1
|
Cabral JV, Voukali E, Smorodinova N, Balogh L, Kolin V, Studeny P, Netukova M, Jirsova K. Cultivation and characterization of oral mucosal epithelial cells on fibrin gel in a xenobiotic-free medium for the treatment of limbal stem cell deficiency. Exp Eye Res 2025; 253:110300. [PMID: 39978745 DOI: 10.1016/j.exer.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
For the treatment of bilateral limbal stem cell deficiency (LSCD), cell therapy with transplantation of cultivated oral mucosa epithelial cells (COMET) is a promising alternative. Although not yet established, current protocols on the cultivation of oral mucosal epithelial cell (OMECs) sheets are based mainly on substrates and xenobiotic additives that may lead to variable outcomes and undesirable immune responses by the patient. The aim of this study was to characterize OMECs cultivated in xenobiotic-free media (XF) seeded on fibrin gel, in comparison to conventional complex (COM) medium. Oral mucosal biopsies were retrieved from 31 donors. After cultivation in COM or XF medium, OMECs were compared based on growth kinetics, morphology, cell size and viability. Using immunofluorescence and gene expression analyses, the degree of stemness, proliferation and differentiation was evaluated in OMEC cultures. Our findings showed that although OMECs showed a similar morphology and viability, and comparable growth kinetics, immunofluorescence revealed the preservation of stemness (p63 + p40 positivity in cells ≤11 μm) and proliferation in both COM and XF. Gene expression analyses showed that keratin (K)13 and K15 expression levels were significantly higher in XF (adj. p < 0.001), but otherwise COM and XF-treated OMECs had comparable transcriptional profiles in a panel of stemness, proliferation and differentiation genes. These results demonstrate the feasibility of culturing OMECs on fibrin gel without xenogeneic additives, while maintaining their undifferentiated state and preserving stemness. In conclusion, both in terms of results and methodology, the procedures presented here are suitable for implementation in clinical practice.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Natalie Smorodinova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lukas Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vojtech Kolin
- Department of Pathology of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Magdalena Netukova
- Ophthalmology Department of the Third Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katerina Jirsova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
2
|
Elalfy M, Elsawah K, Maqsood S, Jordan N, Hassan M, Zaki A, Gatzioufas Z, Hamada S, Lake D. Allogenic Cultured Limbal Epithelial Transplantation and Cultivated Oral Mucosal Epithelial Transplantation in Limbal Stem Cells Deficiency: A Comparative Study. Ophthalmol Ther 2025; 14:413-432. [PMID: 39755899 PMCID: PMC11754549 DOI: 10.1007/s40123-024-01083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD). METHODS Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications. RESULTS Kaplan-Meier analysis showed that patients in the ACLET group with longer follow-up had a significantly higher graft survival rate (81.7%, n = 56) than the COMET group (60.7%, n = 25) and the difference was statistically significant (p = 0.01). In the COMET group, there was no statistically significant improvement in the visual acuity (VA) while in the ACLET group there was statistically significant improvement in the final VA. Elevated intraocular pressure (IOP) developed in 9 eyes (22.0%) in the COMET group and in 18 eyes (26.1%) in the ACLET group; infection developed in 4 eyes (9.8%) in the COMET group and in 10 eyes (14.5%) in the ACLET group; and perforation or melting happened in 4 eyes (9.8%) in the COMET group and in 1 eye (1.4%) in the ACLET group. Postoperative immunosuppression complications were noted in 9 eyes (13.0%) in the ACLET group. No graft rejection was observed in either group. CONCLUSION Both ACLET and COMET are effective therapeutic procedures for managing advanced and bilateral cases of LSCD. Although COMET has lower graft survival rate than ACLET, it does not mandate systemic immunosuppression therapy to protect against potential graft rejection.
Collapse
Affiliation(s)
- Mohamed Elalfy
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK.
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt.
- Department of Ophthalmology, Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK.
| | - Kareem Elsawah
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Sundas Maqsood
- Department of Ophthalmology, Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Nigel Jordan
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Mansour Hassan
- Department of Ophthalmology, Beni Suef University, Beni Suef, Egypt
| | - Ahmed Zaki
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Zisis Gatzioufas
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Samer Hamada
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Damian Lake
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| |
Collapse
|
3
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
4
|
Genna VG, Maurizi E, Rama P, Pellegrini G. Biology and medicine on ocular surface restoration: Advancements and limits of limbal stem cell deficiency treatments. Ocul Surf 2025; 35:57-67. [PMID: 39580144 DOI: 10.1016/j.jtos.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Ocular vision can be hampered by corneal damages, sensibly reducing patients' quality of life and having important social and economic consequences. Ocular surface diseases, which often lead to corneal opacities with visual impairment are the most severe forms of the Limbal Stem Cell Deficiency (LSCD). The present review provides an updated perspective on the available treatments for LSCD, focusing on clinical and biological features, as well as critical points to monitor during clinical translation. Recently developed surgical treatments for LSCD are described, along with their benefits and limitations, with the aim of addressing the issue of correct patient selection. Autologous surgical approaches have been attempted, such as conjunctival limbal autograft (CLAU), simple limbal epithelial transplantation (SLET), and others. Allogeneic limbal stem cell transplantation represents an alternative but carries risk of rejection and requires immunosuppression. Other potential treatments are based on induced pluripotent stem cells (iPSCs), but they require further investigation. The development of advanced therapy medicinal products (ATMPs) such as cultivated limbal epithelial transplantation (CLET), or the use of other epithelia as cultivated oral mucosal epithelial cell transplantation (COMET), has opened additional therapeutic possibilities. Some common critical issues in clinical translation are described, such as patient selection, biopsy procurement, or the use of human/animal derived components, which require rigorous validation to ensure safety and efficacy. Personalized medicine is a promising field for ocular surface restoration, where long-term follow-up studies and standardized criteria are crucial to evaluate the efficacy of these treatments and their cost-effectiveness in providing high-value healthcare.
Collapse
Affiliation(s)
| | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Rama
- Department of Ophthalmology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
5
|
Al Monla R, Daien V, Michon F. Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure. Front Bioeng Biotechnol 2024; 12:1480772. [PMID: 39605752 PMCID: PMC11598527 DOI: 10.3389/fbioe.2024.1480772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects. Consequently, the development of bioartificial corneal tissue has emerged as a critical research area, aiming to address the global shortage of human cornea donors. Bioengineered corneas hold considerable promise as substitutes, with the potential to replace either specific layers or the entire thickness of damaged corneas. This review first delves into the structural anatomy of the human cornea, identifying key attributes necessary for successful corneal tissue bioengineering. It then examines various corneal pathologies, current treatments, and their limitations. Finally, the review outlines the primary approaches in corneal tissue engineering, exploring cell-free, cell-based, and scaffold-based options as three emerging strategies to address corneal failure.
Collapse
Affiliation(s)
- Reem Al Monla
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
6
|
Long Q, Huang C, Zhang L, Jiang H, Zhao S, Zhang L, Zheng X, Ou S, Gu H. A novel tissue-engineered corneal epithelium based on ultra-thin amniotic membrane and mesenchymal stem cells. Sci Rep 2024; 14:17407. [PMID: 39075142 PMCID: PMC11286932 DOI: 10.1038/s41598-024-68219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.
