin has been shown to have anti-inflammatory, anti-microbial, and anti-oxidant activities. In this study, we investigated whether lncRNAs were involved in the vascular injury or inflammation triggered by H. parasuis and whether baicalin regulated the lncRNA profiles of porcine aortic vascular endothelial cells (PAVECs) infected with H. parasuis. The results showed that the lncRNA and mRNA expression profiles of PAVECs were changed by H. parasuis. Important functions of lncRNAs and mRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that the targets of differentially expressed lncRNAs of H. parasuis infected PAVECs were mainly involved in the tumor necrosis factor (TNF) signaling pathway, apoptosis, and N-glycan biosynthesis; whereas nicotinate and nicotinamide metabolism, the cytosolic DNA-sensing pathway, the TNF signaling pathway, and the nuclear factor (NF)-kappa B signaling pathway were enriched in PAVECs pretreated with baicalin. In addition, top hub genes and lncRNAs were identified and validated by quantitative polymerase chain reaction. CCL5, GBP1, and SAMHD1 were significantly upregulated after H. parasuis infection, whereas they were significantly downregulated with baicalin pretreatment. LncRNA ALDBSSCT0000001677, ALDBSSCT0000001353, MSTRG.10724.2, and ALDBSSCT0000010434 had the same expression pattern. Collectively, these data suggested that baicalin could modify changes to the lncRNAs profiles or regulate lncRNAs that participate in inflammation-related signaling pathways, thereby alleviating tissue damage or inflammatory responses induced by H. parasuis. To our best knowledge, this is the first article of H. parasuis stimulating changes to the lncRNA profiles of PAVECs and the capability of baicalin to regulate lncRNA changes in PAVECs infected with H. parasuis, which might provide a novel therapeutic target for the control of H. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
10
|
Lee J, Leichtle A, Zuckerman E, Pak K, Spriggs M, Wasserman SI, Kurabi A. NOD1/NOD2-mediated recognition of non-typeable Haemophilus influenzae activates innate immunity during otitis media. Innate Immun 2019; 25:503-512. [PMID: 31474163 PMCID: PMC6900663 DOI: 10.1177/1753425919872266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathogen recognition following infection in mammals depends mainly on TLRs and
NLRs. Herein, we evaluate the role of NOD1 and NOD2 signaling in the
inflammatory responses of the middle ear (ME) mucosa and leukocytes recruitment
to infection site during otitis media (OM). OM is a common pediatric disease
with prevalent repercussions on hearing health. While many risk factors have
been implicated to OM proneness, immunity and the triggering of inflammation are
central to OM pathology. We observed that many genes encoding members of the NOD
leucine-rich repeat and their downstream adaptor/effector molecules were
strongly regulated during the course of OM. When compared to wild type C57BL/6
mice, NOD1- and NOD2-deficient mice were susceptible to prolonged OM infection
by non-typeable Haemophilus influenza. NOD1-deficient mice
appeared to have reduced macrophage enlistment with a delayed inflammatory
response by neutrophils and prolonged mucosal hyperplasia, whereas NOD2
knockouts exhibited an overall reduction in the number of leukocytes recruited
to the ME, leading to delayed bacterial clearance. Altogether, these data show
that the NODs play a role in the pathogenesis and recovery of OM and reinforce
the importance of innate immune signaling in the protective host response.
