1
|
Wang Y, Huang M, Zhou X, Li H, Ma X, Sun C. Potential of natural flavonoids to target breast cancer angiogenesis (review). Br J Pharmacol 2025; 182:2235-2258. [PMID: 37940117 DOI: 10.1111/bph.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaoran Ma
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
2
|
Charbit H, Lavon I. Investigating Expression Dynamics of miR-21 and miR-10b in Glioblastoma Cells In Vitro: Insights into Responses to Hypoxia and Secretion Mechanisms. Int J Mol Sci 2024; 25:7984. [PMID: 39063226 PMCID: PMC11277016 DOI: 10.3390/ijms25147984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma poses significant challenges in oncology, with bevacizumab showing promise as an antiangiogenic treatment but with limited efficacy. microRNAs (miRNAs) 10b and 21 have emerged as potential biomarkers for bevacizumab response in glioblastoma patients. This study delves into the expression dynamics of miR-21 and miR-10b in response to hypoxia and explores their circulation mechanisms. In vitro experiments exposed glioma cells (A172, U87MG, U251) and human umbilical vein endothelial cells (HUVEC) to hypoxic conditions (1% oxygen) for 24 h, revealing heightened levels of miR-10b and miR-21 in glioblastoma cells. Manipulating miR-10b expression in U87MG, demonstrating a significant decrease in VEGF alpha (VEGFA) following miR-10b overexpression under hypoxic conditions. Size exclusion chromatography illustrated a notable shift towards miR-21 and miR-10b exosomal packaging during hypoxia. A proposed model suggests that effective bevacizumab treatment reduces VEGFA levels, heightening hypoxia and subsequently upregulating miR-21 and miR-10b expression. These miRNAs, released via exosomes, might impact various cellular processes, with miR-10b notably contributing to VEGFA level reduction. However, post-treatment increases in miR-10b and miR-21 could potentially restore cells to normoxic conditions through the downregulation of VEGF. This study highlights the intricate feedback loop involving miR-10b, miR-21, and VEGFA in glioblastoma treatment, underscoring the necessity for personalized therapeutic strategies. Further research should explore clinical implications for personalized glioma treatments.
Collapse
Affiliation(s)
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
3
|
Wei Q, Zhang YH. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024; 29:1570. [PMID: 38611849 PMCID: PMC11013936 DOI: 10.3390/molecules29071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/β-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.
Collapse
Affiliation(s)
- Qiang Wei
- School of Medicine, Anhui Xinhua University, 555 Wangjiang West Road, Hefei 230088, China;
| | | |
Collapse
|
4
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Salvermoser L, Goldberg SN, Laville F, Markezana A, Stechele M, Ahmed M, Wildgruber M, Kazmierczak PM, Alunni-Fabbroni M, Galun E, Ricke J, Paldor M. Radiofrequency Ablation-Induced Tumor Growth Is Suppressed by MicroRNA-21 Inhibition in Murine Models of Intrahepatic Colorectal Carcinoma. J Vasc Interv Radiol 2023; 34:1785-1793.e2. [PMID: 37348786 DOI: 10.1016/j.jvir.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE To investigate the role of microRNA-21 (miR21) in radiofrequency (RF) ablation-induced tumor growth and whether miR21 inhibition suppresses tumorigenesis. MATERIAL AND METHODS Standardized liver RF ablation was applied to 35 C57/BL6 mice. miR21 and target proteins pSTAT3, PDCD4, and PTEN were assayed 3 hours, 24 hours, and 3 days after ablation. Next, 53 Balb/c and 44 C57BL/6 mice received Antago-miR21 or scrambled Antago-nc control, followed by intrasplenic injection of 10,000 CT26 or MC38 colorectal tumor cells, respectively. Hepatic RF ablation or sham ablation was performed 24 hours later. Metastases were quantified and tumor microvascular density (MVD) and cellular proliferation were assessed at 14 or 21 days after the procedures, respectively. RESULTS RF ablation significantly increased miR21 levels in plasma and hepatic tissue at 3 and 24 hours as well as target proteins at 3 days after ablation (P < .05, all comparisons). RF ablation nearly doubled tumor growth (CT26, 2.0 SD ± 1.0 fold change [fc]; MC38, 1.9 SD ± 0.9 fc) and increased MVD (CT26, 1.9 SD ± 1.0 fc; MC38, 1.5 ± 0.5 fc) and cellular proliferation (CT26, 1.7 SD ± 0.7 fc; MC38, 1.4 SD ± 0.5 fc) compared with sham ablation (P < .05, all comparisons). RF ablation-induced tumor growth was suppressed when Antago-miR21 was administered (CT26, 1.0 SD ± 0.7 fc; MC38, 0.9 SD ± 0.4 fc) (P < .01, both comparisons). Likewise, Antago-miR21 decreased MVD (CT26, 1.0 SD ± 0.3 fc; MC38, 1.0 SD ± 0.2 fc) and cellular proliferation (CT26, 0.9 SD ± 0.3 fc; MC38, 0.8 SD ± 0.3 fc) compared with baseline (P < .05, all comparisons). CONCLUSIONS RF ablation upregulates protumorigenic miR21, which subsequently influences downstream tumor-promoting protein pathways. This effect can potentially be suppressed by specific inhibition of miR21, rendering this microRNA a pivotal and targetable driver of tumorigenesis after hepatic thermal ablation.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts; Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Flinn Laville
