1
|
Wang Y, Liu M, Gao Z, Hua C, Jiang J, Zheng Y, Dong Z, Cao Y, Choy KW, Zhu X, Kong X. Detection of genomic variants by genome sequencing in foetuses with central nervous system abnormalities. Ann Med 2024; 56:2399317. [PMID: 39239799 PMCID: PMC11382719 DOI: 10.1080/07853890.2024.2399317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Clinical validity of genome sequencing (GS) (>30×) has been preliminarily verified in the post-natal setting. This study is to investigate the potential utility of trio-GS as a prenatal test for diagnosis of central nervous system (CNS) anomalies. METHODS We performed trio-based GS on a prospective cohort of 17 foetuses with CNS abnormalities. Single nucleotide variation (SNV), small insertion and deletion (Indel), copy number variation (CNV), structural variant (SV), and regions with absence of heterozygosity (AOH) were analyzed and classified according to ACMG guidelines. RESULTS Trio-GS identified diagnostic findings in 29.4% (5/17) of foetuses, with pathogenic variants found in SON, L1CAM, KMT2D, and ASPM. Corpus callosum (CC) and cavum septum pellucidum (CSP) abnormalities were the most frequent CNS abnormalities (47.1%, 8/17) with a diagnostic yield of 50%. A total of 29.4% (5/17) foetuses had variants of uncertain significance (VUS). Particularly, maternal uniparental disomy 16 and a de novo mosaic 4p12p11 duplication were simultaneously detected in one foetus with abnormal sulcus development. In addition, parentally inherited chromosomal inversions were identified in two foetuses. CONCLUSION GS demonstrates its feasibility in providing genetic diagnosis for foetal CNS abnormalities and shows the potential to expand the application to foetuses with other ultrasound anomalies in prenatal diagnosis.
Collapse
Affiliation(s)
- Yanfei Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meimei Liu
- Prenatal Diagnosis Center, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Gao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiao Hua
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinna Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuting Zheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaofan Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fortin O, Mulkey SB, Fraser JL. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res 2024:10.1038/s41390-024-03343-9. [PMID: 38937640 DOI: 10.1038/s41390-024-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
Collapse
Affiliation(s)
- Olivier Fortin
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology and Rehabilitation Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jamie L Fraser
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Wang X, Zhang S, Wang J, Zhang S, Feng L, Wu Q. Follow-up outcome analysis of 324 cases of early-onset and late-onset mild fetal ventriculomegaly: a retrospective cohort study. Eur J Med Res 2024; 29:128. [PMID: 38365795 PMCID: PMC10870476 DOI: 10.1186/s40001-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Mild fetal ventriculomegaly (VM) is a nonspecific finding common to several pathologies with varying prognosis and is, therefore, a challenge in fetal consultation. We aimed to perform a constant, detailed analysis of prenatal findings and postnatal outcomes in fetuses with early-onset and late-onset mild ventriculomegaly, and provide a new evidence basis and new perspective for prenatal counseling. METHODS This is a retrospective cohort study of women with a diagnosis of mild fetal VM between January 2018 and October 2020. The population was divided into two groups according to the gestational ages (GAs) at initial diagnosis: the early-onset group (diagnosed at/before 24+6 weeks) and the late-onset group (diagnosed after 24+6 weeks). Clinical data and pregnancy outcomes were obtained from hospital records. The children's neurodevelopment status was assessed using the Ages and Stages Questionnaire, Third Edition (ASQ-3) and telephone interviews. RESULTS Our study cohort comprised 324 fetuses, out of which 94 (29%) were classified as early-onset group and 230 (71%) late-onset group. Early-onset group was more likely to have concurrent additional abnormalities, whereas in the late-onset group, isolated enlargement was more common (P = 0.01). Unilateral enlargement was more common in the late-onset group (P = 0.05), and symmetrical enlargement in the early-onset group (P < 0.01). In addition, early-onset mild VM cases were more likely to have intrauterine progression (P = 0.03), and many had a higher proportion of complex multisystem abnormalities. Compared with the late-onset group, the early-onset group was more often associated with congenital brain structure malformations. Approximately 11% of fetuses with mild VM had postnatal neurodevelopmental delay/disorders, and the risk was higher in the early-onset group (19.4% vs. 7.4%). Regression analysis showed that the GA at first diagnosis, non-isolated, and intrauterine progression significantly correlated with neurodevelopmental abnormalities. CONCLUSIONS Early-onset and late-onset mild VM had significantly different ultrasound features and outcomes. Early-onset mild VM may have more complex potential abnormalities and are more likely to predict poor prognosis than the late-onset.
Collapse
Affiliation(s)
- Xuemei Wang
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, People's Republic of China
- Ultrasound Department, The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, People's Republic of China
| | - Shanlong Zhang
- Ultrasound Department, The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, People's Republic of China
| | - Jingjing Wang
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, People's Republic of China
| | - Simin Zhang
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, People's Republic of China
| | - Li Feng
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, People's Republic of China
| | - Qingqing Wu
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, People's Republic of China.
| |
Collapse
|
4
|
Zhi Y, Liu L, Cui S, Li Y, Chen X, Che J, Han X, Zhao L. Pathogenic/likely pathogenic copy number variations and regions of homozygosity in fetal central nervous system malformations. Arch Gynecol Obstet 2023; 308:1723-1735. [PMID: 36464758 DOI: 10.1007/s00404-022-06866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore pathogenic/likely pathogenic copy number variations (P/LP CNVs) and regions of homozygosity (ROHs) in fetal central nervous system (CNS) malformations. METHODS A cohort of 539 fetuses with CNS malformations diagnosed by ultrasound/MRI was retrospectively analyzed between January 2016 and December 2019. All fetuses were analyzed by chromosomal microarray analysis (CMA). Three cases with ROHs detected by CMA were subjected to whole-exome sequencing (WES). The fetuses were divided into two groups according to whether they had other structural abnormalities. The CNS phenotypes of the two groups were further classified as simple (one type) or complicated (≥ 2 types). RESULTS (1) A total of 35 cases with P/LP CNVs were found. The incidence of P/LP CNVs was higher in the extra-CNS group [18.00% (9/50)] than in the isolated group [5.32% (26/489)] (P < 0.01), while there was no significant difference between the simpletype and complicated-type groups. (2) In the simple-type group, the three most common P/LP CNV phenotypes were holoprosencephaly, Dandy-Walker syndrome, and exencephaly. There were no P/LP CNVs associated with anencephaly, microcephaly, arachnoid cysts, ependymal cysts, or intracranial hemorrhage. (3) Only four cases with ROHs were found, and there were no cases of uniparental disomy or autosomal diseases. CONCLUSION The P/LP CNV detection rates varied significantly among the different phenotypes of CNS malformations, although simple CNS abnormalities may also be associated with genetic abnormalities.
