1
|
Gansevoort M, Wentholt S, Li Vecchi G, de Vries M, Versteeg EMM, Boekema BKHL, Choppin A, Barritault D, Chiappini F, van Kuppevelt TH, Daamen WF. Next-Generation Biomaterials for Wound Healing: Development and Evaluation of Collagen Scaffolds Functionalized with a Heparan Sulfate Mimic and Fibroblast Growth Factor 2. J Funct Biomater 2025; 16:51. [PMID: 39997585 PMCID: PMC11856099 DOI: 10.3390/jfb16020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Fibrosis after full-thickness wound healing-especially after severe burn wounds-remains a clinically relevant problem. Biomaterials that mimic the lost dermal extracellular matrix have shown promise but cannot completely prevent scar formation. We present a novel approach where porous type I collagen scaffolds were covalently functionalized with ReGeneRating Agent (RGTA®) OTR4120. RGTA® is a glycanase-resistant heparan sulfate mimetic that promotes regeneration when applied topically to chronic wounds. OTR4120 is able to capture fibroblast growth factor 2 (FGF-2), a heparan/heparin-binding growth factor that inhibits the activity of fibrosis-driving myofibroblasts. Scaffolds with various concentrations and distributions of OTR4120 were produced. When loaded with FGF-2, collagen-OTR4120 scaffolds demonstrated sustained release of FGF-2 compared to collagen-heparin scaffolds. Their anti-fibrotic potential was investigated in vitro by seeding primary human dermal fibroblasts on the scaffolds followed by stimulation with transforming growth factor β1 (TGF-β1) to induce myofibroblast differentiation. Collagen-OTR4120(-FGF-2) scaffolds diminished the gene expression levels of several myofibroblast markers. In absence of FGF-2 the collagen-OTR4120 scaffolds displayed an inherent anti-fibrotic effect, as the expression of two fibrotic markers (TGF-β1 and type I collagen) was diminished. This work highlights the potential of collagen-OTR4120 scaffolds as biomaterials to improve skin wound healing.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sabine Wentholt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gaia Li Vecchi
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marjolein de Vries
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elly M. M. Versteeg
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Bouke K. H. L. Boekema
- Burn Research Lab, Alliance of Dutch Burn Care, 1941 AJ Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Toin H. van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
2
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
3
|
Gansevoort M, Oostendorp C, Bouwman LF, Tiemessen DM, Geutjes PJ, Feitz WFJ, van Kuppevelt TH, Daamen WF. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Tissue Eng Regen Med 2024; 21:1173-1187. [PMID: 39215940 PMCID: PMC11589036 DOI: 10.1007/s13770-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corien Oostendorp
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Arnhem, The Netherlands
| | - Linde F Bouwman
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Ahire JH, Wang Q, Rowley G, Chambrier I, Crack JC, Bao Y, Chao Y. Polyurethane infused with heparin capped silver nanoparticles dressing for wound healing application: Synthesis, characterization and antimicrobial studies. Int J Biol Macromol 2024; 282:136557. [PMID: 39426779 DOI: 10.1016/j.ijbiomac.2024.136557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Burn and diabetic wounds present significant challenges due to their complex nature, delayed healing, pain, and high susceptibility to bacterial infections. In this study, we developed and evaluated polyurethane (PU) nanofibers embedded with heparin-functionalized silver nanoparticles (hep-AgNPs) using an electrospinning technique. The choice to functionalize silver nanoparticles with heparin was based on heparin's established role in modulating inflammation and promoting angiogenesis. The electrospun nanofibers exhibited smooth, bead-free morphology with diameters ranging from 300 to 500 nm and demonstrated a sustained release of silver over seven days, offering continuous antimicrobial protection. Mechanical testing of the nanofibers revealed excellent strength and elasticity, making them well-suited for flexible wound dressings. The nanofibers also showed superior water absorption, fluid retention, and controlled water vapor transmission, essential for maintaining a moist wound environment conducive to healing. In vitro biocompatibility assays confirmed that the PU/hep-AgNPs bandages were non-toxic to keratinocytes and fibroblasts and significantly accelerated wound closure, as evidenced by scratch assays. The nanofibrous bandages also exhibited potent antibacterial activity against Staphylococcus aureus and Salmonella Typhimurium, two common wound pathogens. Overall, our findings demonstrate that PU/hep-AgNPs nanofibrous bandages are a promising candidate for chronic wound healing. They combine excellent biocompatibility, anti-inflammatory properties, and strong antimicrobial activity, which collectively contribute to faster wound healing and reduced risk of infection.
Collapse
Affiliation(s)
| | - Qi Wang
- Norwich Medical School, University of East Anglia, United Kingdom
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, United Kingdom
| | | | - Jason C Crack
- School of Chemistry, University of East Anglia, United Kingdom
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, United Kingdom
| |
Collapse
|
5
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
6
|
Gómez-Fernández H, Alhakim-Khalak F, Ruiz-Alonso S, Díaz A, Tamayo J, Ramalingam M, Larra E, Pedraz JL. Comprehensive review of the state-of-the-art in corneal 3D bioprinting, including regulatory aspects. Int J Pharm 2024; 662:124510. [PMID: 39053675 DOI: 10.1016/j.ijpharm.2024.124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The global shortage of corneal transplants has spurred an urgency in the quest for efficient treatments. This systematic review not only provides a concise overview of the current landscape of corneal morphology, physiology, diseases, and conventional treatments but crucially delves into the forefront of tissue engineering for corneal regeneration. Emphasizing cellular and acellular components, bioprinting techniques, and pertinent biological assays, it explores optimization strategies for manufacturing and cost-effectiveness. To bridge the gap between research and industrial production, the review outlines the essential regulatory strategy required in Europe, encompassing relevant directives, frameworks, and governing bodies. This comprehensive regulatory framework spans the entire process, from procuring initial components to marketing and subsequent product surveillance. In a pivotal shift towards the future, the review culminates by highlighting the latest advancements in this sector, particularly the integration of tissue therapy with artificial intelligence. This synergy promises substantial optimization of the overall process, paving the way for unprecedented breakthroughs in corneal regeneration. In essence, this review not only elucidates the current state of corneal treatments and tissue engineering but also outlines regulatory pathways and anticipates the transformative impact of artificial intelligence, providing a comprehensive guide for researchers, practitioners, and policymakers in the field.
