1
|
Fantone KM, Nothaft H, Son Y, Stecenko AA, Szymanski CM, Rada B. The bacterial serine protease inhibitor ecotin inhibits neutrophil elastase enzymatic activity in cystic fibrosis sputa. Heliyon 2024; 10:e38895. [PMID: 39444402 PMCID: PMC11497391 DOI: 10.1016/j.heliyon.2024.e38895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic Fibrosis (CF) airway disease is characterized by impaired mucociliary clearance, chronic, polymicrobial infections and robust, neutrophil-dominated inflammation. Pulmonary disease is the leading cause of morbidity and mortality in people with CF and is due to progressive airflow obstruction and ultimately respiratory failure. One of the earliest abnormalities in CF airway disease is the recruitment of neutrophils to the lungs. Neutrophil activation leads to the release of their intracellular content, including neutrophil elastase (NE), that damages lung tissues in CF. Our goal is to characterize a known bacterial NE inhibitor, ecotin, in the CF airway environment. Our results indicate that ecotins cloned from four Gram-negative bacterial species (Campylobacter rectus, Campylobacter showae, Escherichia coli and Pseudomonas aeruginosa) inhibit NE activity in CF sputum samples in a dose-dependent manner. Although we observed differences in the NE-inhibitory activity of the tested ecotins with the Campylobacter homologs being the most effective in NE inhibition in CF sputa, none of the ecotins impaired the ability of human neutrophils to kill major CF respiratory pathogens, P. aeruginosa or S. aureus, in vitro. Overall, we demonstrate that bacterial ecotins inhibit NE activity in CF sputa without compromising bacterial killing by neutrophils.
Collapse
Affiliation(s)
- Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, 6-065, Edmonton, AB, T6G 2E1, Canada
| | - Yeongseo Son
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christine M. Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, 6-065, Edmonton, AB, T6G 2E1, Canada
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Moustafa DA, Fantone KM, Tucker SL, McCarty NA, Stecenko AA, Goldberg JB, Rada B. Flagellum-deficient Pseudomonas aeruginosa is more virulent than non-motile but flagellated mutants in a cystic fibrosis mouse model. Microbiol Spectr 2024; 12:e0132524. [PMID: 39248473 PMCID: PMC11448114 DOI: 10.1128/spectrum.01325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Loss of the flagellum marks the pathoadaptation of Pseudomonas aeruginosa to the cystic fibrosis (CF) airway environment during lung disease. Losing the flagellum is advantageous to the bacterium as the flagellum can be recognized by immune cells. The primary purpose of the flagellum is, however, to provide motility to the bacterium. Our goal was to determine whether the loss of flagellar motility or the loss of flagellum expression contributes to P. aeruginosa lung infection in CF. To address this, wild-type and gut-corrected FABP-human cystic fibrosis transmembrane conductance regulator (hCFTR) mice deficient in the murine Cftr gene were infected intratracheally with lethal doses of wild-type or flagellum-deficient P. aeruginosa. While there was no significant difference in the survival of wild-type mice after infection with either of the bacterial strains, a significantly higher mortality was observed in FABP-hCFTR mice infected with flagellum-deficient P. aeruginosa, compared to mice infected with their flagellated counterparts. When FABP-hCFTR mice were infected with isogenic, motility-deficient flagellated mutants, animal survival and lung bacterial titers were similar to those observed in mice infected with the wild-type bacterium. Airway levels of neutrophils and the amount neutrophil elastase were similar in mice infected with either the wild-type bacteria or the flagellum-deficient P. aeruginosa. Our results show that FABP-hCFTR mice have a different response to flagellum loss in P. aeruginosa compared to wild-type animals. The loss of flagellum expression, rather than the loss of motility, is the main driver behind the increased virulence of flagellum-deficient P. aeruginosa in CF. These observations provide new insight into P. aeruginosa virulence in CF.IMPORTANCEPseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis, is known to lose its flagellum during the course of infection in the airways. Here, we show that the loss of flagellum leads to a more enhanced virulence in Cftr-deficient cystic fibrosis mice than in control animals. Loss of flagellum expression, rather than the loss of flagellar swimming motility, represents the main driver behind this increased virulence suggesting that this appendage plays a specific role in P. aeruginosa virulence in cystic fibrosis airways.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| | - Nael A. McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Herre M, Vemuri K, Cedervall J, Nissl S, Saupe F, Micallef J, Lindman H, Maguire CA, Tetz G, Tetz V, Olsson A. AAV-mouse DNase I sustains long-term DNase I expression in vivo and suppresses breast cancer metastasis. FASEB Bioadv 2024; 6:454-466. [PMID: 39372124 PMCID: PMC11452440 DOI: 10.1096/fba.2024-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in the pathology of various inflammatory conditions. In cancer, NETs have been demonstrated to induce systemic inflammation, impair peripheral vessel and organ function and promote metastasis. Here we show that the plasma level of NETs is significantly higher in patients with metastatic breast cancer compared to those with local disease, or those that were considered cured at a 5-year follow-up, confirming NETs as interesting therapeutic targets in metastatic breast cancer. Administration of DNase I is one strategy to eliminate NETs but long-term treatment requires repeated injections and species-specific versions of the enzyme. To enhance administration and therapeutic efficacy, we have developed an adeno-associated virus (AAV) vector system for delivery of murine DNase I and addressed its potential to counteract cancer-associated pathology in the murine MMTV-PyMT model for metastatic mammary carcinoma. The AAV vector is comprised of capsid KP1 and an expression cassette encoding hyperactive murine DNase I (AAV-mDNase I) under the control of a liver-specific promotor. This AAV-mDNase I vector could support elevated expression and serum activity of murine DNase I over at least 8 months. Neutrophil Gelatinase-Associated Lipocalin (NGAL), a biomarker for kidney hypoperfusion that is upregulated in urine from MMTV-PyMT mice, was suppressed in mice receiving AAV-mDNase I compared to an AAV-null control group. Furthermore, the proportion of mice that developed lung metastasis was reduced in the AAV-mDNase I group. Altogether, our data indicate that AAV-mDNase I has the potential to reduce cancer-associated impairment of renal function and development of metastasis. We conclude that AAV-mDNase I could represent a promising therapeutic strategy in metastatic breast cancer.