Collapse
Affiliation(s)
- Yunxiao Zhi
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ling Liu
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shihong Cui
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ying Li
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiaolin Chen
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jia Che
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiao Han
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lanlan Zhao
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
5
|
Zhi Y, Liu L, Wang H, Chen X, Lv Y, Cui X, Chang H, Wang Y, Cui S. Prenatal exome sequencing analysis in fetuses with central nervous system anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:721-726. [PMID: 37204857 DOI: 10.1002/uog.26254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To evaluate the utility of prenatal exome sequencing (pES) in fetuses with central nervous system (CNS) abnormalities. METHODS This was a retrospective cohort study of fetuses identified to have CNS abnormality on prenatal ultrasound and/or magnetic resonance imaging. All fetuses were first analyzed by chromosomal microarray analysis (CMA). Fetuses with a confirmed aneuploidy or causal pathogenic copy-number variant (CNV) on CMA did not undergo pES analysis and were excluded, while those with a negative CMA result were offered pES testing. RESULTS Of the 167 pregnancies included in the study, 42 (25.1%) were identified to have a pathogenic or likely pathogenic (P/LP) variant. The diagnostic rate was significantly higher in fetuses with a non-isolated CNS abnormality than in those with a single CNS abnormality (35.7% (20/56) vs 14.5% (8/55); P = 0.010). Moreover, when a fetus had three or more CNS abnormalities, the positive diagnostic rate increased to 42.9%. A total of 25/42 (59.5%) cases had de-novo mutations, while, in the remaining cases, mutations were inherited and carried a significant risk of recurrence. Families whose fetus carried a P/LP mutation were more likely to choose advanced pregnancy termination than those with a variant of uncertain significance, secondary/incidental finding or negative pES result (83.3% (25/30) vs 41.3% (38/92); P < 0.001). CONCLUSION pES improved the identification of genetic disorders in fetuses with CNS anomalies without a chromosomal abnormality or CNV identified on CMA, regardless of the number of CNS anomalies and presence of extracranial abnormality. We also demonstrated that pES findings can significantly impact parental decision-making. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y Zhi
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L Liu
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - H Wang
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - X Chen
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Y Lv
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - X Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - H Chang
- Scientific Research Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Y Wang
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - S Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Yang Y, Zhao S, Sun G, Chen F, Zhang T, Song J, Yang W, Wang L, Zhan N, Yang X, Zhu X, Rao B, Yin Z, Zhou J, Yan H, Huang Y, Ye J, Huang H, Cheng C, Zhu S, Guo J, Xu X, Chen X. Genomic architecture of fetal central nervous system anomalies using whole-genome sequencing. NPJ Genom Med 2022; 7:31. [PMID: 35562572 PMCID: PMC9106651 DOI: 10.1038/s41525-022-00301-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Structural anomalies of the central nervous system (CNS) are one of the most common fetal anomalies found during prenatal imaging. However, the genomic architecture of prenatal imaging phenotypes has not yet been systematically studied in a large cohort. Patients diagnosed with fetal CNS anomalies were identified from medical records and images. Fetal samples were subjected to low-pass and deep whole-genome sequencing (WGS) for aneuploid, copy number variation (CNV), single-nucleotide variant (SNV, including insertions/deletions (indels)), and small CNV identification. The clinical significance of variants was interpreted based on a candidate gene list constructed from ultrasound phenotypes. In total, 162 fetuses with 11 common CNS anomalies were enrolled in this study. Primary diagnosis was achieved in 62 cases, with an overall diagnostic rate of 38.3%. Causative variants included 18 aneuploids, 17 CNVs, three small CNVs, and 24 SNVs. Among the 24 SNVs, 15 were novel mutations not reported previously. Furthermore, 29 key genes of diagnostic variants and critical genes of pathogenic CNVs were identified, including five recurrent genes: i.e., TUBA1A, KAT6B, CC2D2A, PDHA1, and NF1. Diagnostic variants were present in 34 (70.8%) out of 48 fetuses with both CNS and non-CNS malformations, and in 28 (24.6%) out of 114 fetuses with CNS anomalies only. Hypoplasia of the cerebellum (including the cerebellar vermis) and holoprosencephaly had the highest primary diagnosis yields (>70%), while only four (11.8%) out of 34 neural tube defects achieved genetic diagnosis. Compared with the control group, rare singleton loss-of-function variants (SLoFVs) were significantly accumulated in the patient cohort.
Collapse
Affiliation(s)
- Ying Yang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Sheng Zhao
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Guoqiang Sun
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Jieping Song
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Wenzhong Yang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiaohong Yang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Xia Zhu
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Bin Rao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Jing Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Jingyu Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hui Huang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Chen Cheng
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Guo
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xinlin Chen
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China.
| |
Collapse
|
7
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
8
|
Xie X, Wu X, Su L, Cai M, Li Y, Huang H, Xu L. Application of Single Nucleotide Polymorphism Microarray in Prenatal Diagnosis of Fetuses with Central Nervous System Abnormalities. Int J Gen Med 2021; 14:4239-4246. [PMID: 34393503 PMCID: PMC8354765 DOI: 10.2147/ijgm.s323899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background The current gold standard of karyotype analysis for prenatal diagnosis of fetuses with central nervous system (CNS) abnormalities has some limitations. Here, we assessed the value of single nucleotide polymorphism (SNP) arrays as a diagnostic tool. Methods The results of prenatal diagnosis of 344 fetuses with CNS abnormalities as determined by ultrasonographic screening were retrospectively analyzed. All fetuses underwent chromosomal karyotype analysis and genome-wide SNP array analysis simultaneously. The resultant rates and frequencies of genomic abnormalities were compared. Results Karyotype analysis found 45 (13.2%) abnormal CNS cases, while SNP array found 60 (17.4%) cases. SNP array detected 23 (6.7%) cases of submicroscopic abnormalities that karyotype analysis did not find. The detection rate of karyotype analysis was 8.1% in the group with isolated CNS anomalies, but 16.5% in the group with CNS abnormalities plus extra ultrasound anomalies. Detection rates of SNP array were 12.4% and 20.8% in these two groups, respectively. Statistical analysis showed that the detection rates of both methods were significantly higher in the group with CNS malformations and other ultrasound anomalies than in the group with isolated CNS anomalies. Abnormal chromosomes were detected most frequently in fetuses with holoprosencephaly. Conclusion Genome-wide SNP array technology can significantly improve the positive detection rate of fetuses with CNS abnormalities. Combining karyotype analysis and SNP array technology is recommended for detecting the development of fetuses with abnormal CNS.