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Aurelia Markezana
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Muneeb Ahmed
- Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Mor Paldor
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
7
|
Wang J, Guo X, Jiang R, He J, Zhao T, Peng Y, Zheng Y. Research progress in the prevention and treatment of liver fibrosis in Chinese medicine based on miRNAs molecular regulation of angiogenesis. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 4:100151. [DOI: 10.1016/j.prmcm.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
8
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
9
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Lan YL, Zhu Y, Chen G, Zhang J. The Promoting Effect of Traumatic Brain Injury on the Incidence and Progression of Glioma: A Review of Clinical and Experimental Research. J Inflamm Res 2021; 14:3707-3720. [PMID: 34377008 PMCID: PMC8350857 DOI: 10.2147/jir.s325678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The role of traumatic brain injury in the development of glioma is highly controversial since first presented. This is not unexpected because traumatic brain injuries are overwhelmingly more common than glioma. However, the causes of post-traumatic glioma have been long discussed and still warrant further research. In this review, we have presented an overview of previous cohort studies and case–control studies. We have summarized the roles of microglial cells, macrophages, astrocytes, and stem cells in post-traumatic glioma formation and development, and reviewed various carcinogenic factors involved during traumatic brain injury, especially those reported in experimental studies indicating a relationship with glioma progression. Besides, traumatic brain injury and glioma share several common pathways, including inflammation and oxidative stress; however, the exact mechanism underlying this co-occurrence is yet to be discovered. In this review, we have summarized current epidemiological studies, clinical reports, pathophysiological research, as well as investigations evaluating the probable causes of co-occurrence and treatment possibilities. More efforts should be directed toward elucidating the relationship between traumatic brain injury and glioma, which could likely lead to promising pharmacological interventions towards designing therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|
12
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, Zafar S, Adnan M, Khan AH, Selamoglu Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci 2020; 250:117591. [PMID: 32224026 DOI: 10.1016/j.lfs.2020.117591] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022]
Abstract
Nature's pharmacy has undoubtedly served humans as an affordable and safer health-care regime for a long times. Cardamonin, a chalconoid present in several plants has been known for a longtime to have beneficial properties towards human health. In this review, we aimed to highlight the recent advances achieved in discovering the pharmacological properties of cardamonin. Cardamonin is cardamom-derived chalcone, which plays a role in cancer treatment, immune system modulation, inflammation and pathogens killing. Through the modulation of cellular signaling pathways, cardamonin activates cell death signal to induce apoptosis in malignant cells that results in the inhibition of cancer development. Moreover, cardamonin arrests cell cycle by altering the expression of regulatory proteins during malignant cells division. Due to its relatively selective cytotoxic potential against host malignant cells, cardamonin is emerging as a promising novel experimental anticancer agent. The potential of cardamonin to target various signaling molecules, transcriptional factors, cytokines and enzymes, such as mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2 enhances the opportunity to explore it as a new multi-target therapeutic agent. The pharmacokinetic and biosafety profile of cardamonin favor it as a potentially safe biomolecule for pharmaceutical drug development.
Collapse
Affiliation(s)
- Javaria Nawaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan.