Collapse
Affiliation(s)
- Melanie Herre
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Kalyani Vemuri
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Stefanie Nissl
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Falk Saupe
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | | | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
| | - Casey A. Maguire
- Department of NeurologyHarvard Medical School, Massachusetts General HospitalBostonMassachusettsUSA
- Molecular Neurogenetics UnitMassachusetts General HospitalCharlestownMassachusettsUSA
| | - George Tetz
- CLS TherapeuticsNew YorkNew YorkUSA
- Human Microbiology InstituteDepartment of Systems BiologyNew YorkNew YorkUSA
| | - Victor Tetz
- Human Microbiology InstituteDepartment of Systems BiologyNew YorkNew YorkUSA
| | - Anna‐Karin Olsson
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Roesch EA, Rahmaoui A, Lazarus RA, Konstan MW. The continuing need for dornase alfa for extracellular airway DNA hydrolysis in the era of CFTR modulators. Expert Rev Respir Med 2024; 18:677-691. [PMID: 39176450 DOI: 10.1080/17476348.2024.2394694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The availability of cystic fibrosis transmembrane conductance regulator (CFTR) modulators opens the possibility of discontinuing some chronic pulmonary therapies to decrease cystic fibrosis (CF) treatment burden. However, CFTR modulators may not adequately address neutrophilic inflammation, which contributes to a self-perpetual cycle of viscous CF sputum, airway obstruction, inflammation, and lung function decline. AREAS COVERED This review discusses the emerging role of neutrophil extracellular traps in CF and its role in CF sputum viscosity, airway obstruction, and inflammation, based on a literature search of PubMed (1990-present). We summarize clinical trials and real-world studies that support the efficacy of dornase alfa (Pulmozyme) in improving lung function and reducing pulmonary exacerbation in people with CF (PwCF), and we discuss the potential role of dornase alfa in reducing airway inflammation. We also examine the findings of short-term trials evaluating the discontinuation of mucoactive therapy in PwCF receiving CFTR modulators. EXPERT OPINION Long-term studies are needed to assess the impact of discontinuing mucoactive therapy in PwCF who are clinically stable while receiving CFTR modulatory therapy. Treatment decisions should take into account the severity of underlying lung disease. People with advanced CF will likely require ongoing mucoactive therapy.
Collapse
Affiliation(s)
- Erica A Roesch
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Michael W Konstan
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Zuo X, Guo X, Zhao D, Gu Y, Zou Z, Shen Y, He C, Xu C, Rong Y, Wang F. An antibacterial, multifunctional nanogel for efficient treatment of neutrophilic asthma. J Control Release 2024; 372:31-42. [PMID: 38866241 DOI: 10.1016/j.jconrel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Asthma is a chronic and heterogeneous disease affecting the lungs and respiratory tract. In particular, the neutrophil subtype of asthma was described as persistent, more severe, and corticosteroid-resistant. Growing evidence suggested that nontypeable Haemophilus influenzae (NTHi) infection contributes to the development of neutrophilic asthma, exacerbating clinical symptoms and increasing the associated medical burden. In this work, arginine-grafted chitosan (CS-Arg) was ionically cross-linked with tris(2-carboxyethyl) phosphine (TCEP), and a highly-efficient antimicrobial agent, poly-ε-L-Lysine (ε-PLL), was incorporated to prepare ε-PLL/CS-Arg/TCEP (ECAT) composite nanogels. The results showed that ECAT nanogels exhibited highly effective inhibition against the proliferation of NTHi, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, ECAT nanogels could effectively inhibit the formation of mucins aggregates in vitro, suggesting that the nanogel might have the potential to destroy mucin in respiratory disease. Furthermore, in the ovalbumin (OVA)/NTHi-induced Balb/c mice model of neutrophilic asthma, the number of neutrophils in the alveolar lavage fluid and the percentage of inflammatory cells in the blood were effectively reduced by exposure to tower nebulized administration of ECAT nanogels, and reversing airway hyperresponsiveness (AHR) and reducing inflammation in neutrophilic asthma mice. In conclusion, the construction of ECAT nanogels was a feasible anti-infective and anti-inflammatory therapeutic strategy, which demonstrated strong potential in the clinical treatment of neutrophilic asthma.
Collapse
Affiliation(s)
- Xu Zuo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoping Guo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yinuo Gu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuanyuan Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Caina Xu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.; Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| | - Yan Rong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fang Wang
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
7
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
10
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
11
|
Boboltz A, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. J Mater Chem B 2023; 11:9419-9430. [PMID: 37701932 PMCID: PMC10591795 DOI: 10.1039/d3tb01489d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Fantone KM, Goldberg JB, Stecenko AA, Rada B. Sputum from People with Cystic Fibrosis Reduces the Killing of Methicillin-Resistant Staphylococcus aureus by Neutrophils and Diminishes Phagosomal Production of Reactive Oxygen Species. Pathogens 2023; 12:1148. [PMID: 37764956 PMCID: PMC10538153 DOI: 10.3390/pathogens12091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic polymicrobial infections and an infiltration of neutrophils (PMNs). Staphylococcus aureus has been the most prevalent respiratory pathogen in CF. In particular, methicillin-resistant S. aureus (MRSA) represents a huge clinical burden in CF due to its association with lung disease and increased resistance to antibiotics. In CF, PMNs are unable to kill and clear MRSA. The reason for this remains largely unknown. Our study found that CF PMNs are as equally capable of killing MRSA as healthy PMNs. We show that the CF sputum, however, significantly impairs the ability of human PMNs to kill CF MRSA isolates. In the absence of CF sputum, PMNs kill MRSA via intracellular mechanisms mediated by phagocytosis, rather than extracellular mechanisms via NET formation. CF sputum does not affect the phagocytosis of MRSA via healthy or CF PMNs. Our results demonstrate that CF sputum exposure impairs phagosomal levels of reactive oxygen species (ROS) in MRSA-phagocytosing PMNs. While phagosomal co-localizations of MRSA with primary granule markers, myeloperoxidase and cathepsin D, were significantly reduced upon CF sputum exposure, that of a third azurophilic granule marker, neutrophil elastase, remained unaffected. This suggests that CF sputum does not compromise the fusion of primary granules with phagosomes but diminishes phagosomal ROS levels via another, likely more specific, mechanism. Overall, we identified the airway environment as an important factor that restricts neutrophils' oxidative microbicidal activities in CF against MRSA. These results deliver new details of the complex host-pathogen interactions present in the CF lung.