Collapse
Affiliation(s)
- Hodei Gómez-Fernández
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Fouad Alhakim-Khalak
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Aitor Díaz
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Julen Tamayo
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Murugam Ramalingam
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| | - Eva Larra
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - José L Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Krishnan S, Chakraborty K, Dhara S. Sulphated glycosaminoglycan isolated from the edible slipper oyster Magallana bilineata (Röding, 1798) attenuates inflammatory cytokines on lipopolysaccharide-prompted macrophages. Nat Prod Res 2024:1-12. [PMID: 39001863 DOI: 10.1080/14786419.2024.2377311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
The slipper oyster Magallana bilineata (Ostreidae) is considered as culinary delicacy among marine bivalves, and a sulphated glycosaminoglycan, 4,6-O-SO3-β-(1→3)-GalNAcp (unit A) and β-(1→4)-GlcAp (unit B) as principle structural motif containing laterally branched 4-O-SO3-β-glucopyranose (unit C) (MBP-3) was isolated from this species. Nuclear magnetic resonance (NMR), Fourier transform infra-red (FTIR), and mass spectroscopy techniques were used to characterise MBP-3. MBP-3 exhibited anti-inflammatory activities against inflammatory 5-lipoxygenase (IC50 0.11 mg mL-1) and cyclooxygenase-2 (IC50 0.12 mg mL-1) enzymes. MBP-3 (at 100 μg mL-1) showed effective downregulation against pro-inflammatory cytokines generation, namely interleukins-6, 1β, (IL-6, 1β) (1-1.7 pg mL-1) and tumour necrosis factor-α (TNF-α) (4 pg mL-1) along with substantial downregulation of ROS production in lipopolysaccharide (LPS)-inflamed cells. MBP-3 blocked the mRNA of NF-κB, cyclooxygenase-2 (COX-2), and other cytokines, in lipopolysaccharide-induced macrophages. The potential to constrain inflammatory cytokine production revealed its application to develop functional food to attenuate inflammation-associated disorders.
Collapse
Affiliation(s)
- Soumya Krishnan
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India
- Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India
| | - Shubhajit Dhara
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India
| |
Collapse
|
8
|
Pinezich MR, Mir M, Graney PL, Tavakol DN, Chen J, Hudock M, Gavaudan O, Chen P, Kaslow SR, Reimer JA, Van Hassel J, Guenthart BA, O’Neill JD, Bacchetta M, Kim J, Vunjak-Novakovic G. Lung-Mimetic Hydrofoam Sealant to Treat Pulmonary Air Leak. Adv Healthc Mater 2024; 13:e2303026. [PMID: 38279961 PMCID: PMC11102335 DOI: 10.1002/adhm.202303026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.
Collapse
Affiliation(s)
| | - Mohammad Mir
- Stevens Institute of Technology, Department of Biomedical Engineering
| | | | | | - Jiawen Chen
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Maria Hudock
- Columbia University, Department of Biomedical Engineering
| | | | - Panpan Chen
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Sarah R. Kaslow
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Jonathan A. Reimer
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Julie Van Hassel
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | | | - John D. O’Neill
- State University of New York Downstate Medical Center, Department of Cell Biology
| | - Matthew Bacchetta
- Vanderbilt University Medical Center, Department of Thoracic Surgery
- Vanderbilt University, Department of Biomedical Engineering
| | - Jinho Kim
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Medicine
| |
Collapse
|
9
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
10
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Gaspar D, Ginja C, Carolino N, Leão C, Monteiro H, Tábuas L, Branco S, Padre L, Caetano P, Romão R, Matos C, Ramos AM, Bettencourt E, Usié A. Genome-wide association study identifies genetic variants underlying footrot in Portuguese Merino sheep. BMC Genomics 2024; 25:100. [PMID: 38262937 PMCID: PMC10804546 DOI: 10.1186/s12864-023-09844-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Ovine footrot caused by Dichelobacter nodosus (D. nodosus) is a contagious disease with serious economic and welfare impacts in sheep production systems worldwide. A better understanding of the host genetic architecture regarding footrot resistance/susceptibility is crucial to develop disease control strategies that efficiently reduce infection and its severity. A genome-wide association study was performed using a customized SNP array (47,779 SNPs in total) to identify genetic variants associated to footrot resistance/susceptibility in two Portuguese native breeds, i.e. Merino Branco and Merino Preto, and a population of crossbred animals. A cohort of 1375 sheep sampled across 17 flocks, located in the Alentejo region (southern Portugal), was included in the analyses. RESULTS Phenotypes were scored from 0 (healthy) to 5 (severe footrot) based on visual inspection of feet lesions, following the Modified Egerton System. Using a linear mixed model approach, three SNPs located on chromosome 24 reached genome-wide significance after a Bonferroni correction (p < 0.05). Additionally, six genome-wide suggestive SNPs were identified each on chromosomes 2, 4, 7, 8, 9 and 15. The annotation and KEGG pathway analyses showed that these SNPs are located within regions of candidate genes such as the nonsense mediated mRNA decay associated PI3K related kinase (SMG1) (chromosome 24) and the RALY RNA binding protein like (RALYL) (chromosome 9), both involved in immunity, and the heparan sulfate proteoglycan 2 (HSPG2) (chromosome 2) and the Thrombospodin 1 (THBS1) (chromosome 7) implicated in tissue repair and wound healing processes. CONCLUSION This is the first attempt to identify molecular markers associated with footrot in Portuguese Merino sheep. These findings provide relevant information on a likely genetic association underlying footrot resistance/susceptibility and the potential candidate genes affecting this trait. Genetic selection strategies assisted on the information obtained from this study could enhance Merino sheep-breeding programs, in combination with farm management strategies, for a more effective and sustainable long-term solution for footrot control.