Collapse
Affiliation(s)
- Qiurong Long
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Chao Huang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Liying Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Hao Jiang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Su Zhao
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Lingli Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueer Zheng
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangkun Ou
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| | - Hao Gu
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
7
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
9
|
Tonti E, Manco GA, Spadea L, Zeppieri M. Focus on limbal stem cell deficiency and limbal cell transplantation. World J Transplant 2023; 13:321-330. [PMID: 38174150 PMCID: PMC10758683 DOI: 10.5500/wjt.v13.i6.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 12/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) causes severe vision impairment and can lead to blindness, representing one of the most challenging ocular surface disorders. Stem cell deficiency can be congenital or, more often, acquired. The categorization of ocular surface transplantation techniques is crucial to achieving treatment homogeneity and quality of care, according to the anatomic source of the tissue being transplanted, genetic source, autologous or allogenic transplantation (to reflect histocompatibility in the latter group), and cell culture and tissue engi neering techniques. The aim of this minireview is to provide a summary of the management of LSCD, from clinical characteristics and therapeutic outcomes to the development of novel therapeutic approaches. The manuscript also briefly summarizes recent findings in the current literature and outlines the future challenges to overcome in the management of the major types of ocular surface failure.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
10
|
Pérez I, Galindo S, López-Miguel A, Nieto-Miguel T, de la Mata A, López-Paniagua M, Alberca M, Herreras JM, Calonge M. In Vivo Confocal Microscopy in Limbal Stem Cell Deficiency After Mesenchymal Stem Cell Transplantation: A Sub-analysis from a Phase I-II Clinical Trial. Ophthalmol Ther 2023; 12:3251-3262. [PMID: 37773479 PMCID: PMC10640524 DOI: 10.1007/s40123-023-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The aim of this work is to evaluate the effect of mesenchymal stem cell transplantation (MSCT) and cultivated limbal epithelial transplantation (CLET) therapies on the limbus of patients suffering from limbal stem cell deficiency (LSCD). METHODS A sub-analysis of a phase I-II randomized, controlled, and double-masked clinical trial was performed to assess the changes in the anatomical structures of the limbus. In vivo confocal microscopy (IVCM) analysis was carried out in LSCD eyes before and 12 months after allogeneic MSCT or CLET. Epithelial phenotype of the central cornea, as well as the presence of transition zones and palisades of Vogt in the limbus, were assessed using Wilcoxon test. RESULTS Twenty-three LSCD (14 MSCT and nine CLET) eyes were included. The epithelial phenotype of the central cornea improved significantly (p < 0.001) from 15 (eight MSCT, seven CLET) and eight (six MSCT, two CLET) LSCD eyes showing conjunctival and mixed phenotypes, respectively, to eight (five MSCT, three CLET), five (two MSCT, three CLET), and ten (seven MSCT, three CLET) eyes showing conjunctival, mixed, and corneal phenotypes, respectively. Transition areas and palisades of Vogt were observed in at least one quadrant in nine (five MSCT, four CLET) and 16 (nine MSCT, seven CLET), and in four (two MSCT, two CLET) and six (three MSCT, three CLET) LSCD eyes before and after surgery, respectively. Changes in the transition zones and palisades were solely significant (p = 0.046) for the nasal and inferior quadrants, respectively. CONCLUSIONS MSCT and CLET improved the central corneal epithelial phenotype despite only minor changes in the anatomical structures of the limbus, as detected by IVCM technology. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01562002.
Collapse
Affiliation(s)
- Inmaculada Pérez
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
| | - Sara Galindo
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
| | - Alberto López-Miguel
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain.
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.
| | - Teresa Nieto-Miguel
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
| | - Ana de la Mata
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
| | - Marina López-Paniagua
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Mercedes Alberca
- IBGM (Institute of Molecular Biology and Genetics) and University Scientific Park, Universidad de Valladolid, Valladolid, Spain
| | - José M Herreras
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
11
|
Thia ZZ, Ho YT, Shih KC, Tong L. New developments in the management of persistent corneal epithelial defects. Surv Ophthalmol 2023; 68:1093-1114. [PMID: 37301520 DOI: 10.1016/j.survophthal.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
A persistent epithelial defect (PED) is a corneal epithelial defect that failed to heal after 2weeks. It is a condition that carries much morbidity, and our understanding of PED remains poor, with current treatment methods often having unsatisfactory outcomes. With PEDs becoming more prevalent, more efforts are required to establish reliable treatment modalities. Our reviews describe the causes of PEDs and the different approaches developed to manage them, as well as their associated limitations. Emphasis is placed on understanding various advances in the development of new treatment modalities. We have also described a case of a woman with a background of graft-versus-host disease on long-term topical corticosteroids who developed complicated PED involving both eyes. The current approach to managing PEDs generally involves exclusion of an active infection, followed by treatment modalities that aim to encourage corneal epithelial healing. Success rates, however, remain far from desirable, as treatment remains challenging due to multiple underlying etiologies. In summary, advances in the development of new therapies may be able to facilitate progress in the understanding and treatment of PED.
Collapse
Affiliation(s)
- Zhang Zhe Thia
- Singapore Eye Research Institute, Singapore, Singapore; National University Hospital, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yik To Ho
- Hong Kong University, Pok Fu Lam, Hong Kong
| | | | - Louis Tong
- Singapore Eye Research Institute, Singapore, Singapore; Singapore National Eye Center, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Jurkunas UV, Yin J, Johns LK, Li S, Negre H, Shaw KL, Samarakoon L, Ayala AR, Kheirkhah A, Katikireddy K, Gauthier A, Ong Tone S, Kaufman AR, Ellender S, Hernandez Rodriguez DE, Daley H, Dana R, Armant M, Ritz J. Cultivated autologous limbal epithelial cell (CALEC) transplantation: Development of manufacturing process and clinical evaluation of feasibility and safety. SCIENCE ADVANCES 2023; 9:eadg6470. [PMID: 37595035 PMCID: PMC10438443 DOI: 10.1126/sciadv.adg6470] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
To treat unilateral limbal stem cell (LSC) deficiency, we developed cultivated autologous limbal epithelial cells (CALEC) using an innovative xenobiotic-free, serum-free, antibiotic-free, two-step manufacturing process for LSC isolation and expansion onto human amniotic membrane with rigorous quality control in a good manufacturing practices facility. Limbal biopsies were used to generate CALEC constructs, and final grafts were evaluated by noninvasive scanning microscopy and tested for viability and sterility. Cultivated cells maintained epithelial cell phenotype with colony-forming and proliferative capacities. Analysis of LSC biomarkers showed preservation of "stemness." After preclinical development, a phase 1 clinical trial enrolled five patients with unilateral LSC deficiency. Four of these patients received CALEC transplants, establishing preliminary feasibility. Clinical case histories are reported, with no primary safety events. On the basis of these results, a second recruitment phase of the trial was opened to provide longer term safety and efficacy data on more patients.
Collapse
Affiliation(s)
- Ula V. Jurkunas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Lynette K. Johns
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sanming Li
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Helene Negre
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kit L. Shaw
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Ahmad Kheirkhah
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kishore Katikireddy
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Alex Gauthier
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stephan Ong Tone
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Kaufman
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stacey Ellender
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Heather Daley
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reza Dana
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Myriam Armant
- TransLab, Translational Research Program, Boston Children’s Hospital, Boston, MA, USA
| | - Jerome Ritz
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
14
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
15
|
Jurkunas U, Johns L, Armant M. Cultivated Autologous Limbal Epithelial Cell Transplantation: New Frontier in the Treatment of Limbal Stem Cell Deficiency. Am J Ophthalmol 2022; 239:244-268. [PMID: 35314191 DOI: 10.1016/j.ajo.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Taking into consideration prior human experience with treating limbal stem cell deficiency (LSCD) with cultivated limbal epithelial cells (CLEC) from other countries, we have set a goal to optimize and standardize the techniques of CLEC preparation (called CALEC by our group) for the clinical trial in the United States. METHODS We performed an extensive literature review of all human trials, case series, and reports involving autologous cultivated limbal epithelial cell transplantation. Allogeneic cultivated limbal epithelial cell transplantations were reported only when combined with autologous studies. We also searched prior animal data aiding in detailing regulatory toxicology requirements. RESULTS Between 1997 and 2020, the analysis of human trials revealed 21 studies on autologous grafts, and 13 studies analyzing both autologous grafts and allogeneic grafts. Of a total of 34 studies, 6 studies used good manufacturing process (GMP) facilities, and 11 studies had no animal-derived products or murine feeder layers, whereas only 1 study had both. Overall, the treatment with autologous CLEC grafts was 68.9% successful. In total there were 6 preclinical studies using rabbits, serving as surrogate studies to assess the safety and toxicity of cultivated limbal epithelial cells for human trials. Based on prior human experience, we further optimized the manufacturing conditions with GMP-grade and serum and animal-free reagents, and developed cell characterization assays for the CALEC product release. CONCLUSIONS These data were used to develop a novel and consistent manufacturing process using only qualified and validated reagents for performing the first clinical trial on CALEC transplantation to treat LSCD in the United States.