Collapse
Affiliation(s)
- Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - Joanna B. Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
15
|
Boboltz AM, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546583. [PMID: 37425779 PMCID: PMC10327088 DOI: 10.1101/2023.06.26.546583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel and native mucus viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison M Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Bakalović G, Bokonjić D, Mihajlović D, Čolić M, Mališ V, Drakul M, Tomić S, Jojić I, Rakočević S, Popović D, Kozić L, Vasiljević M, Bekić M, Mašić S, Ljuboja O. Dysfunctions of Neutrophils in the Peripheral Blood of Children with Cystic Fibrosis. Biomedicines 2023; 11:1725. [PMID: 37371820 PMCID: PMC10296301 DOI: 10.3390/biomedicines11061725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunction of neutrophils in patients with cystic fibrosis (CF) is best characterized in bronchoalveolar lavage (BAL), whereas peripheral blood neutrophils are less examined, and the results are contradictory, especially in younger populations. Therefore, this work aimed to study functional and phenotypic changes in circulating neutrophils in children with CF. The study included 19 CF children (5-17 years) and 14 corresponding age-matched healthy children. Isolated neutrophils were cultured either alone or with different stimuli. Several functions were studied: apoptosis, NET-osis, phagocytosis, and production of reactive oxygen species (ROS), neutrophil elastase (NE), and 11 cytokines. In addition, the expression of 20 molecules involved in different functions of neutrophils was evaluated by using flow cytometry. CF neutrophils showed reduced apoptosis and lower production of NE and IL-18 compared to the healthy controls, whereas IL-8 was augmented. All of these functions were further potentiated after neutrophil stimulation, which included higher ROS production and the up-regulation of CD11b and IL-10 expression. NET-osis was higher only when neutrophils from moderate-severe CF were treated with Pseudomonas aeruginosa, and the process correlated with forced expiratory volume in the first second (FEV1). Phagocytosis was not significantly changed. In conclusion, circulating neutrophils from children with CF showed fewer impaired changes in phenotype than in function. Functional abnormalities, which were already present at the baseline levels in neutrophils, depended on the type of stimuli that mimicked different activation states of these cells at the site of infection.
Collapse
Affiliation(s)
- Ganimeta Bakalović
- Pediatric Clinic, Clinical Center of the University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dejan Bokonjić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
- Department of Pediatrics, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Miodrag Čolić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vanja Mališ
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Marija Drakul
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.)
| | - Ivan Jojić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Sara Rakočević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Darinka Popović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Ljiljana Kozić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (S.T.); (M.B.)
| | - Srđan Mašić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (D.B.); (D.M.); (M.Č.); (V.M.); (M.D.); (I.J.); (S.R.); (D.P.); (L.K.); (M.V.); (S.M.)
| | - Olivera Ljuboja
- Clinic for Children’s Diseases, University Clinical Center of Banja Luka, 51000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
17
|
Shute JK. Heparin, Low Molecular Weight Heparin, and Non-Anticoagulant Derivatives for the Treatment of Inflammatory Lung Disease. Pharmaceuticals (Basel) 2023; 16:ph16040584. [PMID: 37111341 PMCID: PMC10141002 DOI: 10.3390/ph16040584] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Unfractionated heparin has multiple pharmacological activities beyond anticoagulation. These anti-inflammatory, anti-microbial, and mucoactive activities are shared in part by low molecular weight and non-anticoagulant heparin derivatives. Anti-inflammatory activities include inhibition of chemokine activity and cytokine synthesis, inhibitory effects on the mechanisms of adhesion and diapedesis involved in neutrophil recruitment, inhibition of heparanase activity, inhibition of the proteases of the coagulation and complement cascades, inhibition of neutrophil elastase activity, neutralisation of toxic basic histones, and inhibition of HMGB1 activity. This review considers the potential for heparin and its derivatives to treat inflammatory lung disease, including COVID-19, ALI, ARDS, cystic fibrosis, asthma, and COPD via the inhaled route.
Collapse
Affiliation(s)
- Janis Kay Shute
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| |
Collapse
|
18
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
19
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
20
|
New TMA (4,6,4'-Trimethyl angelicin) Analogues as Anti-Inflammatory Agents in the Treatment of Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:ijms232214483. [PMID: 36430961 PMCID: PMC9699093 DOI: 10.3390/ijms232214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A series of new-generation TMA (4,6,4'-trimethyl angelicin) analogues was projected and synthetized in order to ameliorate anti-inflammatory activity, with reduced or absent toxicity. Since the NF-κB transcription factor (TF) plays a critical role in the expression of IL-8 (Interluekin 8), a typical marker of lung inflammation in Cystic Fibrosis (CF), the use of agents able to interfere with the NF-κB pathway represents an interesting therapeutic strategy. Through preliminary EMSA experiments, we identified several new TMA derivatives able to inhibit the NF-κB/DNA complex. The selected active molecules were then analyzed to evaluate the anti-inflammatory effect using both Pseudomonas aeruginosa (PAO1) infection and TNF-alpha stimulus on the CF IB3-1 cell line. It was demonstrated that mainly two TMA analogues, GY971a mesylate salt (6-p-minophenyl-4,4'-dimethyl-angelicin) and GY964 (4-phenyl-6,4'-dimethyl-angelicin), were able to decrease the IL-8 gene expression. At the same time, these molecules were found to have no pro-apoptotic, mutagenic and phototoxic effects, facilitating our decision to test the efficacy in vivo by using a mouse model of acute P. aeruginosa lung infection. The anti-inflammatory effect of GY971a was confirmed in vivo; this derivative was able to deeply decrease the total number of inflammatory cells, the neutrophil count and the cytokine/chemokine profile in the P. aeruginosa acute infection model, without evident toxicity. Considering all the obtained and reported in vitro and in vivo pre-clinical results, GY971a seems to have interesting anti-inflammatory effects, modulating the NF-κB pathway, as well as the starting lead compound TMA, but without side effects.