Collapse
Affiliation(s)
- Daniel Gaspar
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
| | - Catarina Ginja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Nuno Carolino
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes 197, 3020-210, Lordemão, Coimbra, Portugal
| | - Célia Leão
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | | | | | - Sandra Branco
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Departamento de Medicina Veterinária, Escola de Ciências E Tecnologia, Évora University, Pólo da Mitra Ap. 94, 7002-554, Évora, Portugal
| | - Ludovina Padre
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Pedro Caetano
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ricardo Romão
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | | | - António Marcos Ramos
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Elisa Bettencourt
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
12
|
Belvedere R, Novizio N, Palazzo M, Pessolano E, Petrella A. The pro-healing effects of heparan sulfate and growth factors are enhanced by the heparinase enzyme: New association for skin wound healing treatment. Eur J Pharmacol 2023; 960:176138. [PMID: 37923158 DOI: 10.1016/j.ejphar.2023.176138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Effective treatment strategies for skin wound repair are the focus of numerous studies. New pharmacological approaches appear necessary to guarantee a correct and healthy tissue regeneration. For these reasons, we purposed to investigate the effects of the combination between heparan sulfate and growth factors further adding the heparinase enzyme. Interestingly, for the first time, we have found that this whole association retains a marked pro-healing activity when topically administered to the wound. In detail, this combination significantly enhances the motility and activation of the main cell populations involved in tissue regeneration (keratinocytes, fibroblasts and endothelial cells), compared with single agents administered without heparinase. Notably, using an experimental C57BL/6 mouse model of skin wounding, we observed that the topical treatment of skin lesions with heparan sulfate + growth factors + heparinase promotes the highest closure of wounds compared to each substance mixed with the other ones in all the possible combinations. Eosin/hematoxylin staining of skin biopsies revealed that treatment with the whole combination allows the formation of a well-structured matrix with numerous new vessels. Confocal analyses for vimentin, FAP1α, CK10 and CD31 have highlighted the presence of activated fibroblasts, differentiated keratinocytes and endothelial cells at the closed region of wounds. Our results encourage defining this combined treatment as a new and appealing therapy expedient in skin wound healing, as it is able to activate cell components and promote a dynamic lesions closure.
Collapse
Affiliation(s)
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | - Emanuela Pessolano
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
13
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
14
|
Subedi S, Hwang HJ, Kang D, Mehta PK, Kim N, Park H, Lee JS, Lee KH. Development of peptide-based ratiometric fluorescent probe for sensing heparan sulfate and heparin in aqueous solutions at physiological pH and quantitative detection of heparan sulfate in live cells. Biosens Bioelectron 2023; 238:115595. [PMID: 37595478 DOI: 10.1016/j.bios.2023.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Heparan sulfate (HS) plays a critical role in various biological processes as a vital component of the extracellular matrix. In this study, we synthesized three fluorescent probes (1-3) comprising Arg-rich peptides as HS receptors and a fluorophore capable of exhibiting red-shifted emissions upon aggregation. All three probes demonstrated ratiometric responses to HS and heparin in aqueous solutions. Remarkably, probe 3 exhibited a unique ratiometric response to HS in both aqueous solutions at physiological pH and HS proteoglycans on live cells. Probe 3 displayed exceptional sensing properties, including high biocompatibility, water solubility, visible light excitation, a large Stokes shift for ratiometric detection and remarkable selectivity and sensitivity for HS (with a low limit of detection: 720 pM). Binding mode studies unveiled the crucial role of charge interactions between probe 3 and negatively charged HS sugar units. Upon binding, the fluorophore segments of the probes overlapped, inducing green and red emission changes through restricted intramolecular rotation of the fluorophore moiety. Importantly, probe 3 was effectively employed to quantify the reduction of HS proteoglycan levels in live cells by inhibiting HS sulfation using siRNA and an inhibitor. It successfully detected decreased HS levels in cells treated with doxorubicin and irradiation, consistent with results obtained from western blot and immunofluorescence assays. This study presents the first ratiometric fluorescent probe capable of quantitatively detecting HS levels in aqueous solutions and live cells. The unique properties of peptide-based probe 3 make it a valuable tool for studying HS biology and potentially for diagnostic applications in various biological systems.
Collapse
Affiliation(s)
- Sumita Subedi
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea
| | - Donghee Kang
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Pramod Kumar Mehta
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Nayeon Kim
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Hyojin Park
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 402-751, South Korea.
| | - Keun-Hyeung Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, South Korea; Department of Chemistry and Chemical Engineering, South Korea.
| |
Collapse
|
15
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
16
|
Direct thrombin inhibitors as alternatives to heparin to preserve lung growth and function in a murine model of compensatory lung growth. Sci Rep 2022; 12:21117. [PMID: 36477689 PMCID: PMC9729628 DOI: 10.1038/s41598-022-25773-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) may require cardiopulmonary bypass and systemic anticoagulation. Expeditious lung growth while on bypass is essential for survival. Previously, we demonstrated that heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). We investigated the effects of the direct thrombin inhibitors (DTIs) bivalirudin and argatroban. In vitro assays of lung endothelial cell proliferation and apoptosis were performed. C57BL/6 J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were pre-loaded with normal saline (control), bivalirudin, argatroban, or heparin and outcomes were assessed on postoperative day 8. Heparin administration inhibited endothelial cell proliferation in vitro and significantly decreased lung volume in vivo, while bivalirudin and argatroban preserved lung growth. These findings correlated with changes in alveolarization on morphometric analysis. Treadmill exercise tolerance testing demonstrated impaired exercise performance in heparinized mice; bivalirudin/argatroban did not affect exercise tolerance. On lung protein analysis, heparin decreased angiogenic signaling which was not impacted by bivalirudin or argatroban. Together, this data supports the use of DTIs as alternatives to heparin for systemic anticoagulation in CDH patients on bypass. Based on this work, clinical studies on the impact of heparin and DTIs on CDH outcomes are warranted.