Collapse
Affiliation(s)
- Ula Jurkunas
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA.
| | - Lynette Johns
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Myriam Armant
- TransLab (M.A.), Translational Research Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Álvarez de Toledo Elizalde J, López García S, Benítez Del Castillo JM, Durán de la Colina J, Gris Castejón O, Celis Sánchez J, Herreras Cantalapiedra JM. Aniridia and the ocular surface: Medical and surgical problems and solutions. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:15-37. [PMID: 34836585 DOI: 10.1016/j.oftale.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Congenital aniridia is a multisystemic genetic disease due to a mutation in PAX6 gene which severely affects the development and functionality of the human eyes. In patients affected by the mutation, aside from the absence or defects of iris tissue formation, abnormalities in position or opacities of the crystalline lens, macular hypoplasia, ocular surface disease is the main cause of visual loss and the deterioration of the quality of life of most patients. Limbal stem cell deficiency combined with tear film instability and secondary dry eye cause aniridic keratopathy which, in advanced stages, ends up in corneal opacification. In this paper, the actual knowledge about congenital aniridia keratopathy physiopathology and medical and surgical treatment options and their efficacy are discussed. Indications and results of topical treatments with artificial tears and blood-derivatives in its initial stages, and different surgical techniques as limbal stem cell transplantation, keratoplasty and keratoprostheses are reviewed. Finally, recent advances and results in regenerative medicine techniques with ex vivo stem cell cultivation or other types of cultivated cells are presented.
Collapse
Affiliation(s)
| | - S López García
- Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - J M Benítez Del Castillo
- Cátedra de Oftalmología, Hospital Clínico San Carlos, Universidad Complutense, Clínica Rementería, Madrid, Spain
| | - J Durán de la Colina
- Cátedra de Oftalmología, Universidad del País Vasco, Instituto Clínico-Quirúrgico de Oftalmología, Bilbao, Spain
| | - O Gris Castejón
- Departamento de Córnea y Superficie Ocular, Instituto de Microcirugía Ocular de Barcelona (IMO), Barcelona, Spain
| | - J Celis Sánchez
- Unidad de Córnea y Superficie ocular, Hospital La Mancha-Centro, Alcázar de San Juan, Spain
| | - J M Herreras Cantalapiedra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid, Servicio de Oftalmología del Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
18
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
19
|
Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021; 13:pharmaceutics13091483. [PMID: 34575560 PMCID: PMC8466237 DOI: 10.3390/pharmaceutics13091483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient's eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.
Collapse
|
20
|
Samoila O, Samoila L. Stem Cells in the Path of Light, from Corneal to Retinal Reconstruction. Biomedicines 2021; 9:biomedicines9080873. [PMID: 34440077 PMCID: PMC8389604 DOI: 10.3390/biomedicines9080873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The future of eye reconstruction invariably includes stem cells transplantation. Corneal limbus, corneal stroma, trabeculum, retinal cells, optic nerve, and all structures that are irreversibly damaged and have no means to be repaired or replaced, through conventional treatment or surgery, represent targets for stem cell reconstruction. This review tries to answer the question if there is any clinical validation for stem therapies, so far, starting from the cornea and, on the path of light, arriving to the retina. The investigation covers the last 10 years of publications. From 2385 published sources, we found 56 clinical studies matching inclusion criteria, 39 involving cornea, and 17 involving retina. So far, corneal epithelial reconstruction seems well validated clinically. Enough clinical data are collected to allow some form of standardization for the stem cell transplant procedures. Cultivated limbal epithelial stem cells (CLET), simple limbal epithelial transplant (SLET), and oral mucosa transplantation are implemented worldwide. In comparison, far less patients are investigated in retinal stem reconstructions, with lower anatomical and clinical success, so far. Intravitreal, subretinal, and suprachoroidal approach for retinal stem therapies face specific challenges.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Ophthalmology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400006 Cluj-Napoca, Romania
- Correspondence:
| | | |
Collapse
|
21
|
Antunes-Foschini R, Adriano L, Murashima ADAB, Barbosa AP, Nominato LF, Dias LC, Fantucci MZ, Garcia DM, Alves M, Rocha EM. Limitations and advances in new treatments and future perspectives of corneal blindness. Arq Bras Oftalmol 2021; 84:282-296. [PMID: 33567031 PMCID: PMC11826770 DOI: 10.5935/0004-2749.20210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
This review is intended to describe the therapeutic approaches for corneal blindness, detailing the steps and elements involved in corneal wound healing. It also presents the limitations of the actual surgical and pharmacological strategies used to restore and maintain corneal transparency in terms of long-term survival and geographic coverage. In addition, we critically review the perspectives of anabolic agents, including vitamin A, hormones, growth factors, and novel promitotic and anti-inflammatory modulators, to assist corneal wound healing. We discuss the studies involving nanotechnology, gene therapy, and tissue reengineering as potential future strategies to work solely or in combination with corneal surgery to prevent or revert corneal blindness.
Collapse
Affiliation(s)
- Rosalia Antunes-Foschini
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Leidiane Adriano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Amanda Pires Barbosa
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Luis Fernando Nominato
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Lara Cristina Dias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Monica Alves
- Discipline of Ophthalmology and Otorhinolaryngology, Faculdade de
Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP,
Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Oie Y, Komoto S, Kawasaki R. Systematic review of clinical research on regenerative medicine for the cornea. Jpn J Ophthalmol 2021; 65:169-183. [PMID: 33591470 DOI: 10.1007/s10384-021-00821-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To conduct a systematic review of clinical research on the use of regenerative medicine for the cornea in human patients. METHODS A systematic literature search of MEDLINE and the Cochrane Library was performed in May 2020. RESULTS Forty-two articles were identified. Thirty-eight of those articles focused on the treatment for limbal stem cell deficiency (LSCD), of which 17 articles involved autologous cultured limbal epithelial cell sheet transplantation (CLET), 13 involved allogeneic CLET, and 14 involved autologous cultured oral mucosal epithelial cell sheet transplantation (COMET). For autologous CLET, the median ocular surface reconstruction rate, visual recovery rate, incidence of immunologic rejection, infectious keratitis, and ocular hypertension/glaucoma were 74.1%, 54.5%, 0%, 4.6%, and 6.3%, respectively. For allogeneic CLET, they were 71.4%, 71.4%, 7.1%, 12.0%, and 7.1%, respectively. For autologous COMET, they were 66.7%, 66.7%, 0%, 5.3%, and 8.1%, respectively. Systemic immunosuppressants and steroid medications were predominantly used following allogeneic CLET, whereas they were not routinely used after autologous CLET. Three studies focused on the treatment of keratoconus using autologous adipose-derived adult stem cells and reported no marked adverse events. One study reported on the treatment of bullous keratopathy using allogeneic cultured corneal endothelial cells. All patients achieved an endothelial cell density of >500 cells, and the corrected distance visual acuity improved in 82% of the treated eyes. CONCLUSIONS The results show that regenerative medicine for the cornea demonstrated a satisfactory efficacy and safety. Through translational research, we are expecting to establish a new treatment for waiting patients.