| | - Ghulam Hussain
- Neurochemical biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saba Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdul Haleem Khan
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| |
Collapse
|
14
|
Varghese E, Liskova A, Kubatka P, Samuel SM, Büsselberg D. Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression. Biomolecules 2020; 10:biom10020191. [PMID: 32012744 PMCID: PMC7072640 DOI: 10.3390/biom10020191] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Several phytochemicals have been identified for their role in modifying miRNA regulating tumor progression. miRNAs modulate the expression of several oncogenes and tumor suppressor genes including the genes that regulate tumor angiogenesis. Hypoxia inducible factor-1 alpha (HIF-1α) signaling is a central axis that activates oncogenic signaling and acts as a metabolic switch in endothelial cell (EC) driven tumor angiogenesis. Tumor angiogenesis driven by metabolic reprogramming of EC is crucial for tumor progression and metastasis in many different cancers, including breast cancers, and has been linked to aberrant miRNA expression profiles. In the current article, we identify different miRNAs that regulate tumor angiogenesis in the context of oncogenic signaling and metabolic reprogramming in ECs and review how selected phytochemicals could modulate miRNA levels to induce an anti-angiogenic action in breast cancer. Studies involving genistein, epigallocatechin gallate (EGCG) and resveratrol demonstrate the regulation of miRNA-21, miRNA-221/222 and miRNA-27, which are prognostic markers in triple negative breast cancers (TNBCs). Modulating the metabolic pathway is a novel strategy for controlling tumor angiogenesis and tumor growth. Cardamonin, curcumin and resveratrol exhibit their anti-angiogenic property by targeting the miRNAs that regulate EC metabolism. Here we suggest that using phytochemicals to target miRNAs, which in turn suppresses tumor angiogenesis, should have the potential to inhibit tumor growth, progression, invasion and metastasis and may be developed into an effective therapeutic strategy for the treatment of many different cancers where tumor angiogenesis plays a significant role in tumor growth and progression.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
- Correspondence: ; Tel.: +974-4492-8334; Fax: +974-4492-8333
| |
Collapse
|
15
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
16
|
Hou S, Yuan Q, Yu N, Liu B, Huang G, Yuan X. Cardamonin attenuates chronic inflammation and tumorigenesis in colon. Cell Cycle 2019; 18:3275-3287. [PMID: 31570032 DOI: 10.1080/15384101.2019.1673620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardamonin (CAD) is a member of the aromatic ketones family that is closely related to anti-bacterial, anti-inflammatory and anti-cancer effects. Nevertheless, the physiological function of cardamonin in chronic colitis and colon cancer has not been well verified. We found that cardamonin treatment alleviates intestinal disease, including recurring colitis and colitis-associated tumorigenesis, along with the reduced secretion of IL-1β and TNF-α. Further, cardamonin inhibits cell viability and inflammation factors of colorectal cancer cells in vitro. In tumor cells, the inhibitory effect of cardamonin on cell proliferation is closely related to decreased phosphorylation of signal transducers and activators of transcription (STAT) signals. This study reveals the crucial role of cardamonin in sustaining gastrointestinal homeostasis and offers a new strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Shasha Hou
- The College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China.,The College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Na Yu
- College of Clinical Medicine, Shandong University, Shandong Xinchuang Biotechnology Co., Ltd, Shandong, China
| | - Bin Liu
- Department of Neurosurgery, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong, China
| | - Gai Huang
- Department of Nursing, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong, China
| | - Xiaxia Yuan
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| |
Collapse
|
17
|
Wang L, Jia Q, Xinnong C, Xie Y, Yang Y, Zhang A, Liu R, Zhuo Y, Zhang J. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. J Cell Mol Med 2019; 23:7124-7131. [PMID: 31557390 PMCID: PMC6815838 DOI: 10.1111/jcmm.14562] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac progenitor cells are considered to be one of the most promising stem cells for heart regeneration and repair. The cardiac protective effect of CPCs is mainly achieved by reducing tissue damage and/or promoting tissue repair through a paracrine mechanism. Exosome is a factor that plays a major role in the paracrine effect of CPCs. By delivering microRNAs to target cells and regulating their functions, exosomes have shown significant beneficial effects in slowing down cardiac injury and promoting cardiac repair. Among them, miRNA-210 is an important anoxic-related miRNA derived from CPCs exosomes, which has great cardiac protective effect of inhibiting myocardial cell apoptosis, promoting angiogenesis and improving cardiac function. In addition, circulating miR-210 may be a useful biomarker for the prediction or diagnosis of related cardiovascular diseases. In this review, we briefly reviewed the mechanism of miR-210 derived from CPCs exosomes in cardiac protection in recent years.
Collapse
Affiliation(s)
- Lirong Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiujin Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Xinnong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqian Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Department of Epidemiology, College of Global Public Health, New York University, New York, NY, USA
| | - Runteng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Total Flavonoids from Carya cathayensis Sarg. Leaves Alleviate H9c2 Cells Hypoxia/Reoxygenation Injury via Effects on miR-21 Expression, PTEN/Akt, and the Bcl-2/Bax Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8617314. [PMID: 30622615 PMCID: PMC6304542 DOI: 10.1155/2018/8617314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/29/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate whether the total flavonoids (TFs) from Carya cathayensis Sarg. leaves alleviate hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes and to explore potential mechanisms. H9c2 cells pretreated with TFs for 24h were exposed to H/R treatment. The results indicated that TFs significantly alleviate H/R injury, which include inhibiting apoptosis and enhancing antioxidant capacity. The protective effects of TFs resulted in higher expression of miR-21 in H/R-induced H9c2 cells than that of controls, which in turn upregulated Akt signaling activity via suppressing the expression of PTEN together with decreasing the ratio of Bax/Bcl-2, caspase3, and cleaved-caspase3 expression in H/R-induced H9c2 cells. Conversely, blocking miR-21 expression with miR-21 inhibitor effectively suppressed the protective effects of TFs against H/R-induced injury. Our study suggests that TFs can decrease cell apoptosis, which may be mediated by altering the expression of miR-21, PTEN/Akt, and Bcl/Bax.