Collapse
|
21
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Khoury O, Clouse C, McSwain MK, Applegate J, Kock ND, Atala A, Murphy SV. Ferret acute lung injury model induced by repeated nebulized lipopolysaccharide administration. Physiol Rep 2022; 10:e15400. [PMID: 36268626 PMCID: PMC9585421 DOI: 10.14814/phy2.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023] Open
Abstract
Inflammatory lung diseases affect millions of people worldwide. These diseases are caused by a number of factors such as pneumonia, sepsis, trauma, and inhalation of toxins. Pulmonary function testing (PFT) is a valuable functional methodology for better understanding mechanisms of lung disease, measuring disease progression, clinical diagnosis, and evaluating therapeutic interventions. Animal models of inflammatory lung diseases are needed that accurately recapitulate disease manifestations observed in human patients and provide an accurate prediction of clinical outcomes using clinically relevant pulmonary disease parameters. In this study, we evaluated a ferret lung inflammation model that closely represents multiple clinical manifestations of acute lung inflammation and injury observed in human patients. Lipopolysaccharide (LPS) from Pseudomonas aeruginosa was nebulized into ferrets for 7 repeated daily doses. Repeated exposure to nebulized LPS resulted in a restrictive pulmonary injury characterized using Buxco forced maneuver PFT system custom developed for ferrets. This is the first study to report repeated forced maneuver PFT in ferrets, establishing lung function measurements pre- and post-injury in live animals. Bronchoalveolar lavage and histological analysis confirmed that LPS exposure elicited pulmonary neutrophilic inflammation and structural damage to the alveoli. We believe this ferret model of lung inflammation, with clinically relevant disease manifestations and parameters for functional evaluation, is a useful pre-clinical model for understanding human inflammatory lung disease and for the evaluation of potential therapies.
Collapse
Affiliation(s)
- Oula Khoury
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Malcolm K. McSwain
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Applegate
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nancy D. Kock
- Department of Pathology/Comparative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
23
|
Greenwald MA, Wolfgang MC. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr Opin Pharmacol 2022; 65:102262. [DOI: 10.1016/j.coph.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
|
24
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
25
|
The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int J Mol Sci 2022; 23:ijms23073513. [PMID: 35408875 PMCID: PMC8998472 DOI: 10.3390/ijms23073513] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens.
Collapse
|
26
|
Programmed cell death: the pathways to severe COVID-19? Biochem J 2022; 479:609-628. [PMID: 35244141 PMCID: PMC9022977 DOI: 10.1042/bcj20210602] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Collapse
|
27
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany NY) 2021; 13:26148-26160. [PMID: 34959222 PMCID: PMC8751615 DOI: 10.18632/aging.203802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate whether free fatty acids (FFAs) could induce the release of neutrophil extracellular traps (NETs), as well as the mechanism of FFAs-induced NETs in acute lung injury (ALI). FFAs were used to induce NETs production. The reactive oxygen species (ROS) production was detected after FFA and NADPH oxidase inhibitor treatments. The association between FFAs-induced NETs and the activation of p38, ERK, and JNK pathways was investigated. The effect of FFAs-induced NETs on the dendritic cells (DCs) activation and T cell differentiation was investigated. FFAs could induce neutrophils to produce NETs. FFAs significantly promoted ROS production and increased the expression of ERK, p38 and JNK, and treatment of the inhibitors of NAPDH oxidase (DPI), p38 (SB202190), ERK1/2 (U0126) and JNK (SP600125) inhibited FAAs-induced NETs production. FFAs induced NETs could promote DCs activation and consequently led to the differentiation of primary CD4+ T cells into Th1 and Th17 cells and the release of IL-1β, IL-12 and TNF-α. FFAs are capable of inducing NETs via NOX, ERK, p38 and JNK pathways. FFA-induced NETs further lead to DCs activation and T cell differentiation, which can well explain the mechanism of ALI caused by FFAs.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhi-Tao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Er-Zhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
29
|
Parker HA, Forrester L, Kaldor CD, Dickerhof N, Hampton MB. Antimicrobial Activity of Neutrophils Against Mycobacteria. Front Immunol 2021; 12:782495. [PMID: 35003097 PMCID: PMC8732375 DOI: 10.3389/fimmu.2021.782495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The mycobacterium genus contains a broad range of species, including the human pathogens M. tuberculosis and M. leprae. These bacteria are best known for their residence inside host cells. Neutrophils are frequently observed at sites of mycobacterial infection, but their role in clearance is not well understood. In this review, we discuss how neutrophils attempt to control mycobacterial infections, either through the ingestion of bacteria into intracellular phagosomes, or the release of neutrophil extracellular traps (NETs). Despite their powerful antimicrobial activity, including the production of reactive oxidants such as hypochlorous acid, neutrophils appear ineffective in killing pathogenic mycobacteria. We explore mycobacterial resistance mechanisms, and how thwarting neutrophil action exacerbates disease pathology. A better understanding of how mycobacteria protect themselves from neutrophils will aid the development of novel strategies that facilitate bacterial clearance and limit host tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
30
|
Williamson M, Casey M, Gabillard-Lefort C, Alharbi A, Teo YQJ, McElvaney NG, Reeves EP. Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Rev Respir Med 2021; 16:43-56. [PMID: 34726115 DOI: 10.1080/17476348.2021.2001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.
Collapse
Affiliation(s)
- Michael Williamson
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aram Alharbi
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Yu Qing Jolene Teo
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
31
|
Tucker SL, Sarr D, Rada B. Granulocytic Myeloid-Derived Suppressor Cells in Cystic Fibrosis. Front Immunol 2021; 12:745326. [PMID: 34621276 PMCID: PMC8490623 DOI: 10.3389/fimmu.2021.745326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease that causes chronic and severe lung inflammation and infection associated with high rates of mortality. In CF, disrupted ion exchange in the epithelium results in excessive mucus production and reduced mucociliary clearance, leading to immune system exacerbation and chronic infections with pathogens such as P. aeruginosa and S. aureus. Constant immune stimulation leads to altered immune responses including T cell impairment and neutrophil dysfunction. Specifically, CF is considered a Th17-mediated disease, and it has been proposed that both P. aeruginosa and a subset of neutrophils known as granulocytic myeloid suppressor cells (gMDSCs) play a role in T cell suppression. The exact mechanisms behind these interactions are yet to be determined, but recent works demonstrate a role for arginase-1. It is also believed that P. aeruginosa drives gMDSC function as a means of immune evasion, leading to chronic infection. Herein, we review the current literature regarding immune suppression in CF by gMDSCs with an emphasis on T cell impairment and the role of P. aeruginosa in this dynamic interaction.