Collapse
Affiliation(s)
- Jasmine Lee
- Department of Surgery, University of California San Diego, USA
| | - Anke Leichtle
- Department of Surgery, University of California San Diego, USA.,Department of Otolaryngology, University of Lübeck, Germany
| | - Emily Zuckerman
- Department of Surgery, University of California San Diego, USA
| | - Kwang Pak
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| | - Meghan Spriggs
- Department of Surgery, University of California San Diego, USA
| | | | - Arwa Kurabi
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| |
Collapse
|
11
|
Jovanovic I, Zivkovic M, Djuric T, Stojkovic L, Jesic S, Stankovic A. Perimatrix of middle ear cholesteatoma: A granulation tissue with a specific transcriptomic signature. Laryngoscope 2019; 130:E220-E227. [PMID: 31132150 DOI: 10.1002/lary.28084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES/HYPOTHESIS To establish comprehensive transcriptomic profiles of cholesteatoma perimatrix tissue and granulation tissue from chronic otitis media (COM) that did not develop cholesteatoma, which can indicate molecular pathways involved in the cholesteatoma perimatrix pathology and invasiveness. STUDY DESIGN Retrospective Case Series. METHODS Transcriptome data were obtained from cholesteatoma perimatrix tissue and COM granulation tissue by an Illumina iScan microarray. Differentially expressed genes (DEGs) were subsequently analyzed using both bioinformatical functional annotation and network analysis. Expression of candidate genes (MMP9 and LCN2) was validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on a larger group of samples. RESULTS Analysis of the transcriptome led to the identification of 169 differentially expressed genes between investigated tissues. Bioinformatic analysis suggested that most significant biological processes involving DEGs were previously described in cholesteatoma pathology. Network analysis identified ERBB2, TFAP2A, and TP63 as major hubs of the DEGs molecular network. Furthermore, it was observed that the cellular component most significantly enriched in DEGs was extracellular space containing 47 DEGs. Using qRT-PCR, it was confirmed that mRNA levels of the major extracellular hub (MMP9) are increased, whereas its interacting molecule (LCN2) mRNA levels were decreased in cholesteatoma perimatrix tissue compared to COM granulation tissue. CONCLUSIONS The current study approach offers an overall look at molecular mechanisms that describe the cholesteatoma entity by focusing exclusively on the perimatrix processes in comparison to COM granulation tissue. The observed differences in gene expression between cholesteatoma perimatrix and COM granulation tissue could suggest novel markers potentially influenced by the perimatrix-matrix molecular interplay, which is not present in COM without cholesteatoma. LEVEL OF EVIDENCE NA Laryngoscope, 130:E220-E227, 2020.
Collapse
Affiliation(s)
- Ivan Jovanovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Tamara Djuric
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Stojkovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Snezana Jesic
- Medical Faculty, University of Belgrade, Belgrade, Serbia.,Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Aleksandra Stankovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Živković M, Kolić I, Jesić S, Jotić A, Stanković A. The Allele 2 of the VNTR Polymorphism in the Gene That Encodes a Natural Inhibitor of IL-1β, IL-1RA Is Favorably Associated With Chronic Otitis Media. Clin Exp Otorhinolaryngol 2018; 11:118-123. [PMID: 29433161 PMCID: PMC5951068 DOI: 10.21053/ceo.2017.01060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives Chronic otitis media (COM) is followed by irreversible tissue damage and destruction of the middle ear structures, with the possibility of complications under the maintenance of inflammation. Inflammatory mediators such as cytokines play a crucial role in the initial stage of inflammation. The aim of this study was to evaluate the association of the polymorphisms in two innate immunity/inflammation cascade genes from interleukin-1 (IL-1) gene cluster with COM with regard to cholesteatoma. Methods In the cross-sectional case-control study, DNA samples were collected from 189 patients with COM and 119 controls from a population of Serbia. The +3953 C/T (rs1143634), TaqI polymorphism in interleukin-1 beta (IL-1β) gene and 86 bp variable number tandem repeat (VNTR, rs2234663) polymorphism in the IL-1 receptor antagonist (IL-1RA) gene were analyzed by polymerase chain reaction. Results The IL-1β TaqI polymorphism was not significantly different in patients compared with the control group. The significant difference between patients and controls was observed for both, genotype and allele frequencies of IL-1RA VNTR polymorphism (chi-square P<0.01). We found that carriers of IL-1RA allele 2 (odds ratio, 0.47; 95% confidence interval, 0.29 to 0.76; P=0.004) have a favorable association with COM, using multivariate logistic analysis that included both polymorphisms, age and sex. The IL-1RA allele frequency distribution was significantly different with regard to cholesteatoma. Conclusion The carriers of allele 2 of VNTR IL-1RA polymorphism had a decreased odds ratio for COM, which is in agreement with findings in other inflammatory disease and its previous association with higher IL-1RA levels. Possible down-regulation of IL-1 mediated proinflammatory signaling pathways via IL-1RA in COM as well as results of our study should be further investigated and replicated.