Collapse
Affiliation(s)
- Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shimpei Komoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Kawasaki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Room E7, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Le Q, Chauhan T, Yung M, Tseng CH, Deng SX. Outcomes of Limbal Stem Cell Transplant: A Meta-analysis. JAMA Ophthalmol 2021; 138:660-670. [PMID: 32324211 DOI: 10.1001/jamaophthalmol.2020.1120] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Importance Limbal stem cell transplant (LSCT) can be categorized as direct autologous limbal transplant (AULT), direct allogenic limbal transplant (ALLT), cultivated autologous limbal stem cells transplant (cAULT), and cultivated allogenic limbal stem cells transplant (cALLT). To our knowledge, there is no study directly comparing the outcomes and complications of these procedures. Objective To evaluate the outcomes of different LSCT procedures. Data Source We searched PubMed, EMBASE, Web of Science, and Cochrane without language filter for peer-reviewed articles about LSCT. The latest search was performed on June 30, 2019. Study Selection Clinical studies with the outcome of at least 20 eyes after LSCT were included. Animal studies and studies of other surgical interventions were excluded. Data Extraction and Synthesis Two reviewers independently abstracted the data from each study. Heterogeneity was evaluated with the I2 statistic, and a meta-analysis was performed using the random-effects model. Main Outcomes and Measures Outcome measures included the improvement of ocular surface, visual acuity (VA), and adverse events of recipient eyes and donor eyes. Results Forty studies (2202 eyes) with a mean (SD) follow-up of 31.3 (20.9) months met the inclusion criteria. The mean (SD) age of study participants was 38.4 (13.1) years, and men accounted for 74%. The number of eyes that underwent AULT, ALLT, cAULT, and cALLT were 505, 742, 771, and 184, respectively. Improvement of the ocular surface was achieved in 74.5% of all eyes, 85.7% of eyes after AULT (95% CI, 79.5%-90.3%), 84.7% after cAULT (95% CI, 77.2%-90.0%), 57.8% after ALLT (95% CI, 49.0%-66.1%), and 63.2% after cALLT (95% CI, 49.3%-75.2%). Autologous limbal transplantation resulted in a greater VA improvement rate (76%) than did the other 3 procedures (cAULT: 56.4%; ALLT: 52.3%; cALLT: 43.3%; all P < .001). The most common adverse events in all recipient eyes were recurrent/persistent epithelial erosion (10.5%; 95% CI, 7.2%-23.3%) and elevated intraocular pressure (intraocular pressure, 1.7%; 95% CI, 0.5%-7.8%). Patients who underwent ALLT had the highest rate of recurrent epithelial erosion (27.8%; 95% CI, 17.1%-41.9%) and intraocular pressure elevation (6.3%; 95% CI, 1.8%-19.4%). Conclusions and Relevance These findings suggest LSCT can improve or stabilize the corneal surface with a low rate of severe ocular complications and that autologous LSCT may have a higher success rate and fewer complications than allogenic LSCT.
Collapse
Affiliation(s)
- Qihua Le
- David Geffen School of Medicine, Stein Eye Institute, Cornea Division, University of California, Los Angeles.,Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Tulika Chauhan
- David Geffen School of Medicine, Stein Eye Institute, Cornea Division, University of California, Los Angeles.,Mahatma Gandhi Memorial Medical College, DAVV University, Indore, MP, India
| | - Madeline Yung
- David Geffen School of Medicine, Stein Eye Institute, Cornea Division, University of California, Los Angeles
| | - Chi-Hong Tseng
- David Geffen School of Medicine, Division of General Internal Medicine and Health Services Research, University of California, Los Angeles
| | - Sophie X Deng
- David Geffen School of Medicine, Stein Eye Institute, Cornea Division, University of California, Los Angeles
| |
Collapse
|
24
|
Galindo S, de la Mata A, López-Paniagua M, Herreras JM, Pérez I, Calonge M, Nieto-Miguel T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Stem Cell Res Ther 2021; 12:60. [PMID: 33441175 PMCID: PMC7805216 DOI: 10.1186/s13287-020-02129-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have unique and beneficial properties and are currently used to treat a broad variety of diseases. These properties include the potential for differentiation into other cell types, secretion of different trophic factors that promote a regenerative microenvironment, anti-inflammatory actions, selective migration to damaged tissues, and non-immunogenicity. MSCs are effective for the treatment of ocular surface diseases such as dry eye, corneal burns, and limbal stem cell deficiency (LSCD), both in experimental models and in humans. LSCD is a pathological condition in which damage occurs to the limbal epithelial stem cells, or their niche, that are responsible for the continuous regeneration of the corneal epithelium. If LSCD is extensive and/or severe, it usually causes corneal epithelial defects, ulceration, and conjunctival overgrowth of the cornea. These changes can result in neovascularization and corneal opacity, severe inflammation, pain, and visual loss. The effectiveness of MSCs to reduce corneal opacity, neovascularization, and inflammation has been widely studied in different experimental models of LSCD and in some clinical trials; however, the methodological disparity used in the different studies makes it hard to compare outcomes among them. In this regard, the MSC route of administration used to treat LSCD and other ocular surface diseases is an important factor. It should be efficient, minimally invasive, and safe. So far, intravenous and intraperitoneal injections, topical administration, and MSC transplantation using carrier substrata like amniotic membrane (AM), fibrin, or synthetic biopolymers have been the most commonly used administration routes in experimental models. However, systemic administration carries the risk of potential side effects and transplantation requires surgical procedures that could complicate the process. Alternatively, subconjunctival injection is a minimally invasive and straightforward technique frequently used in ophthalmology. It enables performance of local treatments using high cell doses. In this review, we provide an overview of the current status of MSC administration by subconjunctival injection, analyzing the convenience, safety, and efficacy for treatment of corneal failure due to LSCD in different experimental models. We also provide a summary of the clinical trials that have been completed, are in progress, or being planned.
Collapse
Affiliation(s)
- Sara Galindo
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Ana de la Mata
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Jose M Herreras
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Inmaculada Pérez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Margarita Calonge
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Teresa Nieto-Miguel
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| |
Collapse
|
25
|
Park IS, Kim BK, Truong MD, Yang HS, Park SH, Park HS, Choi BH, Won BH, Min BH. Corneal Repair with Adhesive Cell Sheets of Fetal Cartilage-Derived Stem Cells. Tissue Eng Regen Med 2021; 18:187-198. [PMID: 33415672 DOI: 10.1007/s13770-020-00317-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Corneal scarring or disease may lead to severe corneal opacification and consequently, severe loss of vision due to the complete loss of corneal epithelial cells. We studied the use of epithelial cell sheets differentiated from fetal cartilage-derived stem cells (FCSC) to resurface damaged cornea. METHODS The FCSC were isolated from the femoral head of immature cartilage tissue. The ability of the FCSCs to differentiate into corneal epithelial cells was evaluated using differentiation media at 2 days and 7 days post-seeding. A sheet fabricated of FCSCs was also used for the differentiation assay. The results of the in vitro studies were evaluated by immunocytochemistry and Western blots for corneal epithelial cell markers (CK3/12 and Pax6) and limbal epithelial stem cell markers (ABCG2 and p63). To test the material in vivo, an FCSC-sheet was applied as a treatment in a chemically burned rabbit model. The healing ability was observed histologically one week after treatment. RESULTS The in vitro experiments showed morphological changes in the FCSCs at two and seven days of culture. The differentiated cells from the FCSCs or the FCSC-sheet expressed corneal epithelial cells markers. FCSC were create cell sheet that successfully differentiated into corneal epithelial cells and had sufficient adhesion so that it could be fused to host tissue after suture to the ocular surface with silk suture. The implanted cell sheet maintained its transparency and the cells were alive a week after implantation. CONCLUSION These results suggest that carrier-free sheets fabricated of FCSCs have the potential to repair damaged corneal surfaces.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byeong Kook Kim
- Cell Therapy Center, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Hong Seok Yang
- Ophthalmologic Department, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyo Soon Park
- Nunevit Eye Clinic, 772 Gayadea-ro, Busanjin-gu, Busan, 47285, Republic of Korea
| | - Byung Hyune Choi
- Department of Physiology, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Bae Hie Won
- Department of Orthopedic Surgery, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Department of Orthopedic Surgery, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
26
|
A new standardized immunofluorescence method for potency quantification (SMPQ) of human conjunctival cell cultures. Cell Tissue Bank 2020; 22:145-159. [PMID: 33051810 DOI: 10.1007/s10561-020-09874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study is to set up a standardized and reproducible method to determine the potency (= stem cell content) of human conjunctival cell cultures by means of immunofluorescence-based analyses. This will help the development of new Advanced Therapy Medicinal Products (ATMPs) to use in future cell therapy clinical studies when fewer cells are available to perform the quality controls. To achieve this purpose, a reference standard was investigated and the expression levels of ΔNp63α (considered as a marker of conjunctival stem cells) was correlated to cell size. The limbal hTERT cells were used as reference standard to define the expression value of ΔNp63α. The mean intensity value of limbal hTERT cells ranging between 15 and 20 µm in diameter was used to distinguish between ΔNp63α bright and not bright cells. As ΔNp63α bright expression was mainly seen in the smaller cell size group (10-15 µm), we defined as conjunctival stem cells (= potency) those cells which were bright and with sizes between 10 and 15 µm. Assays on cells from clonal analyses were used to validate the method, as they do allow to observe a decrease in potency (Holoclones > Meroclones > Paraclones). The stem cell content of conjunctival grafts was found to be 11.3% ± 5.0 compared to 21.9% ± 0.6, 9.0% ± 8.1 and 0% from Holoclones, Meroclones and Paraclones, respectively. This new method, here named as Standardized Method for Potency Quantification, will allow to detect the potency in conjunctival cell cultures, thus obtaining a quality control assay responding to the GMP standards required for ATMP release.