Collapse
Affiliation(s)
- Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
32
|
Vendrusculo FM, Piva TC, Luft C, Antunes KH, Donadio MVF. Aerobic fitness is associated with extracellular DNA levels in the sputum of patients with cystic fibrosis. Int J Clin Pract 2021; 75:e14616. [PMID: 34235820 DOI: 10.1111/ijcp.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Patients with cystic fibrosis (CF) develop with progressive loss of lung function and aerobic fitness. However, the precise mechanisms of exercise intolerance are still controversial and appear to be influenced by several factors. This study aimed to evaluate the association of aerobic fitness with free DNA levels in the sputum of patients with CF. METHODS This cross-sectional study included patients with CF older than 6 years, free from active exacerbations, but who were able to produce spontaneously expectorated sputum. Extracellular DNA in the sputum was quantified. Lung function (spirometry) and aerobic fitness (cardiopulmonary exercise testing [CPET]) were performed. In addition, demographic, anthropometric and clinical data were collected. RESULTS Sixteen patients with a mean age of 19.4 ± 6.9 years and mean forced expiratory volume in the first second (FEV1 ) of 51.8 ± 28.1 (% of predicted) were included. Mean peak oxygen consumption (VO2 peak) was 32.8 ± 5.2 mL• kg-1 • min-1 , oxygen saturation at the end of the test was 90.6% ± 6.3% and mean extracellular DNA levels was 305.3 ± 153.6 μg/mL. Individuals with a VO2 peak ≤ 30 mL• kg-1 • min-1 (P = .03) and a SpO2 ≤ 90% at the end of the test (P = .03) had a greater amount of extracellular DNA in the sputum. The proportion of patients with reduced VO2 peak in the group of patients with the lowest concentration of DNA in the sputum (<243 μg/mL) was significantly lower (0% vs 100%; P = .04). CONCLUSION There is an association between the presence of free DNA in sputum and aerobic fitness in patients with CF.
Collapse
Affiliation(s)
- Fernanda Maria Vendrusculo
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Taila Cristina Piva
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Krist Helen Antunes
- Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Totani L, Amore C, Piccoli A, Dell'Elba G, Di Santo A, Plebani R, Pecce R, Martelli N, Rossi A, Ranucci S, De Fino I, Moretti P, Bragonzi A, Romano M, Evangelista V. Type-4 Phosphodiesterase (PDE4) Blockade Reduces NETosis in Cystic Fibrosis. Front Pharmacol 2021; 12:702677. [PMID: 34566635 PMCID: PMC8456009 DOI: 10.3389/fphar.2021.702677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophilic inflammation is a key determinant of cystic fibrosis (CF) lung disease. Neutrophil-derived free DNA, released in the form of extracellular traps (NETs), significantly correlates with impaired lung function in patients with CF, underlying their pathogenetic role in CF lung disease. Thus, specific approaches to control NETosis of neutrophils migrated into the lungs may be clinically relevant in CF. We investigated the efficacy of phosphodiesterase (PDE) type-4 inhibitors, in vitro, on NET release by neutrophils from healthy volunteers and individuals with CF, and in vivo, on NET accumulation and lung inflammation in mice infected with Pseudomonas aeruginosa. PDE4 blockade curbed endotoxin-induced NET production and preserved cellular integrity and apoptosis in neutrophils, from healthy subjects and patients with CF, challenged with endotoxin, in vitro. The pharmacological effects of PDE4 inhibitors were significantly more evident on CF neutrophils. In a mouse model of Pseudomonas aeruginosa chronic infection, aerosol treatment with roflumilast, a selective PDE4 inhibitor, gave a significant reduction in free DNA in the BALF. This was accompanied by reduced citrullination of histone H3 in neutrophils migrated into the airways. Roflumilast-treated mice showed a significant improvement in weight recovery. Our study provides the first evidence that PDE4 blockade controls NETosis in vitro and in vivo, in CF-relevant models. Since selective PDE4 inhibitors have been recently approved for the treatment of COPD and psoriasis, our present results encourage clinical trials to test the efficacy of this class of drugs in CF.
Collapse
Affiliation(s)
- Licia Totani
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Concetta Amore
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Antonio Piccoli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Giuseppe Dell'Elba
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Angelo Di Santo
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Romina Pecce
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Nicola Martelli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Alice Rossi
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Moretti
- Cystic Fibrosis Centre, S. Liberatore Hospital, Atri, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Virgilio Evangelista
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| |
Collapse
|
34
|
Zhou X, Wang H, Lian S, Wang J, Wu R. Effect of Copper, Zinc, and Selenium on the Formation of Bovine Neutrophil Extracellular Traps. Biol Trace Elem Res 2021; 199:3312-3318. [PMID: 33180264 DOI: 10.1007/s12011-020-02477-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Dairy cow neutrophils activate a program leading to cell death and expulsion of neutrophil extracellular traps (NETs). The role of NETs is to capture pathogens, degrade bacterial toxic factors, and kill bacteria, and the effect of trace elements on NETs formation in cows is ambiguous. In this study, we investigated the effect of copper (0.5 mg/L, 0.8 mg/L, and 2.0 mg/L), zinc (0.1 mg/L, 1.0 mg/L, and 2.0 mg/L), and selenium (0.01 mg/L, 0.08 mg/L, and 2.0 mg/L) on NETs formation in dairy cows. Trace element induction of NETs formation was observed by laser confocal microscopy. The percentage of NETs formed was calculated by quantifying the number of neutrophils forming NETs out of the total number of neutrophils observed under 20 high-power (200×) magnification fields. Copper, zinc, and selenium induced the formation of a network of DNA, neutrophil elastase (ELA2), and myeloperoxidase. Copper (0.8 mg/L), zinc (1.0 mg/L), and selenium (0.01 mg/L) significantly induced the formation of NETs (p < 0.05). The study provides an experimental basis for enhancing the immunity of cows before and after delivery by adding copper, zinc, and selenium.