Collapse
|
17
|
Otsuka T, Kan HM, Mason TD, Nair LS, Laurencin CT. Overexpression of NDST1 Attenuates Fibrotic Response in Murine Adipose-Derived Stem Cells. Stem Cells Dev 2022; 31:787-798. [PMID: 35920108 PMCID: PMC9836701 DOI: 10.1089/scd.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) hold tremendous potential for treating diseases and repairing damaged tissues. Heparan sulfate (HS) plays various roles in cellular signaling mechanisms. The importance of HS in stem cell function has been reported and well documented. However, there has been little progress in using HS for therapeutic purposes. We focused on one of the sulfotransferases, NDST1, which influences overall HS chain extent and sulfation pattern, with the expectation to enhance stem cell function by increasing the N-sulfation level. We herein performed transfections of a green fluorescent protein-vector control and NDST1-vector into mouse ADSCs to evaluate stem cell functions. Overexpression of NDST1 suppressed the osteogenic differentiation of ADSCs. There was no pronounced effect observed on the stemness, inflammatory gene expression, nor any noticeable effect in adipogenic and chondrogenic differentiation. Under the tumor necrosis factor-alpha stimulation, NDST1 overexpression induced several chemokine productions that attract neutrophils and macrophages. Finally, we identified an antifibrotic response in ADSCs overexpressing NDST1. This study provides a foundation for the evaluation of HS-related effects in ADSCs undergoing ex vivo gene manipulation.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Timothy D. Mason
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
18
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
19
|
Miura T, Kawano M, Takahashi K, Yuasa N, Habu M, Kimura F, Imamura T, Nakayama F. High-Sulfated Hyaluronic Acid Ameliorates Radiation-Induced Intestinal Damage Without Blood Anticoagulation. Adv Radiat Oncol 2022; 7:100900. [PMID: 35295873 PMCID: PMC8918722 DOI: 10.1016/j.adro.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Many growth factors, such as fibroblast growth factors (FGFs), are useful for the treatment or prevention of radiation damage after radiation therapy. Although heparin can be supplemented to increase the therapeutic effects of FGFs, it possesses strong anticoagulant effects, which limit its potential for clinical use. Therefore, chemically sulfated hyaluronic acid (HA) was developed as a safe alternative to heparin. This study examined the involvement of sulfated HA in radioprotective and anticoagulant effects. Methods and Materials FGF1 was administered intraperitoneally to BALB/c mice with sulfated HA 24 hours before or after total body irradiation with γ-rays. Several radioprotective effects were examined in the jejunum. The blood coagulation time in the presence of sulfated HA was measured using murine whole blood. Results FGF1 with high-sulfated HA (HA-HS) exhibited almost the same level of in vitro mitogenic activity as heparin, whereas FGF1 with HA or low-sulfated HA exhibited almost no mitogenic activity. Furthermore, HA-HS had high binding capability with FGF1. FGF1 with HA-HS significantly promoted crypt survival to the same level as heparin after total body irradiation and reduced radiation-induced apoptosis in crypt cells. Moreover, pretreatment of HA-HS without FGF1 also increased crypt survival and reduced apoptosis. Crypt survival with FGF1 in the presence of HA depended on the extent of sulfation of HA. Moreover, the blood anticoagulant effects of sulfated HA were weaker than those of heparin. As sulfated HA did not promote the reactivity of antithrombin III to thrombin, it did not increase anticoagulative effects to the same extent as heparin. Conclusions This study suggested that HA-HS promotes the radioprotective effects of FGF1 without anticoagulant effects. HA-HS has great potential for practical use to promote tissue regeneration after radiation damage.
Collapse
Affiliation(s)
- Taichi Miura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Mitsuko Kawano
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Keiko Takahashi
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | | | - Masato Habu
- Tokyo Chemical Industry Co, Ltd (TCI), Tokyo, Japan
| | - Fumie Kimura
- Tokyo Chemical Industry Co, Ltd (TCI), Tokyo, Japan
| | - Toru Imamura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Fumiaki Nakayama
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Corresponding author: Fumiaki Nakayama, MD, PhD
| |
Collapse
|
20
|
Sargison L, Smith RAA, Carnachan SM, Daines AM, Brackovic A, Kidgell JT, Nurcombe V, Cool SM, Sims IM, Hinkley SFR. Variability in the composition of porcine mucosal heparan sulfates. Carbohydr Polym 2022; 282:119081. [PMID: 35123736 DOI: 10.1016/j.carbpol.2021.119081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Commercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer. Statistical analysis of the disaccharide compositions placed these batches in three categories: group A had high GlcNAc and GlcNS, and low GlcN typical of HS; group B had high GlcN and GlcNS, and low GlcNAc; group C had high di- and trisulfated, and low unsulfated and monosulfated disaccharide repeats. These batches could be placed in the same categories based on their 1H NMR spectra and molecular weights. Anticoagulant and growth factor binding activities of these HS batches did not fit within these same groups but were related to the proportions of more highly sulfated disaccharide repeats.
Collapse
Affiliation(s)
- Liam Sargison
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Alison M Daines
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Amira Brackovic
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Joel T Kidgell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Victor Nurcombe
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| |
Collapse
|
21
|
Joorabloo A, Khorasani MT, Adeli H, Brouki Milan P, Amoupour M. Using artificial neural network for design and development of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104165. [PMID: 35142093 PMCID: PMC8981472 DOI: 10.1002/advs.202104165] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Wound healing is a long-term, multistage biological process that includes hemostasis, inflammation, proliferation, and tissue remodeling and requires intelligent designs to provide comprehensive and convenient treatment. The complexity of wounds has led to a lack of adequate wound treatment materials, which must systematically regulate unique wound microenvironments. Hydrogels have significant advantages in wound treatment due to their ability to provide spatiotemporal control over the wound healing process. Self-assembling peptide-based hydrogels are particularly attractive due to their innate biocompatibility and biodegradability along with additional advantages including ligand-receptor recognition, stimulus-responsive self-assembly, and the ability to mimic the extracellular matrix. The ability of peptide-based materials to self-assemble in response to the physiological environment, resulting in functionalized microscopic structures, makes them conducive to wound treatment. This review introduces several self-assembling peptide-based systems with various advantages and emphasizes recent advances in self-assembling peptide-based hydrogels that allow for precise control during different stages of wound healing. Moreover, the development of multifunctional self-assembling peptide-based hydrogels that can regulate and remodel the wound immune microenvironment in wound therapy with spatiotemporal control has also been summarized. Overall, this review sheds light on the future clinical and practical applications of self-assembling peptide-based hydrogels.