Collapse
|
27
|
Shimazaki J, Satake Y, Higa K, Yamaguchi T, Noma H, Tsubota K. Long-term outcomes of cultivated cell sheet transplantation for treating total limbal stem cell deficiency. Ocul Surf 2020; 18:663-671. [DOI: 10.1016/j.jtos.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/03/2020] [Accepted: 06/08/2020] [Indexed: 01/23/2023]
|
28
|
Short- and Long-Term Results of Xenogeneic-Free Cultivated Autologous and Allogeneic Limbal Epithelial Stem Cell Transplantations. Cornea 2020; 38:1543-1549. [PMID: 31569145 PMCID: PMC6830964 DOI: 10.1097/ico.0000000000002153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To evaluate the short- and long-term success rates of xenogeneic-free cultivated limbal epithelial stem cell transplantation (CLET) for the treatment of limbal stem cell deficiency (LSCD).
Collapse
|
29
|
Samoila O, Gocan D. Clinical Outcomes From Cultivated Allogenic Stem Cells vs. Oral Mucosa Epithelial Transplants in Total Bilateral Stem Cells Deficiency. Front Med (Lausanne) 2020; 7:43. [PMID: 32133365 PMCID: PMC7040221 DOI: 10.3389/fmed.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
Total bilateral limbal stem cell deficiency results from various pathologies, from burns (either chemical or physical) to Sjogren Syndrome, aniridia or ocular cicatricial pemphigoid. After the loss of stem cells, normal corneal epithelium is replaced by a more opaque and vascularized conjunctival epithelium, causing loss of vision. After 1997, cultivation techniques for limbal stem cells became possible. In parallel, cultivation techniques for oral mucosa epithelial cells were also available. The aim of our review was to summarize the clinical outcomes following allogenic cultured limbal stem cell transplant (allogenic CLET), and on the other hand, oral mucosa derived epithelium transplant (cultivated oral mucosa epithelial transplant-COMET or cultivated autologous oral mucosal epithelial cell sheet-CAOMECS), in the case of total bilateral limbal stem cell loss. Thirty studies matching the inclusion criteria were found. The clinical improvement in both methods was reported similar, with percentages higher than 50% of the treated cases. However, the comparison between studies was difficult to achieve due to the lack of a universal and objective grading tool for assessing post-operative results. The definition of clinical improvement was problematic, because success was defined differently, depending on the study. Moreover, some of the studies followed both autologous and allogenic CLET, but described the results together, for both procedures, and therefore it was impossible to analyze them separately. COMET presented some advantages compared to CLET. By using autologous cells, there was no risk of immune activation and no immunosuppression was needed. COMET, however, might be associated with increased risk of persistent epithelial defects and graft failure, compared with allogenic CLET.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Department of Ophthalmology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
30
|
Development and Validation of an Open-Source Grading Tool for Outcome Assessment in Limbal Stem Cell Treatment. Cornea 2020; 39:787-792. [PMID: 32044825 DOI: 10.1097/ico.0000000000002282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To design a grading system and validate an open-source tool to improve objective quantification and follow-up of limbal stem cell deficiency (LSCD) after treatment. METHODS A custom-made web-based grading system was developed for grading stem cell deficient eyes, termed the "Vascularisation, Haze, and Integrity" tool. For validation purposes, 60 corneal slit-lamp images of 30 limbal stem cell deficient eyes were graded by 3 groups of examiners: 3 corneal specialists (group A), 3 ophthalmologists with an expertise other than cornea (group B), and 3 nonclinicians (group C). The intragrader and intergrader agreement was evaluated using Fleiss weighted kappa coefficients and concurrent assessment of interrater and intrarater reliability (IRR) coefficients. RESULTS The overall intergrader agreement was 0.78, 0.61, and 0.42 for superficial corneal vascularization, corneal haze, and epithelial integrity, respectively. All groups had good agreement for the vascularization parameter with the highest intergrader reliability in group A (IRR = 0.80) and the lowest in group C (IRR = 0.72). When assessing "haze," there was good agreement in groups A (IRR = 0.75) and B (IRR = 0.76) but low agreement in group C (IRR = 0.37). CONCLUSIONS We report the development and evaluation of a novel method for grading results of limbal stem cell deficient eyes after treatment and provide this system as a free, open-source online tool. The grading tool offers an easy and standardized way of assessing the corneal surface in patients with LSCD, enables evaluation of progression over time, reduces assessment bias, and-if adopted universally-will harmonize outcome being reported between groups.
Collapse
|
31
|
López-Paniagua M, Nieto-Miguel T, Galindo S, García-Posadas L, de la Mata A, Corrales RM, Calonge M, Diebold Y. Optimization of Human Limbal Stem Cell Culture by Replating a Single Limbal Explant. Methods Mol Biol 2020; 2145:39-49. [PMID: 32542599 DOI: 10.1007/978-1-0716-0599-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cultured limbal epithelial stem cell transplantation is a clinical procedure used to regenerate the corneal epithelium in patients with limbal stem cell deficiency. The protocols used to expand limbal epithelial cells in vitro need to be optimized, since the scarcity of human ocular tissue donors is limiting the potential use of this procedure. Here, we describe a method to consecutively expand a single human limbal explant. With this method it is possible to obtain up to three limbal epithelial primary cultures from the same explant, thus increasing the efficiency of the in vitro cell culture.
Collapse
Affiliation(s)
- Marina López-Paniagua
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, , Valladolid, Spain
| | - Teresa Nieto-Miguel
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Galindo
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - Laura García-Posadas
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Ana de la Mata
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, , Valladolid, Spain
| | - Rosa M Corrales
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - Margarita Calonge
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Diebold
- Grupo de Superficie Ocular, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
32
|
Cho E, Kim YY, Noh K, Ku SY. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Conventional fertility preservation methods such as oocyte or embryo cryopreservation are currently insufficient to treat including those patients with prepubertal cancer and premature ovarian failure. Ovarian tissue cryopreservation presents as an alternative but has limitations with a potential risk of reintroducing malignant cells in patients who recover from cancer, those of chemotherapy prior to tissue cryopreservation. The so called "artificial ovary" aims to resolve this issue by transplanting isolated follicles with or without a biological scaffold. The artificial ovary may also offer an effective alternative option for those who cannot benefit from traditional assisted reproductive techniques such as in vitro fertilisation. To date, in animal studies and human trial, the artificial ovary restored endocrine function, achieved in vivo follicular development, and resulted in successful pregnancies. However, development of a technique for higher follicular recovery rate and a more optimised design of delivery scaffold, better transplantation techniques to prevent postsurgical ischemia, and consideration for genetic safety are required for safer and consistent human clinical applications. Ideas from different transplantation surgeries (e.g., entire ovary, ovarian cortex, and transplantation with tissue-engineered products) can be applied to enhance the efficacy of artificial ovarian transplantation. For the better application of artificial ovary, a deeper understanding of mechanical and biochemical properties of the ovary and folliculogenesis after cryopreservation, transplantation with or without scaffold, and development of sophisticated in vivo imaging techniques of transplanted artificial ovary need to precede its efficient clinical application.