Collapse
Affiliation(s)
- Maja Živković
- Vinca Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivana Kolić
- Vinca Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Snežana Jesić
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Ana Jotić
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Aleksandra Stanković
- Vinca Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Identification of key mRNAs and microRNAs in the pathogenesis and progression of osteoarthritis using microarray analysis. Mol Med Rep 2017; 16:5659-5666. [PMID: 28849222 DOI: 10.3892/mmr.2017.7251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common type of disease affecting the joints that results from the breakdown of joint cartilage and the underlying bone; currently, its pathogenesis is still unclear. The aim of the present study was to identify key mRNAs and miRNAs involved in the pathogenesis and progression of OA using microarray analysis. The gene expression profile of GSE27492 was downloaded from the Gene Expressed Omnibus database, and included 49 arthritic mouse ankle samples collected at 6 time points (0, 1, 3, 7, 12 and 18 days) following the induction of arthritis via serum transfer. Differentially expressed genes (DEGs) were identified in ankle samples taken on days 1, 3, 7, 12 and 18 following serum transfer compared with day 0 samples, and overlapping DEGs in day 3, 7, 12 and 18 samples were identified. The Database for Annotation, Visualization and Integrated Discovery online tool was used to perform functional and pathway enrichment analyses of the overlapping DEGs. The miRWalk database was used to identify potential micro (mi) RNAs regulating the selected overlapping DEGs, and regulatory miRNA‑target mRNA pairs were obtained. The Cytoscape platform was used to establish and visualize the miRNA‑mRNA regulatory network. The present results revealed that 35, 103, 62 and 75 DEGs were identified in day 3, 7, 12 and 18 samples, respectively. A total of 17 overlapping DEGs were identified among the 4 sample sets, and revealed to be enriched in 14 gene ontology terms and 3 Kyoto Encyclopedia of Genes and Genomes pathways. miRWalk analysis identified 242 potential miRNA‑mRNA regulatory pairs and 211 nodes were revealed to be involved in the miRNA‑mRNA regulatory network. The present study identified potential genes, including C‑type lectin domain family 4 member D, chemokine (C‑X‑C motif) ligand 1 and C‑C motif chemokine ligand, and pathways, including chemokine signaling pathways, cytokine‑cytokine receptor interactions and nucleotide‑binding oligomerization domain‑like receptor signaling pathways, which may be involved in the pathogenesis and progression of OA. These findings may help elucidate the molecular mechanisms underlying OA pathophysiology, and may be useful for the development of novel therapeutic targets for the treatment of patients with OA.
Collapse
|
14
|
Preciado D, Granath A, Lin J, Val S, Kurabi A, Johnston N, Vijayasekaran S, Valdez T, Depireux D, Hermansson A. Panel 8: Report on Recent Advances in Molecular and Cellular Biochemistry. Otolaryngol Head Neck Surg 2017; 156:S106-S113. [PMID: 28372528 DOI: 10.1177/0194599816658290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To update the medical literature on recent cellular and molecular advances in otitis media disease models with a principal focus on developments in the past 5 years. We also aim to explain recent translational advances in cellular and molecular biology that have influenced our understanding and management of otitis media. Data Sources PubMed-indexed peer-reviewed articles. Review Methods A comprehensive review of the literature was conducted with the term otitis media and the following search terms: molecular biology, cell biology, innate immunity, oxidative stress, mucins, molecular diagnostics. Included articles were published in the English language from January 1, 2010, to July 31, 2015. Implications for Practice The molecular understanding of otitis media disease progression has rapidly advanced over the last 5 years. The roles of inflammation, mucins, and cell signaling mechanisms have been elucidated and defined. Advances in the field provide a plethora of opportunities for innovative molecular targeting in the development of novel therapeutic strategies for otitis media.
Collapse
Affiliation(s)
- Diego Preciado
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Anna Granath
- 2 Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jizhen Lin
- 3 Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stéphanie Val
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Arwa Kurabi
- 4 Division of Otolaryngology, Department of Surgery, University of California, San Diego, California, USA
| | - Nikki Johnston
- 5 Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shyan Vijayasekaran
- 6 Department of Surgery, Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Tulio Valdez
- 7 Division of Pediatric Otolaryngology, Connecticut Children's Hospital, Hartford, Connecticut, USA
| | - Didier Depireux
- 8 Institute for Systems Research, University of Maryland, College Park, Maryland, USA
| | - Ann Hermansson
- 9 Departments of Otolaryngology, Oral and Maxillofacial Surgery, and Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|