Collapse
Affiliation(s)
- Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| |
Collapse
|
23
|
Klein K, Hölzemer A, Wang T, Kim TE, Dugan HL, Jost S, Altfeld M, Garcia-Beltran WF. A Genome-Wide CRISPR/Cas9-Based Screen Identifies Heparan Sulfate Proteoglycans as Ligands of Killer-Cell Immunoglobulin-Like Receptors. Front Immunol 2021; 12:798235. [PMID: 34917099 PMCID: PMC8669139 DOI: 10.3389/fimmu.2021.798235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
While human leukocyte antigen (HLA) and HLA-like proteins comprise an overwhelming majority of known ligands for NK-cell receptors, the interactions of NK-cell receptors with non-conventional ligands, particularly carbohydrate antigens, is less well described. We previously found through a bead-based HLA screen that KIR3DS1, a formerly orphan member of the killer-cell immunoglobulin-like receptor (KIR) family, binds to HLA-F. In this study, we assessed the ligand binding profile of KIR3DS1 to cell lines using Fc fusion constructs, and discovered that KIR3DS1-Fc exhibited binding to several human cell lines including ones devoid of HLA. To identify these non-HLA ligands, we developed a magnetic enrichment-based genome-wide CRISPR/Cas9 knock-out screen approach, and identified enzymes involved in the biosynthesis of heparan sulfate as crucial for the binding of KIR3DS1-Fc to K562 cells. This interaction between KIR3DS1 and heparan sulfate was confirmed via surface plasmon resonance, and removal of heparan sulfate proteoglycans from cell surfaces abolished KIR3DS1-Fc binding. Testing of additional KIR-Fc constructs demonstrated that KIR family members containing a D0 domain (KIR3DS1, KIR3DL1, KIR3DL2, KIR2DL4, and KIR2DL5) bound to heparan sulfate, while those without a D0 domain (KIR2DL1, KIR2DL2, KIR2DL3, and KIR2DS4) did not. Overall, this study demonstrates the use of a genome-wide CRISPR/Cas9 knock-out strategy to unbiasedly identify unconventional ligands of NK-cell receptors. Furthermore, we uncover a previously underrecognized binding of various activating and inhibitory KIRs to heparan sulfate proteoglycans that may play a role in NK-cell receptor signaling and target-cell recognition.
Collapse
Affiliation(s)
- Klara Klein
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angelique Hölzemer
- Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Centre Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Tim Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tae-Eun Kim
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
| | - Haley L. Dugan
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Adimab, LLC, Lebanon, NH, United States
| | - Stephanie Jost
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marcus Altfeld
- Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Department of Pathology, Massachusetts General Hospital (MGH), Boston, MA, United States
- *Correspondence: Wilfredo F. Garcia-Beltran,
| |
Collapse
|
24
|
Sadeghi S, Kalhor H, Panahi M, Abolhasani H, Rahimi B, Kalhor R, Mehrabi A, Vahdatinia M, Rahimi H. Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin. Int J Biol Macromol 2021; 191:1175-1190. [PMID: 34606789 DOI: 10.1016/j.ijbiomac.2021.09.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.
Collapse
Affiliation(s)
- Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Applied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirmehdi Mehrabi
- Department of Pharmacoeconomy & Administrative Pharmacy, School Of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Vahdatinia
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Scappaticci RAF, Berretta AA, Torres EC, Buszinski AFM, Fernandes GL, dos Reis TF, de Souza-Neto FN, Gorup LF, de Camargo ER, Barbosa DB. Green and Chemical Silver Nanoparticles and Pomegranate Formulations to Heal Infected Wounds in Diabetic Rats. Antibiotics (Basel) 2021; 10:1343. [PMID: 34827281 PMCID: PMC8614779 DOI: 10.3390/antibiotics10111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Infected cutaneous ulcers from diabetic rats with Candida albicans and Streptococcus aureus were treated with spray formulations containing green silver nanoparticles (GS), chemical silver nanoparticles (CS), or pomegranate peel extract (PS). After wound development and infection, the treatments were performed twice per day for 14 days. The wound healing was analyzed on days 2, 7, and 14 through the determination of CFUs, inflammatory infiltrate, angiogenesis, fibroplasia, myeloperoxidase, and collagen determination. Expressive improvement in wound healing was noted using both silver nanoparticles for 7 days. All the treatments were superior to controls and promoted significant S. aureus reduction after 14 days. CS presented better anti-inflammatory results, and GS and CS the highest number of fibroblasts. Despite the techniques' limitations, GS and CS demonstrated considerable potential for managing infected wounds, especially considering no early strategies prior to the drugs, such as the debridement of these wounds, were included.
Collapse
Affiliation(s)
- Renan Aparecido Fernandes Scappaticci
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Andresa Aparecida Berretta
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Elina Cassia Torres
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Andrei Felipe Moreira Buszinski
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Gabriela Lopes Fernandes
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Francisco Nunes de Souza-Neto
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Emerson Rodrigues de Camargo
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| |
Collapse
|
26
|
Hodge JG, Pistorio AL, Neal CA, Dai H, Nelson-Brantley JG, Steed ME, Korentager RA, Zamierowski DS, Mellott AJ. Novel insights into negative pressure wound healing from an in situ porcine perspective. Wound Repair Regen 2021; 30:64-81. [PMID: 34618990 PMCID: PMC8724420 DOI: 10.1111/wrr.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | - Ashley L Pistorio
- Department of Plastic Surgery, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Christopher A Neal
- KIDDRC Imaging Core Facility, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hongyan Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Molly E Steed
- Department of Pharmacy Practice, University of Kansas, Lawrence, Kansas, USA
| | - Richard A Korentager
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Matera DL, Lee AT, Hiraki HL, Baker BM. The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cell Mol Bioeng 2021; 14:381-396. [PMID: 34777599 PMCID: PMC8548490 DOI: 10.1007/s12195-021-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Connective tissue repair and mechanosensing are tightly entwined in vivo and occur within a complex three-dimensional (3D), fibrous extracellular matrix (ECM). Typically driven by activated fibroblasts, wound repair involves well-defined steps of cell spreading, migration, proliferation, and fibrous ECM deposition. While the role of Rho GTPases in regulating these processes has been explored extensively in two-dimensional cell culture models, much less is known about their role in more physiologic, 3D environments. METHODS We employed a 3D, fibrous and protease-sensitive hydrogel model of interstitial ECM to study the interplay between Rho GTPases and fibrous matrix cues in fibroblasts during wound healing. RESULTS Modulating fiber density within protease-sensitive hydrogels, we confirmed previous findings that heightened fiber density promotes fibroblast spreading and proliferation. The presence of matrix fibers furthermore corresponded to increased cell migration speeds and macroscopic hydrogel contraction arising from fibroblast generated forces. During fibroblast spreading, Rac1 and RhoA GTPase activity proved crucial for fiber-mediated cell spreading and contact guidance along matrix fibers, while Cdc42 was dispensable. In contrast, interplay between RhoA, Rac1, and Cdc42 contributed to fiber-mediated myofibroblast differentiation and matrix contraction over longer time scales. CONCLUSION These observations may provide insights into tissue repair processes in vivo and motivate the incorporation of cell-adhesive fibers within synthetic hydrogels for material-guided wound repair strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00698-5.