Collapse
|
19
|
Zeng YL, Zheng H, Chen QR, Yuan XH, Ren JH, Luo XF, Chen P, Lin ZY, Chen SZ, Wu XQ, Xiao M, Chen YQ, Chen ZZ, Hu JD, Yang T. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget 2018; 8:29161-29173. [PMID: 28418864 PMCID: PMC5438721 DOI: 10.18632/oncotarget.16254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Objective We investigated the ability of bone marrow derived mesenchymal stem cells (BMSCs) overexpressing microRNA-21 (miR-21) to repair cardiac damage induced by anthracyclines in rats. Methods Sprague-Dawley (SD) rats of 2~3 weeks old were selected to isolate and culture BMSCs. A lentivirus harboring pLVX-miR-21 was generated and transfected into rat BMSCs. The rats were assigned into an untreated negative control group, and groups injected with adriamycin alone or with adriamycin followed by BMSCs, pLVX-BMSCs or pLVX-miR-21-BMSCs (n = 10 each). Proliferation and migration of cells were detected by cholecystokinin-8 (CCK- 8) and transwell. MiR-21 expression, mRNA expressions of B cell lymphoma 2 (Bcl2), BAX (BCL-2-associated X protein) and vascular endothelial growth factor (VEGF) were tested by qRT-PCR. Western blotting was applied to detect protein expressions of Bcl-2, Bax and VEGF. Results Using CCK- 8 and transwell assays, we found that pLVX-miR-21-BMSCs, which overexpressed miR-21, exhibited greater proliferation and migration than untransfected BMSCs or pLVX-BMSCs. Ultrasonic cardiograms and immunohistochemical analysis demonstrated that among the five groups, the pLVX-miR-21-BMSC group exhibited the most improved heart function and enhanced angiogenesis. Moreover, the pLVX-miR-21-BMSC group showed enhanced expression of Bcl-2, VEGF and Cx43 and reduced expression of Bax, BNP and troponin T. Conclusion These findings suggest miR-21 overexpression enhanced the proliferation, invasiveness and differentiation of BMSCs as well as expression of key factors (Bcl-2, VEGF and Bax) essential for repairing the cardiac damage induced by anthracyclines and restoring heart function.
Collapse
Affiliation(s)
- Yan-Ling Zeng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China.,Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Hao Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Qiu-Ru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Hong Yuan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jin-Hua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Feng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ping Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhe-Yao Lin
- Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Shao-Zhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xue-Qiong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Min Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Yong-Quan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhi-Zhe Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jian-Da Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| |
Collapse
|
20
|
Soliman AM, Das S, Abd Ghafar N, Teoh SL. Role of MicroRNA in Proliferation Phase of Wound Healing. Front Genet 2018; 9:38. [PMID: 29491883 PMCID: PMC5817091 DOI: 10.3389/fgene.2018.00038] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a complex biological process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. The proliferation phase is crucial for effective healing compared to other phases. Many critical events occur during this phase, i.e., migration of fibroblasts, re-epithelialization, angiogenesis and wound contraction. Chronic wounds are common and are considered a major public health problem. Therefore, there is the increasing need to discover new therapeutic strategies. MicroRNA (miRNA) research in the field of wound healing is in its early phase, but the knowledge of the recent discoveries is essential for developing effective therapies for the treatment of chronic wounds. In this review, we focused on recently discovered miRNAs which are involved in the proliferation phase of wound healing in the past few years and their role in wound healing.
Collapse
Affiliation(s)
| | | | | | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int J Mol Sci 2017; 19:ijms19010027. [PMID: 29271940 PMCID: PMC5795978 DOI: 10.3390/ijms19010027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chalcones are precursors of flavonoid biosynthesis in plants. Both flavonoids and chalcones are intensively investigated because of a large spectrum of their biological activities. Among others, anticancer and antiangiogenic effects account for the research interest of these substances. Because of an essential role in cancer growth and metastasis, angiogenesis is considered to be a promising target for cancer treatment. Currently used antiangiogenic agents are either synthetic compounds or monoclonal antibodies. However, there are some limitations of their use including toxicity and high price, making the search for new antiangiogenic compounds very attractive. Nowadays it is well known that several natural compounds may modulate basic steps in angiogenesis. A lot of studies, also from our lab, showed that phytochemicals, including polyphenols, are potent modulators of angiogenesis. This review paper is focused on the antiangiogenic effect of flavonoids and chalcones and discusses possible underlying cellular and molecular mechanisms.