Collapse
Affiliation(s)
- Eun Cho
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Young Kim
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Kevin Noh
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Seung-Yup Ku
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
33
|
Le Q, Chauhan T, Deng SX. Diagnostic criteria for limbal stem cell deficiency before surgical intervention-A systematic literature review and analysis. Surv Ophthalmol 2019; 65:32-40. [PMID: 31276736 DOI: 10.1016/j.survophthal.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
An accurate diagnosis of limbal stem cell deficiency (LSCD) is the premise of an appropriate treatment; however, there is no consensus about the diagnostic criteria for LSCD. We performed a systematic literature search of the peer-reviewed articles on PubMed, Medline, and Ovid to investigate how LSCD was diagnosed before surgical intervention. The methods used to diagnose LSCD included clinical presentation, impression cytology, and in vivo confocal microscopy. Among 131 eligible studies (4054 eyes), 26 studies (459 eyes, 11.3%) did not mention the diagnostic criteria. In the remaining 105 studies, the diagnosis of LSCD was made on the basis of clinical examination alone in 2398 eyes (62.9%), and additional diagnostic tests were used in 1047 (25.8%) eyes. Impression cytology was used in 981 eyes (24.2%), in vivo confocal microscopy was used in 29 eyes (0.7%), and both impression cytology and in vivo confocal microscopy were used in 37 eyes (0.9%). Our findings suggest that only a small portion of patients underwent a diagnostic test to confirm the diagnosis of LSCD. Treating physicians should be aware of the limitations of clinical examination in diagnosing LSCD and perform a diagnostic test whenever possible before surgical intervention.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tulika Chauhan
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
34
|
Bains KK, Fukuoka H, Hammond GM, Sotozono C, Quantock AJ. Recovering vision in corneal epithelial stem cell deficient eyes. Cont Lens Anterior Eye 2019; 42:350-358. [PMID: 31047800 PMCID: PMC6611221 DOI: 10.1016/j.clae.2019.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Corneal limbal epithelial stem cells deficiencies cause severe ocular surface instability and visual impairment. These conditions, caused by injury or disease, are very difficult to treat. Laboratory-grown epithelial cell sheets expanded from healthy limbal tissue can be used to reconstruct the ocular surface. Other epithelia, such as the oral mucosa, can be used to generate the therapeutic cell sheets.
A healthy corneal epithelium, which is essential for proper vision and protection from external pathogens, is continuously replenished throughout life by stem cells located at the limbus. In diseased or injured eyes, however, in which stem cells are deficient, severe ocular problems manifest themselves. These are notoriously difficult to manage and as a result the last 20 or so years has seen a number of therapeutic strategies emerge that aim to recover the ocular surface and restore vision in limbal stem cell deficient eyes. The dominant concept involves the generation of laboratory cultivated epithelial cell sheets expanded from small biopsies of the epithelial limbus (for patient or donors) or another non-corneal epithelial tissue such as the oral mucosa. Typically, cells are grown on sterilised human amniotic membrane as a substrate, which then forms part of the graft, or specially formulated plastic culture dishes from which cells sheets can be released by lowering the temperature, and thus the adherence of the plastic to the cells. Overall, clinical results are promising, as is discussed, with new cultivation methodologies and different cell lineages currently being investigated to augment the treatment options for visual disturbance caused by a corneal epithelial limbal stem cell deficiency.
Collapse
Affiliation(s)
- Kiranjit K Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom.
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| | - Greg M Hammond
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom; Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| |
Collapse
|
35
|
Duan CY, Xie HT, Zhao XY, Xu WH, Zhang MC. Limbal niche cells can reduce the angiogenic potential of cultivated oral mucosal epithelial cells. Cell Mol Biol Lett 2019; 24:3. [PMID: 30988673 PMCID: PMC6448320 DOI: 10.1186/s11658-018-0133-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background Autologous cultivated oral mucosal epithelial transplantation (COMET) is an important treatment for limbal stem cell deficiency. However, peripheral corneal neovascularization after surgery hinders its application. This study aims to employ a culture system using allogenic limbal niche cells (LNCs) instead of mouse-derived 3T3 cells as a feeder layer that could relieve postoperative neovascularization. Methods Rat oral mucosal epithelial cells (OMECs) were co-cultured with rat LNCs or 3T3 cells. Cultivated oral mucosal epithelial cells (COMECs) of different culture systems were identified by hematoxylin and eosin staining and immunocytochemistry. The expression levels of the angiogenesis-related factors were analyzed by RT-qPCR and western blotting/ELISA. Angiogenic potential was reconfirmed by cell viability and tube formation assays with human umbilical vein endothelial cells (HUVECs). Results COMECs were obtained from both culture systems successfully. Immunocytochemistry showed approximately equal percentages of positive staining cells for p63α (p = 0.9177), ABCG2 (p = 0.526), Ki67 (p = 0.0987), and CK3 (p = 0.4000) in COMECs of different groups. RT-qPCR and western blotting/ELISA showed that COMECs of the LNC group expressed a significantly lower amount of basic fibroblast growth factor (bFGF) (p = 0.0038 for RT-qPCR, p = 0.0026 for western blotting) but more pigment epithelium-derived factor (PEDF) (p = 0.0172 for RT-qPCR, p = 0.0253 for western blotting) and soluble fms-like tyrosine kinase-1 (sFlt-1) (p < 0.0001 for RT-qPCR, p = 0.0064 for ELISA) than the COMECs of the 3T3 group. Furthermore, compared with COMECs of the 3T3 group, COMECs of the LNC group could reduce the viability (p = 0.0002) and tube formation (p = 0.0002) of HUVECs. Conclusions LNCs could substitute 3T3 cells for expanding OMECs in vitro, and the COMECs obtained in this system are less likely to induce postsurgical neovascularization, which provides an alternative option for an ex vivo culture system and promotes the application of COMET. Electronic supplementary material The online version of this article (10.1186/s11658-018-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao-Ye Duan
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin-Yue Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Wen-Han Xu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
36
|
Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, Alberca M, García-Sancho J, Sánchez A, Herreras JM. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res 2019; 206:18-40. [PMID: 30578758 DOI: 10.1016/j.trsl.2018.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/18/2018] [Accepted: 11/18/2018] [Indexed: 01/02/2023]
Abstract
Ocular stem cell transplantation derived from either autologous or allogeneic donor corneoscleral junction is a functional cell therapy to manage extensive and/or severe limbal stem cell deficiencies that lead to corneal epithelial failure. Mesenchymal stem cells have been properly tested in animal models of this ophthalmic pathology, but never in human eyes despite their potential advantages. We conducted a 6- to 12-month proof-of-concept, randomized, and double-masked pilot trial to test whether allogeneic bone marrow-derived mesenchymal stem cell transplantation (MSCT], n = 17) was as safe and as equally efficient as allogeneic cultivated limbal epithelial transplantation (CLET), (n = 11) to improve corneal epithelial damage due to limbal stem cell deficiency. Primary endpoints demanded combination of symptoms, signs, and the objective improvement of the epithelial phenotype in central cornea by in vivo confocal microscopy. This proof-of-concept trial showed that MSCT was as safe and efficacious as CLET. Global success at 6-12 months was 72.7%-77.8% for CLET cases and 76.5%-85.7% for MSCT cases (not significant differences). Central corneal epithelial phenotype improved in 71.4% and 66.7% of MSCT and CLET cases, respectively at 12 months (P = 1.000). There were no adverse events related to cell products. This trial suggests first evidence that MSCT facilitated improvement of a diseased corneal epithelium due to lack of its stem cells as efficiently as CLET. Consequently, not only CLET but also MSCT deserves more preclinical investigational resources before the favorable results of this proof-of-concept trial could be transformed into the larger numbers of the multicenter trials that would provide stronger evidence. (ClinicalTrials.gov number, NCT01562002.).
Collapse
Affiliation(s)
- Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Inmaculada Pérez
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain.
| | - Sara Galindo
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Teresa Nieto-Miguel
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Marina López-Paniagua
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Itziar Fernández
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Mercedes Alberca
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - Javier García-Sancho
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - Ana Sánchez
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - José M Herreras
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| |
Collapse
|
37
|
Haagdorens M, Cėpla V, Melsbach E, Koivusalo L, Skottman H, Griffith M, Valiokas R, Zakaria N, Pintelon I, Tassignon MJ. In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells Int 2019; 2019:7867613. [PMID: 31065280 PMCID: PMC6466865 DOI: 10.1155/2019/7867613] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the efficacy of recombinant human collagen type I (RHC I) and collagen-like peptide (CLP) hydrogels as alternative carrier substrates for the cultivation of limbal epithelial stem cells (LESC) under xeno-free culture conditions. METHODS Human LESC were cultivated on seven different collagen-derived hydrogels: (1) unmodified RHC I, (2) fibronectin-patterned RHC I, (3) carbodiimide-crosslinked CLP (CLP-12 EDC), (4) DMTMM- (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium-) crosslinked CLP (CLP-12), (5) fibronectin-patterned CLP-12, (6) "3D limbal niche-mimicking" CLP-12, and (7) DMTMM-crosslinked CLP made from higher CLP concentration solution. Cell proliferation, cell morphology, and expression of LESC markers were analyzed. All data were compared to cultures on human amniotic membrane (HAM). RESULTS Human LESC were successfully cultivated on six out of seven hydrogel formulations, with primary cell cultures on CLP-12 EDC being deemed unsuccessful since the area of outgrowth did not meet quality standards (i.e., inconsistence in outgrowth and confluence) after 14 days of culture. Upon confluence, primary LESC showed high expression of the stem cell marker ΔNp63, proliferation marker cytokeratin (KRT) 14, adhesion markers integrin-β4 and E-cadherin, and LESC-specific extracellular matrix proteins laminin-α1, and collagen type IV. Cells showed low expression of differentiation markers KRT3 and desmoglein 3 (DSG3). Significantly higher gene expression of KRT3 was observed for cells cultured on CLP hydrogels compared to RHC I and HAM. Surface patterning of hydrogels influenced the pattern of proliferation but had no significant effect on the phenotype or genotype of cultures. Overall, the performance of RHC I and DMTMM-crosslinked CLP hydrogels was equivalent to that of HAM. CONCLUSION RHC I and DMTMM-crosslinked CLP hydrogels, irrespective of surface modification, support successful cultivation of primary human LESC using a xeno-free cultivation protocol. The regenerated epithelium maintained similar characteristics to HAM-based cultures.