Collapse
Affiliation(s)
- Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
9
|
Cai M, Huang H, Xu L, Lin N. Classifying and Evaluating Fetuses With Ventriculomegaly in Genetic Etiologic Studies. Front Genet 2021; 12:682707. [PMID: 34285689 PMCID: PMC8286336 DOI: 10.3389/fgene.2021.682707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The association between genetics and fetuses with ventriculomegaly (VM) is unknown. This study aimed to classify and evaluate abnormal copy number variations (CNVs) in fetuses with VM. From December 2016 to September 2020, amniotic fluid or umbilical cord blood from 293 pregnant women carrying fetuses with VM was extracted for single-nucleotide polymorphism microarray (SNP array). Among 293 fetuses with VM, 31 were detected with abnormal CNVs, including 22 with pathogenic CNVs (7.51%) and nine with variation of uncertain clinical significance (VUS) CNVs (3.07%). Of the 22 fetuses with pathogenic CNVs, 13 had known disease syndromes. Among the 293 fetuses, 133 had mild isolated VM [pathogenic CNVs, 7/133 (5.26%)]; 142 had mild non-isolated VM [pathogenic CNVs, 13/142 (9.15%)]; 12 had severe isolated VM [pathogenic CNVs, 2/12 (16.67%)]; and six had severe non-isolated VM (no abnormal CNVs was detected). There was no statistical significance in the rate of pathogenic CNVs among the four groups (P = 0.326, P > 0.05). Among the 267 fetuses with successful follow-up, 38 were terminated (of these, 21 had pathogenic CNVs). Of the 229 fetuses, two had developmental delay and the remaining 227 had a good prognosis after birth. Overall, the results are useful for the detection of fetal microdeletion/microduplication syndrome and for the accurate assessment of fetal prognosis in prenatal consultation.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
10
|
Greenbaum L, Maya I, Sagi-Dain L, Sukenik-Halevy R, Berkenstadt M, Yonath H, Rienstein S, Shalata A, Katorza E, Singer A. Chromosomal Microarray Analysis in Pregnancies With Corpus Callosum or Posterior Fossa Anomalies. Neurol Genet 2021; 7:e585. [PMID: 34079909 PMCID: PMC8163489 DOI: 10.1212/nxg.0000000000000585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 02/17/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We investigated the detection rate of clinically significant chromosomal microarray analysis (CMA) results in pregnancies with sonographic diagnosis of fetal corpus callosum anomalies (CCA) or posterior fossa anomalies (PFA). METHODS All CMA tests in pregnancies with CCA or PFA performed between January 2015 and June 2020 were retrospectively evaluated from the Israeli Ministry of Health database. The rate of CMA with clinically significant (pathogenic or likely pathogenic) findings was calculated and compared to a local Israeli cohort of 5,541 pregnancies with normal ultrasound. RESULTS One hundred eighty-two pregnancies were enrolled: 102 cases with CCA and 89 with PFA (9 cases had both). Clinically significant CMA results were found in 7/102 of CCA (6.9%) and in 7/89 of PFA (7.9%) cases. The CMA detection rate in pregnancies with isolated CCA (2/57, 3.5%) or PFA (2/50, 4.0%) was lower than in nonisolated cases, including additional CNS and/or extra-CNS sonographic anomalies (CCA-5/45, 11.1%; PFA-5/39, 12.8%), but this was not statistically significant. However, the rate among pregnancies that had extra-CNS anomalies, with or without additional CNS involvement (CCA-5/24, 20.8%; PFA-5/29, 17.2%), was significantly higher compared to all other cases (p = 0.0075 for CCA; p = 0.035 for PFA). Risk of CMA with clinically significant results for all and nonisolated CCA or PFA pregnancies was higher compared to the background risk reported in the control cohort (p < 0.001), but was not significant for isolated cases. CONCLUSIONS Our findings suggest that CMA testing is beneficial for the genetic workup of pregnancies with CCA or PFA, and is probably most informative when additional extra-CNS anomalies are observed.
Collapse
Affiliation(s)
- Lior Greenbaum
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Idit Maya
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Lena Sagi-Dain
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Rivka Sukenik-Halevy
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Michal Berkenstadt
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Hagith Yonath
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Shlomit Rienstein
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Adel Shalata
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Eldad Katorza
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Amihood Singer
- From the The Danek Gertner Institute of Human Genetics (L.G., M.B., H.Y., S.R.), Sheba Medical Center, Tel Hashomer; The Joseph Sagol Neuroscience Center (L.G.), Sheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine (L.G., I.M., R.S.-H., M.B., H.Y., E.K.), Tel Aviv University; Recanati Genetics Institute (I.M., R.S.-H.), Beilinson Hospital, Rabin Medical Center, Petach Tikva; Genetics Institute (L.S.-D.), Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa; Internal Medicine A (H.Y.), Sheba Medical Center, Tel Hashomer; The Simon Winter Institute for Human Genetics (A.S.), Bnai Zion Medical Center, Haifa; Department of Obstetrics and Gynecology (E.K.), Sheba Medical Center, Tel Hashomer; and Department of Community Genetics (A.S.), Public Health Services, Ministry of Health, Jerusalem, Israel.
| |
Collapse
|
11
|
Cai M, Huang H, Xu L, Lin N. Clinical Utility and the Yield of Single Nucleotide Polymorphism Array in Prenatal Diagnosis of Fetal Central Nervous System Abnormalities. Front Mol Biosci 2021; 8:666115. [PMID: 34084776 PMCID: PMC8167038 DOI: 10.3389/fmolb.2021.666115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Applying single nucleotide polymorphism (SNP) array to identify the etiology of fetal central nervous system (CNS) abnormality, and exploring its association with chromosomal abnormalities, copy number variations, and obstetrical outcome. 535 fetuses with CNS abnormalities were analyzed using karyotype analysis and SNP array. Among the 535 fetuses with CNS abnormalities, chromosomal abnormalities were detected in 36 (6.7%) of the fetuses, which were consistent with karyotype analysis. Further, additional 41 fetuses with abnormal copy number variations (CNVs) were detected using SNP array (the detection rate of additional abnormal CNVs was 7.7%). The rate of chromosomal abnormalities, but not that of pathogenic CNVs in CNS abnormalities with other ultrasound abnormalities was significantly higher than that in isolated CNS abnormalities. The rates of chromosomal abnormalities and pathogenic CNVs in fetuses with spine malformation (50%), encephalocele (50%), subependymal cyst (20%), and microcephaly (16.7%) were higher than those with other isolated CNS abnormalities. The pregnancies for 36 cases with chromosomal abnormalities, 18 cases with pathogenic CNVs, and three cases with VUS CNVs were terminated. SNP array should be used in the prenatal diagnosis of fetuses with CNS abnormalities, which can enable better prenatal assessment and genetic counseling, and affect obstetrical outcomes.