Collapse
|
22
|
Cardamonin inhibits colonic neoplasia through modulation of MicroRNA expression. Sci Rep 2017; 7:13945. [PMID: 29066742 PMCID: PMC5655681 DOI: 10.1038/s41598-017-14253-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is currently the third leading cause of cancer related deaths. There is considerable interest in using dietary intervention strategies to prevent chronic diseases including cancer. Cardamonin is a spice derived nutraceutical and herein, for the first time we evaluated the therapeutic benefits of cardamonin in Azoxymethane (AOM) induced mouse model of colorectal cancer. Mice were divided into 4 groups of which three groups were given six weekly injections of AOM. One group served as untreated control and remaining groups were treated with either vehicle or Cardamonin starting from the same day or 16 weeks after the first AOM injection. Cardamonin treatment inhibited the tumor incidence, tumor multiplicity, Ki-67 and β-catenin positive cells. The activation of NF-kB signaling was also abrogated after cardamonin treatment. To elucidate the mechanism of action a global microRNA profiling of colon samples was performed. Computational analysis revealed that there is a differential expression of miRNAs between these groups. Subsequently, we extend our findings to human colorectal cancer and found that cardamonin inhibited the growth, induces cell cycle arrest and apoptosis in human colorectal cancer cell lines. Taken together, our study provides a better understanding of chemopreventive potential of cardamonin in colorectal cancer.
Collapse
|
23
|
STAT3-mediated activation of miR-21 is involved in down-regulation of TIMP3 and neovascularization in the ischemic retina. Oncotarget 2017; 8:103568-103580. [PMID: 29262585 PMCID: PMC5732751 DOI: 10.18632/oncotarget.21592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Retinal neovascularization (RNV) is a sight threatening complication of ischemic retinopathies with limited therapeutic options. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been shown to play a crucial role in promoting RNV. However, manipulating of STAT3 activity can cause significant adverse side effects due to its neurotrophic properties. In this study, we identified microRNA-21 (miR-21) as a downstream effector of STAT3 activity in the ischemic retinas and determined its role in promoting RNV through inhibition of its molecular target, the tissue inhibitor of matrix metalloproteinases 3 (TIMP3). Using human retinal endothelial cells (HREC) exposed to hypoxia and a mouse model of oxygen-induced retinopathy (OIR), we found that TIMP3 expression was significantly decreased at both mRNA and protein levels and this paralleled the activation of STAT3 and up-regulation of miR-21. Moreover, TIMP3 expression was restored by knockdown of STAT3 or blocking of miR-21 in HREC, thus, confirming TIMP3 as a downstream target of STAT3/miR-21 pathway. Finally, in a mouse model of OIR, blockade of miR-21 by a specific antisense (a.miR-21), halted RNV and this effect was associated with rescuing of TIMP3 expression. Our data show that miR-21 mediates STAT3 pro-angiogenic effects in the ischemic retina, thus suggesting its blockade as a potential therapy to prevent/halt RNV.
Collapse
|
24
|
Dual Role of MiR-21-Mediated Signaling in HUVECs and Rat Surgical Flap under Normoxia and Hypoxia Condition. Int J Mol Sci 2017; 18:ijms18091917. [PMID: 28880208 PMCID: PMC5618566 DOI: 10.3390/ijms18091917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
Restoring sufficient vascularity of the ischemia/hypoxia flap is always the critical issue in flap surgeries. In a previous studies microRNA-21 (miR-21) expression was upregulated after rat skin flap surgery. MiR-21 has been reported to be induced by hypoxia and the function of miR-21 involves in the process of angiogenesis. However, the precise regulatory mechanisms in miR-21-mediated pathways are still unclear. These issues were investigated via in vitro and in vivo experiments in this study. In human umbilical vein endothelial cells (HUVEC), the expression of hsa-miR-21-5p was induced after hypoxic culture and the induction of hsa-miR-21-5p was suppressed after sequential normoxic culture. Moreover, transfection of hsa-miR-21-5p mimic enhanced tube formation capacity in normoxia, but attenuated it in hypoxia. Furthermore, bioinformatic analysis suggested that SMAD7 was a predicted target of hsa-miR-21-5p. Our results demonstrated the effect of hsa-miR-21-5p was different on SMAD7 expression in normoxia and hypoxia. In rat skin flaps, blockage of miR-21-5p significantly increased angiogenesis via analysis of color laser Doppler imaging and repressed SMAD7 expression in ischemic skin tissue. Our study showed the opposite effect of miR-21-5p mediating angiogenesis in normoxia and hypoxia, providing important implications regarding the design of novel miRNA-based therapeutic strategies in flap surgeries.