Collapse
Affiliation(s)
- Daniel L. Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexander T. Lee
- Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Harrison L. Hiraki
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Brendon M. Baker
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
28
|
Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. Colloids Surf B Biointerfaces 2021; 208:112105. [PMID: 34536674 DOI: 10.1016/j.colsurfb.2021.112105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Diabetic foot ulcers (DFUs) that are not effectively treated could lead to partial or complete lower limb amputations. The lack of connective tissue growth factor (CTGF) and insulin-like growth factor (IGF-I) in DFUs results in limited matrix deposition and poor tissue repair. To enhance growth factor (GF) availability in DFUs, heparin (HN)-mimetic alginate sulfate/polycaprolactone (AlgSulf/PCL) double emulsion nanoparticles (NPs) with high affinity and sustained release of CTGF and IGF-I were synthesized. The NPs size, encapsulation efficiency (EE), cytotoxicity, cellular uptake and wound healing capacity in immortalized primary human adult epidermal cells (HaCaT) were assessed. The sonication time and amplitude used for NPs synthesis enabled the production of particles with a minimum of 236 ± 25 nm diameter. Treatment of HaCaT cells with up to 50 μg mL-1 of NPs showed no cytotoxic effects after 72 h. The highest bovine serum albumin EE (94.6 %, P = 0.028) and lowest burst release were attained with AlgSulf/PCL. Moreover, cells treated with AlgSulf/CTGF (250 ng mL-1) exhibited the most rapid wound closure compared to controls while maintaining fibronectin synthesis. Double-emulsion NPs based on HN-mimetic AlgSulf represent a novel approach which can significantly enhance diabetic wound healing and can be expanded for applications requiring the delivery of other HN-binding GFs.
Collapse
|
29
|
Ghomi ER, Shakiba M, Ardahaei AS, Akbari M, Faraji M, Ataei S, Kohansal P, Jafari I, Abdouss M, Ramakrishna S. Innovations in drug delivery for chronic wound healing. Curr Pharm Des 2021; 28:340-351. [PMID: 34269663 DOI: 10.2174/1381612827666210714102304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a varied and complex process designed to promptly restore standard skin structure, function, and appearance. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of other cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, cannot heal through the mentioned natural stages. It causes mental and physical problems for these people and, as a result, imposes high economic and social costs on society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in the community, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterial, and membranes are discussed and reviewed.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| | | | - Ali Saedi Ardahaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, P.O. Box 491888369, Iran
| | - Mahsa Akbari
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahla Ataei
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Kohansal
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Iman Jafari
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| |
Collapse
|
30
|
Vijayan A, C K N, Vinod Kumar GS. ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing. NANOSCALE ADVANCES 2021; 3:3085-3092. [PMID: 36133662 PMCID: PMC9416804 DOI: 10.1039/d0na00926a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/27/2021] [Indexed: 05/14/2023]
Abstract
Polymeric nanofibrous scaffolds provide fine-tuned structures with inter-connecting pores resembling the natural extracellular matrix (ECM) in tissues, and show good potential in assisting the creation of artificial functional tissue. Additional application of growth factors helps to regulate the cellular behaviors and tissue assembly in the scaffolds, which eases the healing process. In this study, we synthesized an electrospun polymer scaffold system enriched with nanoparticles containing growth factors for accelerated healing of diabetic wounds. BSA nanoparticles were synthesized by cross-linking with PEG aldehyde. To free the amino group of BSA, heparin was conjugated by EDC/NHS chemistry. The angiogenic growth factors bFGF and VEGF were bound to heparin by electrostatic interaction. These nanoparticles were adsorbed on to electrospun collagen/PLGA/chitosan nanofibers. The synthesized nanofiber system was evaluated in vitro for its cell viability and proliferation. In vivo experiments conducted in a streptozotocin-induced diabetic mice model showed accelerated wound healing. The excellent healing efficiency of this ECM-mimicking nanofiber scaffold makes it a great candidate for therapeutic application in diabetic wounds.
Collapse
Affiliation(s)
- Amritha Vijayan
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
- Research Centre, University of Kerala Thiruvananthapuram Kerala India
| | - Nanditha C K
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
- Research Centre, University of Kerala Thiruvananthapuram Kerala India
| | - G S Vinod Kumar
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology Thycaud P.O Thiruvananthapuram Kerala India-695014
| |
Collapse
|
31
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
32
|
Roohi SA, Keuylian Z, Barritault D. ReGeneraTing Agents (rgta ®) technology combined with antibiotics improves outcomes for infections in the upper limb. Clin Case Rep 2021; 9:1083-1091. [PMID: 33768787 PMCID: PMC7981774 DOI: 10.1002/ccr3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 11/23/2022] Open
Abstract
A matrix therapy agent marketed as CACIPLIQ20® showed marked improvement in the healing rate of hand infections, including functional recovery. It can be used at both earlier and later stages to promote faster healing and prevent an adverse outcome.