Collapse
Affiliation(s)
| | | | - Liangpu Xu
- Department of the Prenatal Diagnosis Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Department of the Prenatal Diagnosis Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
12
|
Huang RN, Chen JY, Pan H, Liu QQ. Correlation between mild fetal ventriculomegaly, chromosomal abnormalities, and copy number variations. J Matern Fetal Neonatal Med 2020; 35:4788-4796. [PMID: 33371747 DOI: 10.1080/14767058.2020.1863941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Lateral ventriculomegaly is the most common abnormality of the fetal nervous system. This study investigated the incidence of chromosomal abnormalities and copy number variations (CNVs) in fetuses with mild ventriculomegaly (MV) based on various ultrasonic manifestations, identifying their corresponding features via ultrasound examination. METHODS A retrospective analysis was performed on ultrasound and neurosonogram (NSG) manifestations and genetic profiles of 334 cases with MV and invasive prenatal diagnosis. RESULTS Three hundred thirty-four cases with fetal MV were assessed via karyotyping. Further chromosomal microarray analysis (CMA) was performed in 182 cases with normal chromosome karyotypes; pathogenic chromosomal copy number variations (CNVs) were found in eight cases with a prevalence of 4.4% (8/182). In this study, the incidence rate of pathogenic abnormalities of chromosomes and CNVs was 5.7% (19/334). Based on whether lateral ventriculomegaly was complicated with other ultrasonic features, the 334 patients were divided into two groups: (1) 175 cases exhibited isolated ventriculomegaly (IVM; 52.4%, 175/334 group A) including two (1.1%, 2/175) with pathogenic chromosomal karyotype abnormalities-both trisomy 21; (2) 159 cases exhibited non-isolated ventriculomegaly (N-IVM; 47.6%, 159/334) with pathogenic chromosomal abnormalities and CNVs detected in17 cases (10.7%, 17/159). The N-IVM group was further divided into two groups: 105 cases exhibited MV with undetermined ultrasonic abnormalities (31.4%, 105/334, group B) with pathogenic chromosomal abnormalities and CNVs detected in eight cases (7.6%, 8/105); 54 cases exhibited MV with structural malformations (16.2%, 54/334, group C) of which nine cases (16.7%, 9/54) presented both pathogenic chromosomal abnormalities and CNVs, and five cases (55.6%, 5/9) were diagnosed with various cortical malformations. The pathogenicity rates of the IVM and N-IVM groups were statistically different (χ 2=14.159, p = 0.000). There were significant differences (χ2=7.992, p = 0.005) among groups A, B, and C. CONCLUSIONS Combinations of various ultrasonic abnormalities significantly affect the risk of pathogenic chromosomal abnormalities and CNVs in fetuses with MV. Cases involving cortical malformations require particular attention to the occurrence of pathogenic genetic abnormalities. When fetal MV is detected, a comprehensive ultrasound examination focusing on undetermined ultrasonic abnormalities is critical. Fetal NSG should be conducted to detect potential cerebral cortical malformation easily missed by routine ultrasound.
Collapse
Affiliation(s)
- Rui-Na Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jun-Ya Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hong Pan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qian-Qi Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Wang J, Zhang Z, Li Q, Zhu H, Lai Y, Luo W, Liu S, Wang H, Hu T. Prenatal diagnosis of chromosomal aberrations by chromosomal microarray analysis in foetuses with ventriculomegaly. Sci Rep 2020; 10:20765. [PMID: 33247184 PMCID: PMC7699619 DOI: 10.1038/s41598-020-77400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
Ventriculomegaly is considered to be linked to abnormal neurodevelopment outcome. The aim of this retrospective study was to investigate the current applications of chromosomal microarray analysis (CMA) in foetuses with ventriculomegaly. A total of 548 foetuses with ventriculomegaly detected by prenatal ultrasound underwent single nucleotide polymorphism (SNP) array testing and were subjected to long-term follow-up. The overall prevalence of chromosomal aberrations was 7.30% (40/548), including 4.20% (23/548) with pathogenic/likely pathogenic copy number variants. The incidence of chromosomal aberrations was significantly higher in foetuses with bilateral ventriculomegaly than in those with unilateral ventriculomegaly (10.56% vs. 5.71%, P = 0.040), in foetuses with non-isolated ventriculomegaly than in those with isolated ventriculomegaly (12.99% vs. 2.38%, P < 0.0001), and in foetuses with severe ventriculomegaly than in those with mild-to-moderate ventriculomegaly (23.08% vs. 6.51%, P = 0.005). The outcome in foetuses with mild ventriculomegaly was significantly better than in those with moderate ventriculomegaly (95.60% vs. 84.00%, P = 0.003). Thus, CMA should be regarded as the first-tier test for prenatal diagnosis of foetal ventriculomegaly, especially in foetuses with bilateral or non-isolated ventriculomegaly. The outcome of foetuses with mild ventriculomegaly is favourable; however, there is an increased risk of neurodevelopmental disabilities in foetuses with moderate ventriculomegaly.
Collapse
Affiliation(s)
- Jiamin Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhu Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qinqin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hongmei Zhu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Lai
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Luo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
14
|
Douglas Wilson R, Van Mieghem T, Langlois S, Church P. Guideline No. 410: Prevention, Screening, Diagnosis, and Pregnancy Management for Fetal Neural Tube Defects. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 43:124-139.e8. [PMID: 33212246 DOI: 10.1016/j.jogc.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This revised guideline is intended to provide an update on the genetic aspects, prevention, screening, diagnosis, and management of fetal neural tube defects. TARGET POPULATION Women who are pregnant or may become pregnant. Neural tube defect screening should be offered to all pregnant women. OPTIONS For prevention: a folate-rich diet, and folic acid and vitamin B12 supplementation, with dosage depending on risk level. For screening: second-trimester anatomical sonography; first-trimester sonographic screening; maternal serum alpha fetoprotein; prenatal magnetic resonance imaging. For genetic testing: diagnostic amniocentesis with chromosomal microarray and amniotic fluid alpha fetoprotein and acetylcholinesterase; fetal exome sequencing. For pregnancy management: prenatal surgical repair; postnatal surgical repair; pregnancy termination with autopsy. For subsequent pregnancies: prevention and screening options and counselling. OUTCOMES The research on and implementation of fetal surgery for prenatally diagnosed myelomeningocele has added a significant treatment option to the previous options (postnatal repair or pregnancy termination), but this new option carries an increased risk of maternal morbidity. Significant improvements in health and quality of life, both for the mother and the infant, have been shown to result from the prevention, screening, diagnosis, and treatment of fetal neural tube defects. BENEFITS, HARMS, AND COSTS The benefits for patient autonomy and decision-making are provided in the guideline. Harms include an unexpected fetal diagnosis and the subsequent management decisions. Harm can also result if the patient declines routine sonographic scans or if counselling and access to care for neural tube defects are delayed. Cost analysis (personal, family, health care) is not within the scope of this clinical practice guideline. EVIDENCE A directed and focused literature review was conducted using the search terms spina bifida, neural tube defect, myelomeningocele, prenatal diagnosis, fetal surgery, neural tube defect prevention, neural tube defect screening, neural tube defect diagnosis, and neural tube defect management in order to update and revise this guideline. A peer review process was used for content validation and clarity, with appropriate ethical considerations. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix A (Tables A1 for definitions and A2 for interpretations of strong and weak recommendations). INTENDED AUDIENCE Maternity care professionals who provide any part of pre-conception, antenatal, delivery, and neonatal care. This guideline is also appropriate for patient education. RECOMMENDATIONS (GRADE RATINGS IN PARENTHESES).