Collapse
|
25
|
Zhang W, Tan Y, Ma H. Combined aspirin and apatinib treatment suppresses gastric cancer cell proliferation. Oncol Lett 2017; 14:5409-5417. [PMID: 29142602 PMCID: PMC5666649 DOI: 10.3892/ol.2017.6858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC), one of the types of tumor most prone to malignancy, is characterized by high lethality. Numerous molecular mediators of GC have been identified, including transcription factors, signaling molecules and non-coding RNAs. Recently, inhibition of angiogenesis has emerged as a potential strategy for GC therapy. In the present study, the levels of vascular endothelial growth factor (VEGF), peroxisome proliferator-activated receptor-α (PPARα) and miR-21 in GC patients and individuals without cancer, and the correlation between VEGF and miR-21, and PPARα and miR-21 expression were analyzed. In addition, the GC MKN45 cell line was treated with apatinib (a tyrosine kinase inhibitor) and aspirin (an activator of the transcription factor, PPARα) to investigate the effects of these compounds on tumorigenesis. Furthermore, the present study attempted to elucidate the molecular mechanisms of alteration of GC tumorigenesis by aspirin and apatinib. The results of the current study demonstrated that there was a higher expression of VEGF and miR-21 in GC tissues compared with that in morphologically adjacent normal tissues whereas PPARα expression was decreased. These results were confirmed in vitro, as treatment of MKN45 cells with VEGF resulted in a significant increase in miR-21 expression and a significant reduction in PPARα protein expression. Furthermore, the inhibitory effects of VEGF on PPARα mRNA and protein expression were demonstrated to be mediated by miR-21. Suppression of PPARα protein expression attenuated the inhibitory effects of miR-21 on the level of PPARα mRNA, thereby enhancing tumorigenesis in gastric cancer. Treatment of MKN45 cells with aspirin reduced the levels of phosphorylated AKT by activating PPARα, whereas treatment with apatinib inhibited the phosphorylation of vascular endothelial growth factor receptor 2 and phosphoinositide-3 kinase in MKN45 cells. Finally, treatment of MKN45 cells with apatinib and aspirin suppressed tumorigenesis by inhibiting cell proliferation, migration, invasion and colony formation. Taken together, the results of the present study indicate that treatment with a combination of aspirin and apatinib may be a potential therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Intervention Division, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Yongsheng Tan
- Department of Intervention Division, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Heping Ma
- Department of Intervention Division, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| |
Collapse
|
26
|
Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 2017; 16:5434-5440. [PMID: 28849133 PMCID: PMC5647088 DOI: 10.3892/mmr.2017.7230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting endothelium, is a process that involves a series of interassociated and mutually interactive pathophysiological processes. It is accepted that microRNAs (miRNAs) regulate endothelial cell behavior, including their involvement in angiogenesis. However, it remains unclear whether miRNAs are involved in the regulation of angiogenesis following cerebral ischemia. Therefore, the present study aimed to investigate the role of miRNAs in angiogenesis and the underlying mechanism following cerebral ischemia. Expression profiles of miRNAs in rat brain samples following middle cerebral artery occlusion (MCAO) were investigated using a miRNA microarray. The expression of candidate miRNA, miR‑195 was further validated using reverse transcription‑quantitative polymerase chain reaction. Then, the effects of miR‑195 on cell migration and tube formation of human umbilical vein vascular endothelial cells (HUVECs) were investigated following miR‑195 silencing, and overexpression. The specific target genes of miR‑195 were predicted using microRNA prediction bioinformatics software (http://www.microrna.org/microrna/home.do), and then confirmed using a dual‑luciferase reporter assay and rescue experiment. It was demonstrated that miR‑195 was significantly downregulated in the brains of rats following MCAO and in hypoxia‑induced HUVECs. Furthermore, it was revealed that miR‑195 overexpression inhibited the invasion ability and tube formation of HUVECs in vitro, while miR‑195 silencing enhanced these functions. In addition, vascular endothelial growth factor A (VEGFA) was identified as a direct target of miR‑195 and was negatively correlated with miR‑195 expression. In addition, the rescue experiment revealed that overexpression of VEGFA reversed the inhibitory effects of miR‑195 overexpression on the invasion ability and tube formation of HUVECs. The present study has provided a novel insight into the promoting roles of miR‑195 downregulation on angiogenesis following cerebral infarction and suggests that the miR‑195/VEGFA signaling pathway is a putative therapeutic target in cerebral ischemia.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Hai-Fang Zhang
- Handan Emergency Rescue Command Center, Handan, Hebei 056002, P.R. China
| | - Jin-Ying Su
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| |
Collapse
|
27
|
Dai J, Lin Y, Duan Y, Li Z, Zhou D, Chen W, Wang L, Zhang QQ. Andrographolide Inhibits Angiogenesis by Inhibiting the Mir-21-5p/TIMP3 Signaling Pathway. Int J Biol Sci 2017; 13:660-668. [PMID: 28539838 PMCID: PMC5441182 DOI: 10.7150/ijbs.19194] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis provides nutrients and oxygen to promote tumor growth and affords a channel that facilitates tumor cell entry into the circulation. Andrographolide (Andro) possess anti-tumor activity; however, its direct effect on angiogenesis still needs to be clarified. In this study, our experiments revealed that Andro significantly inhibited vascular growth in chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumor angiogenesis was also suppressed by Andro. Additionally, we found that cell proliferation, migration and tube formation of vascular endothelial cells was inhibited by Andro treatment in vitro. The effect was primarily mediated through inhibition of miR-21-5p expression and further targeting of TIMP3. This work provides evidence that Andro directly inhibits angiogenesis and might be an effective anti-angiogenic therapeutic drug for cancer treatment.