Collapse
Affiliation(s)
- Sharifah Ahmad Roohi
- Hand & Upper Limb CentrePantai Hospital Kuala LumpurKuala LumpurMalaysia
- Prince Court Medical CentreOrthopaedic ClinicKuala LumpurMalaysia
| | | | - Denis Barritault
- OTR3ParisFrance
- Laboratory Cell Growth and Tissue Repair (CRRET)UPEC 4397/ERLCNRS 9215Université‐Paris‐Est‐CréteilCréteilFrance
| |
Collapse
|
33
|
Chopra H, Kumar S, Singh I. Biopolymer-based Scaffolds for Tissue Engineering Applications. Curr Drug Targets 2021; 22:282-295. [PMID: 33143611 DOI: 10.2174/1389450121999201102140408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Tissue engineering is governed by the use of cells and polymers. The cells may be accounted for the type of tissue to be targeted, while polymers may vary from natural to synthetic. The natural polymers have advantages such as non-immunogenic and complex structures that help in the formation of bonds in comparison to the synthetic ones. Various targeted drug delivery systems have been prepared using polymers and cells, such as nanoparticles, hydrogels, nanofibers, and microspheres. The design of scaffolds depends on the negative impact of material used on the human body and they have been prepared using surface modification technique or neo material synthesis. The dermal substitutes are a distinctive array that aims at the replacement of skin parts either through grafting or some other means. This review focuses on biomaterials for their use in tissue engineering. This article shall provide the bird's eye view of the scaffolds and dermal substitutes, which are naturally derived.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Kumar
- ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
34
|
Akolpoğlu Başaran DD, Gündüz U, Tezcaner A, Keskin D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int J Pharm 2021; 597:120207. [PMID: 33524526 DOI: 10.1016/j.ijpharm.2021.120207] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
Skin regeneration is one of the most important issues in tissue engineering. Research on more effective biomaterials that will enhance regeneration while enabling requirements of a healing skin site is an important challenge in skin tissue engineering. In this study, heparin was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) which were then incorporated into Sericin/Gelatin (Ser/Gel) nanofibers during the electrospinning process in order to develop a combined system that has controlled release approach, besides the ability to help the regeneration of skin tissue by the involvement of biopolymers; gelatin, and sericin. The loading capacity and heparin encapsulation efficiency in the nanoparticles were determined as 30.04 mg/g of polymer and 60%, respectively. Cumulative release of heparin from NPs for 1 week was faster than from NPs loaded gelatin scaffolds and from dual protein (Ser/Gel) scaffolds with ratios: 1/7 and 1/2 (approximately 85%, 65%, 55%, and 40%, respectively). Sericin addition slowed down the degradation properties of the scaffold. The scaffold having a Ser/Gel ratio (1/2) was found as the most promising candidate because of its proper fiber morphology, high water retention, and low degradation degree.
Collapse
Affiliation(s)
| | - Ufuk Gündüz
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey
| | - Dilek Keskin
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
35
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Maity S, Al-Ameer M, Gundampati RK, Agrawal S, Kumar TKS. Heparin-Binding Affinity Tag: A Novel Affinity Tag for Simple and Efficient Purification of Recombinant Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2178:311-328. [PMID: 33128758 DOI: 10.1007/978-1-0716-0775-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heparin, a polysulfated polyanionic member of the glycosaminoglycan family, is known to specifically bind to a number of functionally important proteins. Based on the available information on structural specificity of heparin-protein interactions, a novel heparin-binding peptide (HB) affinity tag has been designed to achieve simple and cost-effective purification of target recombinant proteins. The HB-fused recombinant target proteins are purified on a heparin-Sepharose column using a stepwise/continuous sodium chloride gradient. A major advantage of the HB tag is that the HB-fused target proteins can be purified under denaturing conditions in the presence of 8 M urea. In addition, polyclonal antibody directed against the HB tag can be used to specifically detect and quantitate the HB-fused recombinant protein(s). Herein, a step-by-step protocol(s) for the purification of different soluble recombinant target proteins is described. In addition, useful tips to troubleshoot potential problems and also suggestions to successfully adopt the HB-tag-based purification to a wide range of target proteins are provided.
Collapse
Affiliation(s)
- Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
37
|
Griffin ME, Sorum AW, Miller GM, Goddard WA, Hsieh-Wilson LC. Sulfated glycans engage the Ang-Tie pathway to regulate vascular development. Nat Chem Biol 2020; 17:178-186. [PMID: 33020664 PMCID: PMC8087285 DOI: 10.1038/s41589-020-00657-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The angiopoietin (Ang)/Tie pathway is essential for the proper maturation and remodeling of the vasculature. Despite its importance in disease, the mechanisms that control signal transduction through this pathway are poorly understood. Here, we demonstrate that heparan sulfate glycosaminoglycans (HS GAGs) regulate Ang/Tie signaling through direct interactions with both Ang ligands and the Tie1 receptor. HS GAGs bound to Ang1/4 ligands and formed ternary Ang-Tie2 receptor complexes, thereby potentiating endothelial survival signaling. In addition, we found that HS GAGs are novel ligands for the orphan receptor Tie1. The HS-Tie1 interaction promoted Tie1-Tie2 heterodimerization and enhanced Tie1 stability within the mature vasculature. Loss of HS-Tie1 binding using CRISPR/Cas9-mediated mutagenesis in vivo led to decreased Tie protein levels, pathway suppression, and aberrant retinal vascularization. Together, these results reveal that sulfated glycans use dual mechanisms to regulate Ang/Tie signaling and are important for the development and maintenance of the vasculature.
Collapse
Affiliation(s)
- Matthew E Griffin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander W Sorum
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gregory M Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William A Goddard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Materials and Process Simulation Center and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
38
|
Puri S, Coulson-Thomas YM, Gesteira TF, Coulson-Thomas VJ. Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface. Front Cell Dev Biol 2020; 8:731. [PMID: 32903857 PMCID: PMC7438910 DOI: 10.3389/fcell.2020.00731] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The ocular surface, which forms the interface between the eye and the external environment, includes the cornea, corneoscleral limbus, the conjunctiva and the accessory glands that produce the tear film. Glycosaminoglycans (GAGs) and proteoglycans (PGs) have been shown to play important roles in the development, hemostasis and pathology of the ocular surface. Herein we review the current literature related to the distribution and function of GAGs and PGs within the ocular surface, with focus on the cornea. The unique organization of ECM components within the cornea is essential for the maintenance of corneal transparency and function. Many studies have described the importance of GAGs within the epithelial and stromal compartment, while very few studies have analyzed the ECM of the endothelial layer. Importantly, GAGs have been shown to be essential for maintaining corneal homeostasis, epithelial cell differentiation and wound healing, and, more recently, a role has been suggested for the ECM in regulating limbal stem cells, corneal innervation, corneal inflammation, corneal angiogenesis and lymphangiogenesis. Reports have also associated genetic defects of the ECM to corneal pathologies. Thus, we also highlight the role of different GAGs and PGs in ocular surface homeostasis, as well as in pathology.