Collapse
|
15
|
Douglas Wilson R, Van Mieghem T, Langlois S, Church P. Directive clinique n o 410 : Anomalies du tube neural : Prévention, dépistage, diagnostic et prise en charge de la grossesse. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 43:140-157.e8. [PMID: 33212245 DOI: 10.1016/j.jogc.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIF La présente directive clinique révisée vise à fournir une mise à jour sur les aspects génétiques, la prévention, le dépistage, le diagnostic et la prise en charge des anomalies du tube neural. POPULATION CIBLE Les femmes enceintes ou qui pourraient le devenir. Il convient d'offrir le dépistage des anomalies du tube neural à toutes les femmes enceintes. OPTIONS Pour la prévention : un régime alimentaire riche en acide folique et des suppléments d'acide folique et de vitamine B12 selon une posologie d'après le niveau de risque. Pour le dépistage : l'échographie obstétricale du deuxième trimestre, le dépistage échographique du premier trimestre, le dosage de l'alphafœtoprotéine sérique maternelle et l'imagerie par résonance magnétique prénatale. Pour les tests génétiques : l'amniocentèse diagnostique avec analyse chromosomique sur micropuce et le dosage de l'alphafœtoprotéine et de l'acétylcholinestérase dans le liquide amniotique et le séquençage de l'exome fœtal. Pour la prise en charge de la grossesse : la réparation chirurgicale prénatale, la réparation chirurgicale postnatale et l'interruption de grossesse avec autopsie. Pour les grossesses subséquentes : les options de prévention et de dépistage et les conseils. RéSULTATS: La recherche et la mise en œuvre du traitement chirurgical fœtal en cas de diagnostic prénatal de myéloméningocèle ont ajouté une option thérapeutique fœtale importante aux options précédentes (réparation postnatale ou interruption de grossesse), mais cette nouvelle option comporte un risque accru de morbidité maternelle. La prévention, le dépistage, le diagnostic et le traitement des anomalies du tube neural se révèlent entraîner des améliorations importantes à la mère et au nourrisson en matière de santé et de qualité de vie. BéNéFICES, RISQUES ET COûTS: Le type et l'ampleur des bénéfices, risques et coûts attendus pour les patientes grâce à la mise en œuvre de la présente directive clinique par un établissement de soins de santé intègrent un canal maternel préconception et prénatal adéquat comprenant l'accès des patientes aux soins, les conseils, les analyses et examens, l'imagerie, le diagnostic et l'interprétation. Les bénéfices relatifs à l'autonomie de la patiente et au processus décisionnel sont énoncés dans la présente directive clinique. Les risques comprennent un diagnostic fœtal inattendu et les décisions de prise en charge subséquentes. Le fait que la patiente refuse les échographies habituelles et le retard du conseil ou d'accès aux soins en cas d'anomalie du tube neural comportent également des risques. L'analyse des coûts (personnels, familiaux, santé publique) ne fait pas partie de la portée de la présente directive clinique. DONNéES PROBANTES: Afin de mettre à jour et réviser la présente directive, une revue de la littérature ciblée et dirigée a été effectuée à l'aide des termes de recherche suivants : spina bifida, neural tube defect, myelomeningocele, prenatal diagnosis, fetal surgery, neural tube defect prevention, neural tube defect screening, neural tube defect diagnosis et neural tube defect management. Un processus d'examen par les pairs a été utilisé pour la validation et la clarté du contenu, avec des considérations appropriées d'ordre éthique. MéTHODES DE VALIDATION: Les auteurs ont évalué la qualité des données probantes et la force des recommandations en utilisant l'approche d'évaluation, de développement et d'évaluation (GRADE). Consulter l'annexe A en ligne (le tableau A1 pour les définitions et le tableau A2 pour les interprétations des recommandations fortes et faibles). PROFESSIONNELS CONCERNéS: Professionnels des soins de maternité qui offrent des soins préconception, prénataux, obstétricaux ou néonataux. La présente directive clinique convient également aux fins d'éducation des patientes. RECOMMANDATIONS (CLASSEMENT GRADE ENTRE PARENTHèSES).
Collapse
|
16
|
Santirocco M, Plaja A, Rodó C, Valenzuela I, Arévalo S, Castells N, Abuli A, Tizzano E, Maiz N, Carreras E. Chromosomal microarray analysis in fetuses with central nervous system anomalies: An 8-year long observational study from a tertiary care university hospital. Prenat Diagn 2020; 41:123-135. [PMID: 32926442 DOI: 10.1002/pd.5829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To evaluate the prevalence of DNA copy number variants (CNVs) detected with array comparative genomic hybridization (CGH) in fetuses with central nervous system (CNS) anomalies. Secondary objectives were to describe the prevalence of CNV in specific CNS abnormalities, in isolated defects or associated with other malformations or fetal growth restriction (FGR). METHODS Observational cohort study in 238 fetuses with CNS anomalies in which an array-CGH had been performed between January 2009 and December 2017. Pathogenic CNV and variants of unknown significance (VUS) were reported. RESULTS Pathogenic CNVs were found in 16/238 cases (6.7%), VUS in 18/238 (7.6%), and normal result in 204/238 (85.7%) cases. Pathogenic CNVs were more frequent in posterior fossa anomalies (cerebellar hypoplasia 33%, megacisterna magna 20%), moderate ventriculomegaly (11%) and spina bifida (3.7%). Pathogenic CNVs and VUS were found in 7/182 (3.8%) and 14/182 (7.7%) cases of isolated anomalies, in 9/49 (18.4%) and 4/49 (8.2%) presenting another malformation, and in 0/7 and 0/7 cases with associated FGR (P = .001, P = .741, respectively). CONCLUSION These results provide strong evidence toward performing array in fetuses with CNS anomalies, particular in cases of posterior fossa anomalies. The prevalence of pathogenic CNVs is higher in association with other malformations.