Collapse
Affiliation(s)
- Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Vytautas Cėpla
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Eline Melsbach
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre and Department of Ophthalmology, University of Montreal, Montreal, QC, Canada H1T 4B3
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Nadia Zakaria
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Antwerp University, Campus Drie Eiken, T building, T1-Veterinary Sciences, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| |
Collapse
|
38
|
Systematic review and meta-analysis investigating autograft versus allograft cultivated limbal epithelial transplantation in limbal stem cell deficiency. Int Ophthalmol 2019; 39:2685-2696. [PMID: 30826943 DOI: 10.1007/s10792-019-01092-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Currently, regenerative medicine has attracted much attention among researchers investigating new methods to treat ocular surface diseases. Based on this new concept, cultivated limbal epithelial transplantation (CLET), whether in the form of autograft or allograft, has emerged as a promising surgical procedure for treating limbal stem cell deficiency (LSCD). Given that there is no updated comparison between autograft and allograft CLETs, the present review and meta-analysis aims to compare and determine the efficacy of two different CLET techniques, autologous versus allogeneic, based on a literature review of relevant studies. METHODS A comprehensive search of electronic databases, including PubMed, Web of Science, Cochrane Library, Embase and Scopus, for related articles was performed in March 2018 to obtain relevant articles and to conduct a meta-analysis investigating the success rate of ocular surface regeneration and two-line improvement in best-corrected visual acuity (BCVA) using autograft versus allograft transplantations. RESULTS A total of 30 studies, including 1306 eyes from 1288 patients with LSCD, with a sample size ranging from 6 to 200 and follow-up period of 0.6-156 months, were reviewed. Of 1306 eyes, 982 (75.2%) underwent autograft and 324 (24.8%) received allografts from living or deceased donors. Meta-analysis revealed that there was no significant difference between autograft and allograft CLETs in terms of success rate and two-line BCVA improvement. The prospective studies showed a zero difference between the two groups; only two retrospective studies included in the analysis pulled the autografts up to 1.82 and 1.2 times more than allografts in terms of success rate and two-line BCVA improvement, respectively [pooled OR 1.82 (95% CI 0.80-4.11); pooled OR 1.2 (95% CI 0.54-2.65)]. There was no statistically significant evidence of bias in the meta-analysis in terms of success rates and two-line BCVA improvement. CONCLUSIONS The present analysis revealed no significant differences in success rates or visual improvement between autograft and allograft surgical techniques.
Collapse
|
39
|
Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Colloids Surf B Biointerfaces 2019; 177:121-129. [PMID: 30716697 DOI: 10.1016/j.colsurfb.2019.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface.
Collapse
|
40
|
Yazdanpanah G, Jabbehdari S, Djalilian AR. Emerging Approaches for Ocular Surface Regeneration. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:1-10. [PMID: 31275736 DOI: 10.1007/s40135-019-00193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review In this manuscript, the recent advancements and novel approaches for regeneration of the ocular surface are summarized. Recent findings Following severe injuries, persistent inflammation can alter the rehabilitative capability of the ocular surface environment. Limbal stem cell deficiency (LSCD) is one of the most characterized ocular surface disorders mediated by deficiency and/or dysfunction of the limbal epithelial stem cells (LESCs) located in the limbal niche. Currently, the most advanced approach for revitalizing the ocular surface and limbal niche is based on transplantation of limbal tissues harboring LESCs. Emerging approaches have focused on restoring the ocular surface microenvironment using (1) cell-based therapies including cells with capabilities to support the LESCs and modulate the inflammation, e.g., mesenchymal stem cells (MSCs), (2) bio-active extracellular matrices from decellularized tissues, and/or purified/synthetic molecules to regenerate the microenvironment structure, and (3) soluble cytokine/growth factor cocktails to revive the signaling pathways. Summary Ocular surface/limbal environment revitalization provide promising approaches for regeneration of the ocular surface.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Le Q, Deng SX. The application of human amniotic membrane in the surgical management of limbal stem cell deficiency. Ocul Surf 2019; 17:221-229. [PMID: 30633967 DOI: 10.1016/j.jtos.2019.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/12/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
The application of human amniotic membrane (AM) has a wide spectrum of indications in the treatment of ocular surface disorders. Transplantation of AM has been incorporated routinely as a component of ocular surface reconstruction in a variety of ocular pathologies. The application of human AM can be combined with nearly all types of limbal transplantation in treating limbal stem cell deficiency (LSCD). AM provides support and possible protection to the transplanted limbal tissues and limbal stem cells owing to its mechanical and biological properties, and these properties are thought to enhance the success rate of LSC transplantation. This paper reviews the current literature on the applications of AM in the surgical management of LSCD and summarizes the outcome of different surgical approaches. The current literature contains mostly low-level evidences in supporting the role of AM. The efficacy of AM in LSC transplantation needs to be confirmed by randomized controlled clinical trials.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
42
|
Strategies for reconstructing the limbal stem cell niche. Ocul Surf 2019; 17:230-240. [PMID: 30633966 DOI: 10.1016/j.jtos.2019.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
The epithelial cell layer that covers the surface of the cornea provides a protective barrier while maintaining corneal transparency. The rapid and effective turnover of these epithelial cells depends, in part, on the limbal epithelial stem cells (LESCs) located in a specialized microenvironment known as the limbal niche. Many disorders affecting the regeneration of the corneal epithelium are related to deficiency and/or dysfunction of LESCs and the limbal niche. Current approaches for regenerating the corneal epithelium following significant injuries such as burns and inflammatory attacks are primarily aimed at repopulating the LESCs. This review summarizes and assesses the clinical feasibility and efficacy of current and emerging approaches for reconstruction of the limbal niche. In particular, the application of mesenchymal stem cells along with appropriate biological scaffolds appear to be promising strategies for long-term revitalization of the limbal niche.
Collapse
|
43
|
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult Stem Cells for Regenerative Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:1-22. [PMID: 30470288 DOI: 10.1016/bs.pmbts.2018.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapy has been identified as an effective method to regenerate damaged tissue. Adult stem cells, also known as somatic stem cells or resident stem cells, are a rare population of undifferentiated cells, located within a differentiated organ, in a specialized structure, called a niche, which maintains the microenvironments that regulate the growth and development of adult stem cells. The adult stem cells are self-renewing, clonogenic, and multipotent in nature, and their main role is to maintain the tissue homeostasis. They can be activated to proliferate and differentiate into the required type of cells, upon the loss of cells or injury to the tissue. Adult stem cells have been identified in many tissues including blood, intestine, skin, muscle, brain, and heart. Extensive preclinical and clinical studies have demonstrated the structural and functional regeneration capabilities of these adult stem cells, such as bone marrow-derived mononuclear cells, hematopoietic stem cells, mesenchymal stromal/stem cells, resident adult stem cells, induced pluripotent stem cells, and umbilical cord stem cells. In this review, we focus on the human therapies, utilizing adult stem cells for their regenerative capabilities in the treatment of cardiac, brain, pancreatic, and eye disorders.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States.