Collapse
Affiliation(s)
- Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Youfa Duan
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixuan Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dalei Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wensheng Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
28
|
Yan YY, Wang ZH, Zhao L, Song DD, Qi C, Liu LL, Wang JN. MicroRNA-210 Plays a Critical Role in the Angiogenic Effect of Isoprenaline on Human Umbilical Vein Endothelial Cells via Regulation of Noncoding RNAs. Chin Med J (Engl) 2017; 129:2676-2682. [PMID: 27823999 PMCID: PMC5126158 DOI: 10.4103/0366-6999.193452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: β-adrenoceptors play a crucial regulatory role in blood vessel endothelial cells. Isoprenaline (ISO, a β-adrenergic agonist) has been reported to promote angiogenesis through upregulation of vascular endothelial growth factor (VEGF) expression; however, the underlying mechanism remains to be investigated. It is widely accepted that certain noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), can regulate endothelial cell behavior, including their involvement in angiogenesis. Therefore, we aimed to investigate whether noncoding RNAs participate in ISO-mediated angiogenesis using human umbilical vein endothelial cells (HUVECs). Methods: We evaluated VEGF-A messenger RNA (mRNA) and protein levels in ISO-treated HUVECs by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. To establish whether noncoding RNAs are associated with ISO-mediated angiogenesis, we measured expression of the miRNAs miR-210, miR-21, and miR-1, as well as that of the lncRNAs growth arrest-specific transcript 5 (GAS5), maternally expressed 3 (MEG3), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HUVECs exposed to ISO. Furthermore, to ascertain its importance in ISO-mediated angiogenesis, we constructed the HUVECs with overexpressing miR-210 and detected the subsequent expression of VEGF-A and noncoding RNAs. All statistical analyses were performed using SPSS 16.0 software. Intergroup comparisons were carried out by one-way analysis of variance. Results: VEGF-A mRNA levels were elevated in the ISO group (1.57 ± 0.09) compared to those in the control group (P < 0.01). Moreover, concentrations of VEGF-A in culture supernatants significantly differed between the control (113.00 ± 19.21 pg/ml) and ISO groups (287.00 ± 20.27 pg/ml; P < 0.01). Expression of miR-1, miR-21, and miR-210 was higher (3.89 ± 0.44, 2.87 ± 087, and 3.33 ± 1.31, respectively) in ISO-treated cells than that in controls (P < 0.01), whereas that of GAS5 and MEG3 (0.22 ± 0.10 and 0.58 ± 0.16, respectively) was lower as a result of ISO administration (P < 0.05). There was no significant difference in the expression of MALAT1 between the groups. Interestingly, miR-210 overexpression heightened the levels of VEGF-A and miR-21 (5.87 ± 1.24 and 2.74 ± 1.15, respectively; P < 0.01) and reduced those of GAS5 and MEG3 (0.19 ± 0.01 and 0.09 ± 0.05, respectively; P < 0.01). Conclusions: ISO-mediated angiogenesis was associated with altered expression of miR-210, miR-21, and the lncRNAs GAS5 and MEG3. The effects of miR-210 on the expression of VEGF-A and noncoding RNAs were similar to those of ISO, indicating that it might play an important role in ISO-mediated angiogenesis.
Collapse
Affiliation(s)
- You-You Yan
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zhi-Hui Wang
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Lei Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Dan-Dan Song
- Department of Clinical Laboratory, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Chao Qi
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Lu-Lu Liu
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jun-Nan Wang
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
29
|
Luo M, Tan X, Mu L, Luo Y, Li R, Deng X, Chen N, Ren M, Li Y, Wang L, Wu J, Wan Q. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway. Sci Rep 2017; 7:43427. [PMID: 28230206 PMCID: PMC5322530 DOI: 10.1038/srep43427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Metformin, an anti-diabetic drug commonly used for type 2 diabetes therapy, is associated with anti-angiogenic effects in conditions beyond diabetes. miR-21 has been reported to be involved in the process of angiogenesis. However, the precise regulatory mechanisms by which the metformin-induced endothelial suppression and its effects on miR-21-dependent pathways are still unclear. Bioinformatic analysis and identification of miR-21 and its targets and their effects on metformin-induced antiangiogenic activity were assessed using luciferase assays, quantitative real-time PCR, western blots, scratch assays, CCK-8 assays and tubule formation assays. In this study, miR-21 was strikingly downregulated by metformin in a time- and dose-dependent manner. miR-21 directly targeted the 3′-UTR of PTEN and SMAD7, and negatively regulated their expression. Overexpression of miR-21 abrogated the metformin-mediated inhibition of endothelial cells proliferation, migration, tubule formation and the TGF-β-induced AKT, SMAD- and ERK-dependent phosphorylations, and conversely, down-regulation of miR-21 aggravated metformin’s action and revealed significant promotion effects. Our study broadens our understanding of the regulatory mechanism of miR-21 mediating metformin-induced anti-angiogenic effects, providing important implications regarding the design of novel miRNA-based therapeutic strategies against angiogenesis.