Collapse
Affiliation(s)
- Maddalena Santirocco
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alberto Plaja
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Carlota Rodó
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Silvia Arévalo
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Castells
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Anna Abuli
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Eduardo Tizzano
- Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Nerea Maiz
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elena Carreras
- Maternal-Fetal Medicine Department, Obstetrics Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
17
|
Tan H, Xie Y, Chen F, Chen M, Yu L, Chen D, Chen J. Novel and recurrent variants identified in fetuses with central nervous system abnormalities by trios-medical exome sequencing. Clin Chim Acta 2020; 510:599-604. [PMID: 32798513 DOI: 10.1016/j.cca.2020.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal central nervous system abnormalities often associated with infant death or severe disability. The etiology in fetuses with CNS abnormalities who have normal karyotypes and copy number variants (CNVs) remains unclear, which increases the difficulty in following management and the assessment of prognosis. METHOD 11 unrelated fetuses with CNS abnormalities and their parents were enrolled. Genomic DNA was obtained and then trios-medical exome sequencing (trios-MES) including 4000 genes (fetuses and their parents) was performed after both karyotyping and chromosome microarray showed negative results. RESULTS Pathogenic and likely pathogenic variants were identified in five of 11 cases (5/11, 45.5%), including five novel mutations and two recurrent mutations in ISPD, L1CAM, and GRIN2B genes. Most cases (4/5, 80%) carried one or two recessive mutations, indicating a high recurrent risk. CONCLUSION Exome sequencing should be considered for fetuses with CNS abnormalities following negative results of karyotyping and chromosome array. Trios-MES as one of exome sequencing is a potential method for the diagnosis of these fetuses.
Collapse
Affiliation(s)
- Hu Tan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou 510150, China
| | - Yinong Xie
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Li Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou 510150, China.
| | - Jingsi Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China; Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou 510150, China.
| |
Collapse
|
18
|
Song T, Xu Y, Li Y, Jia L, Zheng J, Dang Y, Wan S, Zheng Y, Zhang J, Yang H. Detection of submicroscopic chromosomal aberrations by chromosomal microarray analysis for the prenatal diagnosis of central nervous system abnormalities. J Clin Lab Anal 2020; 34:e23434. [PMID: 32677110 PMCID: PMC7595926 DOI: 10.1002/jcla.23434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Central nervous system (CNS) abnormalities are a group of serious birth defects associated with high rates of stillbirths, infant death, or abnormal development, and various disease‐causing copy number variations play a much more important role in the etiology of CNS abnormalities. This study intends to present a retrospective study of the prenatal diagnosis and the pregnancy outcome of fetuses diagnosed with CNS abnormalities, and evaluate the clinical value of chromosomal microarray analysis (CMA) in prenatal diagnosis of CNS abnormalities. Methods A total of 356 fetuses with CNS abnormalities with or without other ultrasound abnormalities subjected to invasive prenatal diagnosis at the first affiliated hospital of Air Force Medical University from January 2015 to August 2018. All cases have performed both karyotyping and CMA concurrently, but 20 fetuses with chromosome aneuploidy were excluded in the current study. Results The CMA identified pathogenic copy number variants (pCNVs) in 27/336 (8.03%) fetuses, likely pCNVs in 8/336 (2.38%) fetuses, and variants of unknown significance (VOUS) in 11/336 (3.27%) fetuses. A total of 222 cases had single CNS abnormalities and the pCNVs detection rate was 5.86% (13/222), the remaining 114 cases including CNS abnormalities plus other structural abnormalities, ultrasonographic soft markers and two or more CNS abnormalities, the pCNVs detection rate was 12.3% (14/114). Conclusions Fetuses with CNS abnormalities have a higher risk of chromosomal abnormalities, our study showed that CNVs play an important role in the etiology of CNS abnormalities. The application of CMA could increase the detection rate of pCNVs causing CNS abnormalities.
Collapse
Affiliation(s)
- Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yinghui Dang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shanning Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yunyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Chang Q, Yang Y, Peng Y, Liu S, Li L, Deng X, Yang M, Lan Y. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with ventriculomegaly. Eur J Paediatr Neurol 2020; 25:106-112. [PMID: 32014392 DOI: 10.1016/j.ejpn.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To systematically investigate chromosomal abnormalities and copy number variants (CNVs) in fetuses with different types of ventriculomegaly (VM) by karyotyping and/or chromosomal microarray analysis (CMA). METHODS This retrospective study included 312 fetuses diagnosed with VM. Amniotic fluid and umbilical blood samples were collected by amniocentesis and cordocentesis, respectively, and subjected to karyotyping and/or CMA. Subgroup analysis by VM type, including mild VM (MVM) and severe VM (SVM), unilateral and bilateral VM, isolated VM (IVM), and non-isolated VM (NIVM), was performed. RESULTS The detection rate of chromosomal abnormalities was 12.1% (34/281) by karyotyping and 20.6% when CMA was additionally performed (P < 0.05). Abnormalities were identified by CMA in 17.4% (38/218) of fetuses and pathogenic CNVs in 5.0% (11/218). Notably, CMA detected CNVs in 10.6% (23/218) of fetuses with normal karyotypes. The incidence of chromosomal abnormalities by karyotyping was higher in bilateral than in unilateral VM (20.5% versus 6.5%), whereas the incidence detected by CMA was higher in NIVM than in IVM (21.4% versus 10.3%; both P < 0.05). In NIVM, CMA provided an additional detection rate of 11.4% (16/140) and a detection rate of 10.0% for pathogenic CNVs and aneuploidies. Central nervous system (CNS) abnormalities were the most common other ultrasonic abnormalities. CONCLUSIONS CMA is highly recommended for prenatal diagnosis of fetal VM together with karyotyping, especially in fetuses with bilateral VM and NIVM with abnormal CNS findings. Further study is necessary to explore the relationships between genotypes and phenotypes to facilitate prenatal diagnosis of fetal VM.
Collapse
Affiliation(s)
- Qingxian Chang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yanping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixian Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siping Liu
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyan Li
- Technology Center of Prenatal Diagnosis and Genetic Diseases Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xujie Deng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Lan
- Department of Obstetrics and Gynecology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Tonni G, Palmisano M, Perez Zamarian AC, Rabachini Caetano AC, Santana EFM, Peixoto AB, Armbruster-Moraes E, Ruano R, Araujo Júnior E. Phenotype to genotype characterization by array-comparative genomic hydridization (a-CGH) in case of fetal malformations: A systematic review. Taiwan J Obstet Gynecol 2019; 58:15-28. [PMID: 30638470 DOI: 10.1016/j.tjog.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of the current review is to report a-CGH abnormalities identified in fetuses with prenatally diagnosed fetal malformations in whom a normal karyotype was diagnosed with conventional cytogenetic analysis. A systematic electronic search of databases (PubMed/Medline, EMBASE/SCOPUS) has been conducted from inception to May, 2017. Bibliographic analysis has been performed according to PRISMA statement for review. The following keywords were used: 'array-CGH' and 'fetal malformations" and "prenatal diagnosis"; alternatively, "microarray", "oligonucleotide array", "molecular biology", "antenatal diagnostics", "fetal diagnostics", "congenital malformations" and "ultrasound" were used to capture both "a-CGH" and "prenatal". One-hundred and twelve fetuses with prenatally diagnosed fetal malformations with normal karyotyping and a-CGH abnormalities detected are described. Single or multiple microarray abnormalities diagnosed have been classified in relation to different organ/system affected. The most frequent a-CGH abnormalities were detected in cases of congenital heart diseases (CDHs), multiple malformations and central nervous system (CNS) malformations. Maternal or paternal carrier-state was seen in 19.64% (22/112), of cases while the number of reported de novo mutations accounted for 46.42% (52/112) of all CNVs microarray abnormalities. Array-comparative genomic hydridization (a-CGH) may become an integral and complemantary genetic testing when fetal malformations are detected prenatally in fetuses with normal cytogenetic karyotype. In addition, a-CGH enables the identification of CNVs and VOUS and improves the calculation of recurrent risk and the genetic counseling.