Collapse
Affiliation(s)
- Xiechen Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
35
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
36
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
37
|
Fantone K, Tucker SL, Miller A, Yadav R, Bernardy EE, Fricker R, Stecenko AA, Goldberg JB, Rada B. Cystic Fibrosis Sputum Impairs the Ability of Neutrophils to Kill Staphylococcus aureus. Pathogens 2021; 10:pathogens10060703. [PMID: 34200034 PMCID: PMC8229215 DOI: 10.3390/pathogens10060703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic microbial infections and infiltration of inflammatory polymorphonuclear (PMN) granulocytes. Staphylococcus aureus (S. aureus) is a major lung pathogen in CF that persists despite the presence of PMNs and has been associated with CF lung function decline. While PMNs represent the main mechanism of the immune system to kill S. aureus, it remains largely unknown why PMNs fail to eliminate S. aureus in CF. The goal of this study was to observe how the CF airway environment affects S. aureus killing by PMNs. PMNs were isolated from the blood of healthy volunteers and CF patients. Clinical isolates of S. aureus were obtained from the airways of CF patients. The results show that PMNs from healthy volunteers were able to kill all CF isolates and laboratory strains of S. aureus tested in vitro. The extent of killing varied among strains. When PMNs were pretreated with supernatants of CF sputum, S. aureus killing was significantly inhibited suggesting that the CF airway environment compromises PMN antibacterial functions. CF blood PMNs were capable of killing S. aureus. Although bacterial killing was inhibited with CF sputum, PMN binding and phagocytosis of S. aureus was not diminished. The S. aureus-induced respiratory burst and neutrophil extracellular trap release from PMNs also remained uninhibited by CF sputum. In summary, our data demonstrate that the CF airway environment limits killing of S. aureus by PMNs and provides a new in vitro experimental model to study this phenomenon and its mechanism.
Collapse
Affiliation(s)
- Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arthur Miller
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Eryn E. Bernardy
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Rachel Fricker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Joanna B. Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
- Correspondence:
| |
Collapse
|
38
|
Abdo M, Uddin M, Goldmann T, Marwitz S, Bahmer T, Holz O, Kirsten AM, Trinkmann F, von Mutius E, Kopp M, Hansen G, Rabe KF, Watz H, Pedersen F. Raised sputum extracellular DNA confers lung function impairment and poor symptom control in an exacerbation-susceptible phenotype of neutrophilic asthma. Respir Res 2021; 22:167. [PMID: 34082773 PMCID: PMC8173872 DOI: 10.1186/s12931-021-01759-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular DNA (e-DNA) and neutrophil extracellular traps (NETs) are linked to asthmatics airway inflammation. However, data demonstrating the characterization of airway inflammation associated with excessive e-DNA production and its impact on asthma outcomes are limited. Objective To characterize the airway inflammation associated with excessive e-DNA production and its association with asthma control, severe exacerbations and pulmonary function, particularly, air trapping and small airway dysfunction. Methods We measured e-DNA concentrations in induced sputum from 134 asthma patients and 28 healthy controls. We studied the correlation of e-DNA concentrations with sputum neutrophils, eosinophils and macrophages and the fractional exhaled nitric oxide (FeNO). Lung function was evaluated using spirometry, body plethysmography, impulse oscillometry and inert gas multiple breath washout. We stratified patients with asthma into low-DNA and high-DNA to compare lung function impairments and asthma outcomes. Results Patients with severe asthma had higher e-DNA concentration (54.2 ± 42.4 ng/µl) than patients with mild-moderate asthma (41.0 ± 44.1 ng/µl) or healthy controls (26.1 ± 16.5 ng/µl), (all p values < 0.05). E-DNA concentrations correlated directly with sputum neutrophils (R = 0.49, p < 0.0001) and negatively with sputum macrophages (R = − 0.36, p < 0.0001), but neither with sputum eosinophils (R = 0.10, p = 0.26), nor with FeNO (R = − 0.10, p = 0.22). We found that 29% of asthma patients (n = 39) had high e-DNA concentrations above the upper 95th percentile value in healthy controls (55.6 ng /μl). High-DNA was associated with broad lung function impairments including: airflow obstruction of the large (FEV1) and small airways (FEF50%, FEF25–75), increased air trapping (RV, RV/TLC), increased small airway resistance (R5-20, sReff), decreased lung elasticity (X5Hz) and increased ventilation heterogeneity (LCI), (all P values < 0.05). We also found that high e-DNA was associated with nearly three-fold greater risk of severe exacerbations (OR 2·93 [95% CI 1.2–7.5]; p = 0·012), worse asthma control test (p = 0.03), worse asthma control questionnaire scores (p = 0.01) and higher doses of inhaled corticosteroids (p = 0.026). Conclusion Increased production of extracellular DNA in the airway characterizes a subset of neutrophilic asthma patients who have broad lung function impairments, poor symptom control and increased risk of severe exacerbations.
Collapse
Affiliation(s)
- Mustafa Abdo
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Wöhrendamm 80, 22927, Grosshansdorf, Germany
| | - Mohib Uddin
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Torsten Goldmann
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Sebastian Marwitz
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Bahmer
- Department for Internal Medicine I, Airway Research Center North (ARCN), German Center for Lung Research (DZL), University Hospital Schleswig-Holstein-Campus Kiel, Kiel, Germany
| | - Olaf Holz
- Fraunhofer ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Anne-Marie Kirsten
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Biomedical Informatics, Heinrich-Lanz-Center, University Medical Center Mannheim, Mannheim, Germany
| | - Erika von Mutius
- Dr Von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Kopp
- Department of Pediatric Pneumology, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland.,Division of Pediatric Pneumology and Allergology, University Hospital Schleswig-Holstein-Campus Luebeck, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Luebeck, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Wöhrendamm 80, 22927, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frauke Pedersen
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Wöhrendamm 80, 22927, Grosshansdorf, Germany. .,Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany.
| | | |
Collapse
|
39
|
Bercusson A, Jarvis G, Shah A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021; 186:655-664. [PMID: 33813719 PMCID: PMC8536598 DOI: 10.1007/s11046-021-00541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Fungi are increasingly recognised to have a significant role in the progression of lung disease in Cystic fibrosis with Aspergillus fumigatus the most common fungus isolated during respiratory sampling. The emergence of novel CFTR modulators has, however, significantly changed the outlook of disease progression in CF. In this review we discuss what impact novel CFTR modulators will have on fungal lung disease and its management in CF. We discuss how CFTR modulators affect antifungal innate immunity and consider the impact of Ivacaftor on fungal disease in individuals with gating mutations. We further review the increasing complication of drug-drug interactions with concurrent use of azole antifungal medication and highlight key unknowns that require addressing to fully understand the impact of CFTR modulators on fungal disease.