| |
Collapse
|
44
|
Brejchova K, Trosan P, Studeny P, Skalicka P, Utheim TP, Bednar J, Jirsova K. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions. Exp Eye Res 2018; 176:20-28. [PMID: 29928900 DOI: 10.1016/j.exer.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 01/19/2023]
Abstract
Human limbal epithelial cells (LECs) intended for treatment of limbal stem cell deficiency are commonly cultivated on a 3T3 feeder layer with complex culture medium supplemented with fetal bovine serum (FBS). However, FBS is a xenogeneic component containing poorly characterised constituents and exhibits quantitative and qualitative lot-to-lot variations. Human limbal explants were plated on untreated or fibrin coated plastic plates and cultured in two non-xenogeneic media (supplemented with either human serum or platelet lysate only). Our aim was to find out whether the characteristics of harvested LEC cultures are comparable to those of LEC cultivated in the gold standard - FBS-supplemented complex medium. The growth kinetics, cell proliferation, differentiation, stemness maintenance, apoptosis and contamination by other cell types were evaluated and compared among these conditions. In all of them LECs were successfully cultivated. Stemness was preserved in both xeno-free media. However, cells cultured with human serum on the fibrin-coated plates had the highest growth rate and cell proliferation and very low fibroblast-like cell contamination. These data suggest that xeno-free cell culture conditions can replace the traditional FBS-supplemented medium and thereby provide a safer protocol for ex vivo cultured limbal stem cell transplants.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Research Unit for Rare Diseases, Clinic of Paediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3rd Medical Faculty and University Hospital Kralovske Vinohrady, Šrobárova 1150/50, 100 34 Prague 10, Czech Republic
| | - Pavlina Skalicka
- Research Unit for Rare Diseases, Clinic of Paediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; Department of Ophthalmology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U nemocnice 499/2, 128 08 Prague 2, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, 0407 Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, 0407 Oslo, Norway
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic; Ophthalmology Department of 3rd Medical Faculty and University Hospital Kralovske Vinohrady, Šrobárova 1150/50, 100 34 Prague 10, Czech Republic
| |
Collapse
|
45
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefes Arch Clin Exp Ophthalmol 2017; 256:125-134. [PMID: 29168045 DOI: 10.1007/s00417-017-3842-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/25/2017] [Accepted: 11/04/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To evaluate the feasibility, safety, and biocompatibility of intravitreal injection of human mesenchymal stem cells (MSCs) in immunocompetent pigmented rabbits. MATERIALS AND METHODS Thirty-two pigmented rabbits (24 females, 8 males; Chinchilla-New Zealand White) were divided into 8 groups of 4 animals. Commercially prepared human MSCs were injected (0.05 ml) into the post-lens vitreous of the right eyes. Groups 1 and 4 received isotonic medium (Ringer lactate-based), groups 2, 5, 7, and 8 received a low dose of 15 × 106 cells/ml. Groups 3 and 6 received a high dose of 30 × 106 cells/ml. Clinical signs were evaluated and scored before MSCs injection and weekly for 2 or 6 weeks. Animals were sacrificed at 2 or 6 weeks after injection. Eyes, liver, spleen, and gonads were assessed by histology and by fluorescent in situ hybridization to evaluate survival and extraocular migration of MSCs. RESULTS There were no relevant clinical findings between control and MSC-injected rabbit eyes at any time point. There were also no relevant histological findings between control and MSC-injected rabbits related to ocular, liver, spleen, or gonad tissues modifications. MSCs survived intravitreally for at least 2 weeks after injection. Extraocular migration of MSCs was not detected. CONCLUSIONS MSCs are safe and well-tolerated when administered intravitreally at a dose of 15 × 106 cells/ml in pigmented rabbits. These findings enable future research to explore the intravitreal use of commercially prepared allogenic human MSCs in clinical trials of retinal diseases.
Collapse
|
47
|
Barut Selver Ö, Yağcı A, Eğrilmez S, Gürdal M, Palamar M, Çavuşoğlu T, Ateş U, Veral A, Güven Ç, Wolosin JM. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation. Turk J Ophthalmol 2017; 47:285-291. [PMID: 29109898 PMCID: PMC5661179 DOI: 10.4274/tjo.72593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/01/2022] Open
Abstract
The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using xenobiotic-free systems is becoming widely accepted both in Turkey and worldwide.
Collapse
Affiliation(s)
- Özlem Barut Selver
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Ayşe Yağcı
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Sait Eğrilmez
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Mehmet Gürdal
- Ege University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Turkey
| | - Melis Palamar
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Türker Çavuşoğlu
- Ege University Faculty of Medicine, Department of Histology and Embriology, İzmir, Turkey
| | - Utku Ateş
- İstanbul Bilim University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Ali Veral
- Ege University Faculty of Medicine, Department of Pathology, İzmir, Turkey
| | - Çağrı Güven
- Ege University Faculty of Medicine, Department of Gynecology and Obstetrics, İzmir, Turkey
| | - Jose Mario Wolosin
- Icahn Faculty of Medicine at Mount Sinai, Department of Ophthalmology and Black Family Stem Cell Institute, New York, USA
| |
Collapse
|
48
|
Galindo S, Herreras JM, López-Paniagua M, Rey E, de la Mata A, Plata-Cordero M, Calonge M, Nieto-Miguel T. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage. Stem Cells 2017; 35:2160-2174. [DOI: 10.1002/stem.2672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/18/2017] [Accepted: 06/17/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Sara Galindo
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - José M. Herreras
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Marina López-Paniagua
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Esther Rey
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Ana de la Mata
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - María Plata-Cordero
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Margarita Calonge
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Teresa Nieto-Miguel
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| |
Collapse
|
49
|
Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration. Stem Cells Int 2017; 2017:6978253. [PMID: 28465692 PMCID: PMC5390601 DOI: 10.1155/2017/6978253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.
Collapse
|
50
|
López-Paniagua M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, Corrales RM, Calonge M. Successful Consecutive Expansion of Limbal Explants Using a Biosafe Culture Medium under Feeder Layer-Free Conditions. Curr Eye Res 2016; 42:685-695. [PMID: 27911610 DOI: 10.1080/02713683.2016.1250278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Transplantation of in vitro cultured limbal epithelial stem cells (LESCs) is a treatment widely used for LESC deficiency. However, the number of limbal tissue donors is limited, and protocols for LESC cultivation often include compounds and/or feeder layers that can induce side effects and/or increase the cost of the culture procedure. We investigated the feasibility of obtaining more than one limbal primary culture (LPC) from the same biopsy using a culture medium in which several potentially harmful compounds were replaced at the same time by biosafe supplements, allowing the LESC cultivation without feeder layers. MATERIALS AND METHODS We established feeder layer-free LPCs with three culture media: (1) a modified supplemental hormonal epithelial medium, containing potential harmful components (cholera toxin, dimethylsulfoxide, and fetal bovine serum [FBS]), (2) IOBA-FBS, a medium with FBS but with no other harmful supplements, and (3) IOBA-HS, similar to IOBA-FBS but with human serum instead of FBS. Additionally, the same limbal explant was consecutively cultured with IOBA-HS producing three cultures. LPCs were characterized by real-time reverse transcription polymerase chain reaction and/or immunofluorescence. RESULTS LPCs cultured with the three media under feeder layer-free conditions showed cuboidal cells and no significant differences in the percentage of positive cells for limbal (ABCG2, p63, and K14) and corneal (K3, K12) proteins. Except for ABCG2, the relative mRNA expression of the LESC markers was significantly higher when IOBA-FBS or IOBA-HS was used. LPC1 showed characteristics similar to LPC0, while LPC2 cell morphology became elongated and the expression of some LESC markers was diminished. CONCLUSION IOBA-HS enables the culturing of up to two biosafe homologous LPCs from one limbal tissue under feeder layer-free conditions. The routine use of this culture medium could improve both the biosafety and the number of available LPCs for potential clinical transplantation, as well as decrease the expense of the culture procedure.
Collapse
Affiliation(s)
- Marina López-Paniagua
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - Teresa Nieto-Miguel
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - Ana de la Mata
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - Sara Galindo
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - José M Herreras
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - Rosa M Corrales
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| | - Margarita Calonge
- a IOBA (Institute of Applied Ophthalmobiology) , University of Valladolid , Valladolid , Spain.,b CIBER-BBN (Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine) , Valladolid , Spain
| |
Collapse
|