Collapse
Affiliation(s)
- Gabriele Tonni
- Prenatal Diagnostic Service, Department of Obstetrics and Gynecology, Istituto di Ricerca a Carattere Clinico Scientifico (IRCCS) AUSL Reggio Emilia, Italy.
| | - Marcella Palmisano
- Prenatal Diagnostic Service, Department of Obstetrics and Gynecology, Istituto di Ricerca a Carattere Clinico Scientifico (IRCCS) AUSL Reggio Emilia, Italy
| | - Ana Cristina Perez Zamarian
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Ana Carolina Rabachini Caetano
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Eduardo Félix Martins Santana
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Alberto Borges Peixoto
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| | - Edecio Armbruster-Moraes
- Discipline of Genetics, Faculty of Medicine of ABC (FMABC), Santo André-SP, Brazil; Department of Gynecology and Obstetrics, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo-SP, Brazil
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Ventriculomegaly is one of the most common abnormal sonographic findings, which is associated with congenital infection, chromosomal and additional structural abnormalities. Currently, karyotype analysis is the primary method to detect chromosomal abnormalities in fetuses with ventriculomegaly. Recently, with the introduction of chromosomal microarray analysis (CMA) in prenatal diagnosis, copy number variations (CNVs) have been identified in cases of ventriculomegaly. The purpose of this review is to summarize the current knowledge about the genetic cause of fetal ventriculomegaly, with particular attention to primary articles regarding the association between CNVs and fetal ventriculomegaly. RECENT FINDINGS Recent studies have disclosed that in addition to numerical chromosomal abnormalities and large chromosomal imbalances, pathogenic CNVs are another important genetic cause of fetal ventriculomegaly, which may be involved in the pathological process of fetal ventriculomegaly as well as postnatal neurodevelopmental disorders. Furthermore, it is reported that the incidences of pathogenic CNVs in fetuses with ventriculomegaly were associated with the presence of other structural anomalies, but were irrelevant to the severity of ventriculomegaly. SUMMARY CNVs are an important cause of fetal ventriculomegaly and CMA should be offered to all fetuses with ventriculomegaly, regardless of the degree of ventriculomegaly or whether combined with other structural anomalies.
Collapse
|
22
|
Song T, Wan S, Li Y, Xu Y, Dang Y, Zheng Y, Li C, Zheng J, Chen B, Zhang J. Detection of copy number variants using chromosomal microarray analysis for the prenatal diagnosis of congenital heart defects with normal karyotype. J Clin Lab Anal 2018; 33:e22630. [PMID: 30047171 DOI: 10.1002/jcla.22630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND With the increasing availability of chromosomal microarray analysis (CMA) for congenital heart defect (CHD), genetic testing now faces new challenges due to results with uncertain clinical impact. Studies are needed to better define the penetrance of genetic variants. The aim of the study was to examine the association between CMA and CHDs in fetuses with normal karyotype. METHODS This was a retrospective study of 190 fetuses with normal karyotype that underwent CMA after a diagnosis of CHD by fetal ultrasound. Invasive prenatal diagnosis was performed between January 2015 and December 2016 at the first affiliated hospital of Air Force Medical University. RESULTS Chromosomal microarray analysis detected pathogenic copy number variants (pCNVs) in 13/190 (6.84%) fetuses, likely pCNVs in 5/190 (2.63%), and variants of unknown significance (VOUS) in 14/190 (7.37%). Among those with pCNVs, none (0%) yielded a normal live birth. Among those with likely pCNVs, 2/5 (40.0%) yielded a live birth. Among the fetuses with VOUS, 10/14 (71.5%) yielded a live birth. CONCLUSION These results highlight the usefulness of CMA for prenatal genetic diagnosis of fetuses with CHDs and normal karyotype. In fetuses with CHD, the application of CMA could increase the detection rate of pCNVs causing CHDs. In this study, some VOUS were likely pathogenic, but additional studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Tingting Song
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Shanning Wan
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yu Li
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yinghui Dang
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yunyun Zheng
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Chunyan Li
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
23
|
Wang H, Chau MHK, Cao Y, Kwok KY, Choy KW. Chromosome copy number variants in fetuses with syndromic malformations. Birth Defects Res 2018; 109:725-733. [PMID: 28568742 DOI: 10.1002/bdr2.1054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosome copy number variants (CNVs; gains and losses of DNA sequences >1 kb) are wide-spread throughout the genome of healthy individuals. Laboratory studies show that a subset of CNVs are pathogenic, and not only can be responsible for the pathogenesis of major birth defects and cancer, but are also associated with neurodevelopmental disorders at birth. The characteristics of the pathogenic microdeletions and microduplications are important for both clinical implications and genetic counselling regarding test selection for prenatal screening and diagnosis. Unfortunately, our knowledge of the phenotypic effects of most CNV is still minimal, leading to the classification of many CNVs as "genomic imbalances of unknown clinical significance". Microdeletions and microduplications can occur in all pregnancies and the spectrum of pathogenic CNVs in fetuses with syndromic malformations is not well studied. This review summarizes our current understanding of CNVs, the common detection methods, and the characteristics of pathogenic CNVs identified in fetuses with syndromic malformations. Birth Defects Research 109:725-733, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Yin Kwok
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Conventional Chromosome Analysis of Fetuses with Central Nervous System Anomalies and Associated Anomalies: Is Anything Changed? Med Sci (Basel) 2018; 6:medsci6010010. [PMID: 29415437 PMCID: PMC5872167 DOI: 10.3390/medsci6010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) abnormalities are often isolated but can accompany various genetic syndromes. In this study, we evaluated conventional karyotype results and associated findings of fetuses that were diagnosed with CNS abnormalities. Cases included in the study were diagnosed with fetal CNS anomalies and underwent conventional karyotyping. Conventional karyotype results of subjects were compared with karyotype results of fetal karyotyped patients as a result of maternal anxiety in a two-year period. In this period, 69 patients were diagnosed with fetal CNS anomalies and 64 of them underwent invasive fetal karyotyping. Of these, 32 patients had isolated CNS anomalies, while 32 were associated with other anomalies. There was no significant difference between karyotype results when compared with the control group (p = 0.76). Apart from some specific anomalies, the aneuploidy rate does not significantly differ between fetuses with CNS anomalies and the control group. Advanced genetic evaluation may provide additional diagnostic benefits, especially for this group.