Collapse
Affiliation(s)
- Mao Luo
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyong Tan
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Mu
- Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yulin Luo
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Li
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiping Ren
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongjie Li
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Liqun Wang
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Drug Discovery Reseach Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qin Wan
- Department of Endocrinology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
30
|
Jaiswal S, Shukla M, Sharma A, Rangaraj N, Vaghasiya K, Malik MY, Lal J. Preclinical pharmacokinetics and ADME characterization of a novel anticancer chalcone, cardamonin. Drug Test Anal 2016; 9:1124-1136. [PMID: 27794181 DOI: 10.1002/dta.2128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Cardamonin (CRD), a chalconoid obtained from several medicinal plants of Zingiberaceae family, had shown promising potential in cancer prevention and therapy. For further development and better pharmacological elucidation, we performed a series of in vitro and in vivo studies to characterize its preclinical pharmacokinetics. The study samples were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high performance liquid chromatography-ultra violet (HPLC-UV) methods. CRD is partially soluble (<10 μM) and possess high permeability (>0.2 × 10-4 cm/sec). It is moderately bound to plasma proteins (<50%). It shows partitioning in red blood cell (RBC) compartment with the partition coefficient between RBCs and plasma (KRBC/P ) of 0.95 at 0 min to 1.39 at 60 min, indicating significant but slow RBC uptake. In mice, CRD is poorly absorbed after oral administration with 18% oral bioavailability. It possesses high clearance, short mean residence time, and high volume of distribution in mice. It exhibited multiple peak phenomena both after oral and intravenous administration and is excreted both as conjugated and unchanged CRD in bile. It is majorly excreted in faeces and negligibly in urine. The preclinical absorption, distribution, metabolism, and excretion data are expected to succour the future clinical investigations of CRD as a promising anticancer agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Mahendra Shukla
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Abhisheak Sharma
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India.,Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Mississippi, USA
| | - Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Kalpesh Vaghasiya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Mohd Yaseen Malik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
31
|
Roesler R, Isolan GR. Letter to the Editor: MicroRNA levels and anti-VEGF therapy in glioblastoma. J Neurosurg 2016; 125:1050-1051. [PMID: 27285543 DOI: 10.3171/2016.3.jns16523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rafael Roesler
- Institute for Basic Health Sciences, Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil; and.,Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Advanced Center of Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, Brazil
| | - Gustavo R Isolan
- Institute for Basic Health Sciences, Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil; and.,Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Advanced Center of Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, Brazil
| |
Collapse
|
32
|
Hu J, Ni S, Cao Y, Zhang T, Wu T, Yin X, Lang Y, Lu H. The Angiogenic Effect of microRNA-21 Targeting TIMP3 through the Regulation of MMP2 and MMP9. PLoS One 2016; 11:e0149537. [PMID: 26872030 PMCID: PMC4752282 DOI: 10.1371/journal.pone.0149537] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
microRNAs are a novel set of small, non-protein-coding nucleotide RNAs that negatively regulate the expression of target mRNAs. miRNA-21 is a microRNA that is highly enriched in endothelial cells. miRNA-21 has been shown to be a potential pro-angiogenic factor in some biological systems. Our previous study showed that the expression of miRNA-21 was up-regulated after spinal cord injury. However, the effect of miRNA-21 on angiogenesis in the spinal cord was unclear. In this study, to understand the role of miRNA-21 on injured endothelial cells exclusively, an oxygen and glucose deprivation model of endothelial cells was constructed, and the up-regulation of miRNA-21 was discovered in this model. An increased level of miRNA-21 by mimics promoted the survival, migration and tube formation of endothelial cells, which simultaneously inhibited tissue inhibitor of metalloproteinase-3 (TIMP3) expression and promoted matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) expression and secretion. A decreased level of miRNA-21 by antagomir exerted an opposite effect. As is well known, survival, migration and tube formation of endothelial cells are necessary prerequisites for angiogenesis after injury. TIMP3 was validated as a direct target of miRNA-21 by dual-luciferase reporter assay. Silencing with small interfering RNA against TIMP3 promoted tube formation and increased MMP2 and MMP9 expression at the protein level. In vivo, we found that decreased levels of miRNA-21 inhibited angiogenesis after spinal cord injury in rats using synchrotron radiation micro-computed tomography. In summary, these findings suggest that miRNA-21 has a protective effect on angiogenesis by reducing cell death and promoting cell survival, migration and tube formation via partially targeting the TIMP3 by potentially regulating MMP2 and MMP9. TIMP3 is a functional target gene. Identifying the role of miRNA-21 in the protection of angiogenesis might offer a novel therapeutic target for secondary spinal cord injury, in which angiogenesis is indispensable.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Tao Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Ye Lang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- * E-mail:
| |
Collapse
|