Collapse
Affiliation(s)
- Amelia Bercusson
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Jarvis
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK. .,Department of Infectious Disease Epidemiology, MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
40
|
Jing C, Liu C, Liu Y, Feng R, Cao R, Guan Z, Xuan B, Gao Y, Wang Q, Yang N, Ma Y, Lan L, Feng J, Shen B, Wang H, Yu Y, Yang G. Antibodies Against Pseudomonas aeruginosa Alkaline Protease Directly Enhance Disruption of Neutrophil Extracellular Traps Mediated by This Enzyme. Front Immunol 2021; 12:654649. [PMID: 33868297 PMCID: PMC8044376 DOI: 10.3389/fimmu.2021.654649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular traps released by neutrophils (NETs) are essential for the clearance of Pseudomonas aeruginosa. Alkaline protease (AprA) secreted by P. aeruginosa negatively correlates with clinical improvement. Moreover, anti-AprA in patients with cystic fibrosis (CF) can help identify patients with aggressive forms of chronic infection. However, the mechanism underlying the clinical outcomes remains unclear. We demonstrated that aprA deficiency in P. aeruginosa decreased the bacterial burden and reduced lung infection. AprA degraded NET components in vitro and in vivo but did not affect NET formation. Importantly, antibodies induced by AprA acted as an agonist and directly enhanced the degrading activities of AprA. Moreover, antisera from patients with P. aeruginosa infection exhibited antibody-dependent enhancement (ADE) similar to that of the antibodies we prepared. Our further investigations showed that the interaction between AprA and the specific antibodies might make the enzyme active sites better exposed, and subsequently enhance the recognition of substrates and accelerate the degradation. Our findings revealed that AprA secreted by P. aeruginosa may aggravate infection by destroying formed NETs, an effect that was further enhanced by its antibodies.
Collapse
Affiliation(s)
- Chendi Jing
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruli Feng
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhangchun Guan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Xuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yaping Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Nana Yang
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lefu Lan
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
41
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-limiting genetic disorder affecting approximately 70,000 people worldwide. Current burden of treatment is high. While the latest pharmaceutical innovation has benefitted many, patients with certain genotypes remain excluded. Gene editing has the potential to correct the underlying cause of disease for all patients, representing a permanent cure.Areas covered: Various DNA editing-based strategies for treatment are currently being developed. Different strategies are called for based upon location of mutations (intronic vs. exonic), delivery mechanism of editing machinery, and cell type being targeted. Furthermore, the unique physiology of the CF lung presents a variety of barriers to delivery of CRISPR-Cas9 machinery.Expert opinion: The most significant obstacle to the use of CRISPR-Cas9 in vivo is the fact that the most clinically relevant and accessible CF tissue, the airway epithelium, is made up of non-dividing cells where precise editing via homology-directed repair (HDR) does not occur; rather, potentially deleterious imprecise editing via non-homologous end joining (NHEJ) dominates. Future research should focus on the development of either more precise NHEJ-based approaches, access to airway basal cells, editing approaches that do not involve introducing genomic double-strand breaks, and strategies with ex vivo edited cells.
Collapse
Affiliation(s)
- Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
42
|
Interspecies Metabolic Complementation in Cystic Fibrosis Pathogens via Purine Exchange. Pathogens 2021; 10:pathogens10020146. [PMID: 33535659 PMCID: PMC7912780 DOI: 10.3390/pathogens10020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease frequently associated with chronic lung infections caused by a consortium of pathogens. It is common for auxotrophy (the inability to biosynthesize certain essential metabolites) to develop in clinical isolates of the dominant CF pathogen Pseudomonas aeruginosa, indicating that the CF lung environment is replete in various nutrients. Many of these nutrients are likely to come from the host tissues, but some may come from the surrounding polymicrobial community within the lungs of CF patients as well. To assess the feasibility of nutrient exchange within the polymicrobial community of the CF lung, we selected P. aeruginosa and Staphylococcus aureus, two of the most prevalent species found in the CF lung environment. By comparing the polymicrobial culture of wild-type strains relative to their purine auxotrophic counterparts, we were able to observe metabolic complementation occurring in both P. aeruginosa and S. aureus when grown with a purine-producing cross-species pair. While our data indicate that some of this complementation is likely derived from extracellular DNA freed by lysis of S. aureus by the highly competitive P. aeruginosa, the partial complementation of S. aureus purine deficiency by P. aeruginosa demonstrates that bidirectional nutrient exchange between these classic competitors is possible.