Collapse
|
25
|
Zou Z, Huang L, Lin S, He Z, Zhu H, Zhang Y, Fang Q, Luo Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat Diagn 2018; 38:91-98. [PMID: 29171036 DOI: 10.1002/pd.5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the relationship between copy number variations (CNVs) detected by high-resolution chromosomal microarray analysis (CMA) and the type of prenatal posterior fossa anomalies (PFAs), especially cerebellar hypoplasia (CH). METHODS This study involved 77 pregnancies with PFAs who underwent CMA. RESULTS Chromosomal aberrations including pathogenic CNVs and variants of unknown significance were detected in 31.2% (24/77) of all cases by CMA and in 18.5% (12/65) in fetuses with normal karyotypes. The high detection rate of clinically significant CNVs was evident in fetuses with cerebellar hypoplasia (54.6%, 6/11), vermis hypoplasia (33.3%, 1/3), and Dandy-Walker malformation (25.0%, 3/12). Compare with fetuses without other anomalies, cases with CH and additional malformations had the higher CMA detection rate (33.3% vs 88.9%). Three cases of isolated unilateral CH with intact vermis and normal CMA result had normal outcomes. The deletion of 5p15, 6q terminal deletion, and X chromosome aberrations were the most frequent genetic defects associated with cerebellar hypoplasia. CONCLUSION Among fetuses with PFA, those with cerebellar hypoplasia, vermis hypoplasia, or Dandy-Walker malformation are at the highest risk of clinically significant CNVs. Chromosomal microarray analysis revealed the most frequent chromosomal aberrations associated with CH.
Collapse
Affiliation(s)
- Zhiyong Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Li X, Liu Y, Yue S, Wang L, Zhang T, Guo C, Hu W, Kagan KO, Wu Q. Uniparental disomy and prenatal phenotype: Two case reports and review. Medicine (Baltimore) 2017; 96:e8474. [PMID: 29137034 PMCID: PMC5690727 DOI: 10.1097/md.0000000000008474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. PATIENT CONCERNS We report prenatal phenotypes of 2 rare cases of UPD. DIAGNOSES The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. INTERVENTIONS Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. OUTCOMES The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. LESSONS UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.
Collapse
Affiliation(s)
| | - Yan Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | - Karl-Oliver Kagan
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
27
|
Snoek R, Albers MEWA, Mulder EJH, Lichtenbelt KD, de Vries LS, Nikkels PGJ, Cuppen I, Pistorius LR, Manten GTR, de Heus R. Accuracy of diagnosis and counseling of fetal brain anomalies prior to 24 weeks of gestational age. J Matern Fetal Neonatal Med 2017; 31:2188-2194. [DOI: 10.1080/14767058.2017.1338258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rozemarijn Snoek
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Eduard J. H. Mulder
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klaske D. Lichtenbelt
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda S. de Vries
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter G. J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lourens R. Pistorius
- Department of Obstetrics and Gynecology, Tygerberg Hospital, Cape Town, South-Africa
- Department of Medicine, University of Stellenbosch, Stellenbosch, South-Africa
| | | | - Roel de Heus
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Oneda B, Rauch A. Microarrays in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 2017; 42:53-63. [PMID: 28215395 DOI: 10.1016/j.bpobgyn.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
In prenatal diagnosis, chromosomal microarray (CMA) has not yet fully replaced conventional karyotyping but has rapidly become the recommended test in pregnancies with ultrasound abnormalities. In this review, we provide an overview of the published data concerning this technology and the controversies concerning its use in the prenatal setting. There is abundant evidence indicating the added detection of pathogenic abnormalities with CMA in comparison to the traditional karyotyping, especially in fetuses with multiple or isolated ultrasound abnormalities such as congenital heart disease, increased nuchal translucency, or oral cleft. On the other hand, there is also a risk to detect variants of unknown significance, late-onset disorders, and variants in susceptibility loci. However, it has been shown that pregnant couples tend to prefer a maximum of information about the health of their unborn child. Taken together, CMA has considerable diagnostic and prognostic values during pregnancy and should therefore be the test of choice.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland.
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Sun L, Wu Q, Pei Y, Li J, Ye J, Zhi W, Liu Y, Zhang P. Prenatal diagnosis and genetic discoveries of an intracranial mixed neuronal-glial tumor: A case report and literature review. Medicine (Baltimore) 2016; 95:e5378. [PMID: 27828868 PMCID: PMC5106074 DOI: 10.1097/md.0000000000005378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Congenital intracranial tumors as a group are quite rare, representing only 0.5% to 1.5% of all pediatric brain neoplasms. CASE REPORT We reported a case of congenital mixed neuronal-glial tumor detected by ultrasound at 30 weeks of gestation. It showed that the tumor was 2.5 × 2.3 × 2.1 cm in size, located in the sellar region, regular shape, and slightly heterogeneous solid mass with a little cystic component. No color flow was present inside the tumor, but the peripheral encirclement by arterial circle of Willis. No other associated malformations were detected. Prenatal magnetic resonance imaging (MRI) which was taken subsequently confirmed the result of ultrasound and provided more detailed information such as fetal brain dysplasia.The fetal chromosomal karyotype analysis is normal. Single-nucleotide polymorphism (SNP)-based chromosomal microarray analysis (CMA) detected a 0.72-Mb duplication at 4q35.2 in fetus which was associated with epilepsy and cardiac anomalies. It also revealed a 0.13-Mb deletion at 6q26 located in PARK2 gene, and the mutation of the gene is known to be related to autosomal recessive juvenile Parkinson disease.The parents chose termination of pregnancy (TOP). The histological examination showed a mixed neuronal-glial tumor. CONCLUSION Prenatal detection of mixed neuronal-glial tumor is very rare. Ultrasound is of critical importance to detect the intracranial tumors, and MRI can give us some detailed information about the tumors. However, the precise histologic type was depended on the pathological examination. CMA should be necessary for the fetuses with congenital intracranial tumors, especially when the fetal chromosomal karyotype analysis is normal.
Collapse
Affiliation(s)
- Lijuan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University
| | - Yan Pei
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University
| | - Jinghua Li
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University
| | - Jintang Ye
- Department of Radiology, Peking University First Hospital
| | | | - Yan Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Puqing Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University
| |
Collapse
|