Collapse
|
43
|
Tucker SL, Sarr D, Rada B. Neutrophil extracellular traps are present in the airways of ENaC-overexpressing mice with cystic fibrosis-like lung disease. BMC Immunol 2021; 22:7. [PMID: 33478382 PMCID: PMC7819174 DOI: 10.1186/s12865-021-00397-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neutrophils are key components of the exacerbated inflammation and tissue damage in cystic fibrosis (CF) airways. Neutrophil extracellular traps (NETs) trap and kill extracellular pathogens. While NETs are abundant in the airways of CF patients and have been hypothesized to contribute to lung damage in CF, the in vivo role of NETs remains controversial, partially due to lack of appropriate animal models. The goal of this study was to detect NETs and to further characterize neutrophil-mediated inflammation in the airways of mice overexpressing the epithelial sodium channel (βENaC-Tg mice on C57BL/6 background) in their lung with CF-like airway disease, in the absence of any apparent bacterial infections. Methods Histology scoring of lung tissues, flow cytometry, multiplex ELISA, immunohistochemistry and immunofluorescence were used to characterize NETs and the airway environment in uninfected, βENaC-Tg mice at 6 and 8 weeks of age, the most chronic time points so far studied in this model. Results Excessive neutrophilic infiltration characterized the lungs of uninfected, βENaC-Tg mice at 6 and 8 weeks of age. The bronchoalveolar lavage fluid (BALF) of βENaC-Tg mice contains increased levels of CF-associated cytokines and chemokines: KC, MIP-1α/β, MCP-1, G-CSF, IL-5, and IL-6. The BALF of βENaC-Tg mice contain MPO-DNA complexes, indicative of the presence of NETs. Immunofluorescence and flow cytometry of BALF neutrophils and lung tissues demonstrated increased histone citrullination, a NET-specific marker, in βENaC-Tg mice. Conclusions NETs are detected in the airways of βENaC-Tg mice, in the absence of bacterial infections. These data demonstrate the usefulness of the βENaC-Tg mouse to serve as a model for studying the role of NETs in chronic CF airway inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00397-w.
Collapse
Affiliation(s)
- Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
44
|
Yadav R, Linnemann RW, Kahlenberg JM, Bridges LS, Stecenko AA, Rada B. IgA autoantibodies directed against self DNA are elevated in cystic fibrosis and associated with more severe lung dysfunction. Autoimmunity 2020; 53:476-484. [PMID: 33258386 DOI: 10.1080/08916934.2020.1839890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although extracellular host DNA (ecDNA) levels in CF airways were linked to airflow obstruction and recombinant DNAse therapy is beneficial for CF patients, it remains incompletely understood whether ecDNA also leads to an autoimmune response. Here we hypothesized that chronic presence of DNA in CF airways triggers the production of autoantibodies targeting host human DNA. We measured the levels of IgA autoantibodies recognising host double-stranded (ds) DNA in the blood and sputum samples of CF patients and only sera of controls subjects and patients suffering from rheumatoid arthritis and systemic lupus erythematosus (SLE) that served as non-CF, autoimmune disease cohorts. We found that concentrations of anti-dsDNA IgA, but not IgG, autoantibodies in the circulation were significantly elevated in adult CF patients compared to age-matched, control subjects. Systemic levels of anti-dsDNA IgA antibodies negatively correlated with FEV1% predicted, a measure of lung function, in CF patients. Anti-dsDNA IgA autoantibodies were also detected in CF sputa but sputum levels did not correlate with the degree of airway obstruction or sputum levels of DNA. We also found elevated autoantibody levels in CF children as 76.5% of CF patients younger than 10 years and 87.5% of CF patients 10-21 years had higher blood anti-dsDNA IgA levels than the highest value found in healthy control adults. Overall, our results detect elevated systemic anti-dsDNA IgA autoantibody levels in CF adults, teenagers and young children. We speculate that the appearance of an autoimmune response against host DNA in CF is an early event potentially contributing to disease pathogenesis. Highlights CF serum contains elevated levels of anti-dsDNA IgA, but not anti-dsDNA IgG, autoantibodies Anti-dsDNA IgA autoantibody levels in serum correlate with airflow obstruction in CF Anti-dsDNA IgA autoantibodies are detected in CF sputum but do not correlate with airflow obstruction Anti-dsDNA IgA autoantibodies are also elevated in the blood of the majority of CF toddlers and youth.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Rachel W Linnemann
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanne Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Louis S Bridges
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arlene A Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
Guerra M, Halls VS, Schatterny J, Hagner M, Mall MA, Schultz C. Protease FRET Reporters Targeting Neutrophil Extracellular Traps. J Am Chem Soc 2020; 142:20299-20305. [PMID: 33186023 DOI: 10.1021/jacs.0c08130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.
Collapse
Affiliation(s)
- Matteo Guerra
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Victoria S Halls
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jolanthe Schatterny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Matthias Hagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcus A Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
46
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
47
|
Martínez-Alemán S, Bustamante A, Jimenez-Valdes R, González G, Sánchez-González A. Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity. Int J Med Microbiol 2020; 310:151451. [DOI: 10.1016/j.ijmm.2020.151451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
|
48
|
Hisert KB, Birkland TP, Schoenfelt KQ, Long ME, Grogan B, Carter S, Liles WC, McKone EF, Becker L, Manicone AM, Gharib SA. CFTR Modulator Therapy Enhances Peripheral Blood Monocyte Contributions to Immune Responses in People With Cystic Fibrosis. Front Pharmacol 2020; 11:1219. [PMID: 33013356 PMCID: PMC7461946 DOI: 10.3389/fphar.2020.01219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular targets for focused therapies. This therapeutic approach, however, requires a more detailed knowledge of CF monocyte cellular programming and phenotypes. Material and Methods In order to characterize the inflammatory phenotype of CF monocytes, and how these cells change after initiation of CFTR modulator therapy, we studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based analyses. Plasma concentrations of cytokines and chemokines were evaluated by multiplex ELISA. Results RNAseq identified approximately 50 monocyte genes for which basal expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of these, the majority were increased in expression post ivacaftor, including many genes traditionally associated with enhanced inflammation and immune responses. Pathway analyses confirmed that transcriptional programs were overwhelmingly up-regulated in monocytes after 7 days of ivacaftor, including biological modules associated with immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response. Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by monocytes and macrophages, and CCL2, a monocyte chemokine. Conclusions Our results demonstrate that ivacaftor causes acute changes in blood monocyte transcriptional profiles and plasma chemokines, and suggest that increased monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to changes in airway inflammation in people taking CFTR modulators. To our knowledge, this is the first report investigating the transcriptomic response of circulating blood monocytes in CF subjects treated with a CFTR modulator.
Collapse
Affiliation(s)
- Katherine B Hisert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, United States.,Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Timothy P Birkland
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kelly Q Schoenfelt
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Matthew E Long
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Brenda Grogan
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Suzanne Carter
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - W Conrad Liles
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edward F McKone
- Department of Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Anne M Manicone
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sina A Gharib
- Center for Lung Biology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
49
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
50
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|