Collapse
Affiliation(s)
- Sudan Puri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Yvette M Coulson-Thomas
- Molecular Biology Section, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States.,Optimvia, LLC, Batavia, OH, United States
| | | |
Collapse
|
39
|
La CC, Takeuchi LE, Abbina S, Vappala S, Abbasi U, Kizhakkedathu JN. Targeting Biological Polyanions in Blood: Strategies toward the Design of Therapeutics. Biomacromolecules 2020; 21:2595-2621. [DOI: 10.1021/acs.biomac.0c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Seng C, Sharthiya H, Tiwari V, Fornaro M. Involvement of heparan sulfate during mouse cytomegalovirus infection in murine-derived immortalized neuronal cell line. Future Virol 2020. [DOI: 10.2217/fvl-2019-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytomegalovirus infection cause of severe developmental disorders of the CNS. Aim: In this study, we utilized a differentiated mouse-derived hippocampal cell line (dHT22) to understand mouse CMV (MCMV) infection. Results: The expression of immediate early genes ( IE) 1 and 3 confirmed the time-dependent susceptibility of dHT22 cells to MCMV infection. MCMV infection alters the cellular distribution of heparan sulfate (HS). In addition, pretreatment with heparinase significantly reduces virus infectivity. Conclusion: The compartmentalization of HS in MCMV infected cells suggests multiple roles of HS in virus life cycle ranging from viral entry to viral transport and cellular remodeling. An enzymatic heparinase assay confirmed that HS is critical for viral entry and trafficking.
Collapse
Affiliation(s)
- Chanmoly Seng
- Department of Biomedical Sciences, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Michele Fornaro
- Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
41
|
Cheng YZ, Liu IM, Cheng JT, Lin BS, Liu F. Wound healing is promoted by Musa paradisiaca (banana) extract in diabetic rats. Arch Med Sci 2020; 20:632-640. [PMID: 38757031 PMCID: PMC11094818 DOI: 10.5114/aoms.2020.92344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2024] Open
Abstract
Introduction Impairments in wound healing commonly occur among patients with diabetes. Herbal medicines have a long history of usage in wound care management. Super green (SG) is a newly discovered natural product obtained from Musa paradisiaca. This study aimed to investigate the efficacy of the topical application of SG in healing surgical wounds in diabetic rats. Material and methods Wistar rats received a one-time intraperitoneal injection of streptozotocin to induce type 1 diabetes. Full-thickness excisional skin wounds were created on the backs of the rats. The relevant groups were topically treated with the indicated concentrations of SG or vehicle dressing throughout the study duration. Histological analysis was performed and the mRNA levels of proinflammatory cytokines were measured to evaluate the improvement of wound closure. Results The wound area ratio of the SG (1/6000 dilution)-treated group was greatly reduced compared to that of the vehicle-treated group. The histological analysis showed fewer inflammatory cells, accelerated re-epithelialization, and increased collagen deposition in SG 1/6000-treated wounds. The gene expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were decreased and the levels of type I and type III collagen were increased after SG treatment. Conclusions These results show that the most therapeutically efficacious concentration of SG (1/6000 dilution) can enhance wound repair in diabetic rats. SG has the potential to be a new treatment strategy for diabetic wounds.
Collapse
Affiliation(s)
- Yung-Ze Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan, Taiwan
| | - I-Min Liu
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Yanpu, Pingtung, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan, Taiwan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Chiao Tung University, Guiren, Tainan, Taiwan
| | - Flank Liu
- Department of Research and Development, Natural Well Technical Company, Guishan, Taoyuan, Taiwan
| |
Collapse
|
42
|
Khodayari Moez E, Hajihosseini M, Andrews JL, Dinu I. Longitudinal linear combination test for gene set analysis. BMC Bioinformatics 2019; 20:650. [PMID: 31822265 PMCID: PMC6902471 DOI: 10.1186/s12859-019-3221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 11/12/2022] Open
Abstract
Background Although microarray studies have greatly contributed to recent genetic advances, lack of replication has been a continuing concern in this area. Complex study designs have the potential to address this concern, though they remain undervalued by investigators due to the lack of proper analysis methods. The primary challenge in the analysis of complex microarray study data is handling the correlation structure within data while also dealing with the combination of large number of genetic measurements and small number of subjects that are ubiquitous even in standard microarray studies. Motivated by the lack of available methods for analysis of repeatedly measured phenotypic or transcriptomic data, herein we develop a longitudinal linear combination test (LLCT). Results LLCT is a two-step method to analyze multiple longitudinal phenotypes when there is high dimensionality in response and/or explanatory variables. Alternating between calculating within-subjects and between-subjects variations in two steps, LLCT examines if the maximum possible correlation between a linear combination of the time trends and a linear combination of the predictors given by the gene expressions is statistically significant. A generalization of this method can handle family-based study designs when the subjects are not independent. This method is also applicable to time-course microarray, with the ability to identify gene sets that exhibit significantly different expression patterns over time. Based on the results from a simulation study, LLCT outperformed its alternative: pathway analysis via regression. LLCT was shown to be very powerful in the analysis of large gene sets even when the sample size is small. Conclusions This self-contained pathway analysis method is applicable to a wide range of longitudinal genomics, proteomics, metabolomics (OMICS) data, allows adjusting for potentially time-dependent covariates and works well with unbalanced and incomplete data. An important potential application of this method could be time-course linkage of OMICS, an attractive possibility for future genetic researchers. Availability: R package of LLCT is available at: https://github.com/its-likeli-jeff/LLCT
Collapse
|
43
|
Irving S. Managing chronic, nonhealing wounds stalled in the inflammatory phase: a case series using a novel matrix therapy, CACIPLIQ20. Br J Community Nurs 2019; 24:S33-S37. [PMID: 31479338 DOI: 10.12968/bjcn.2019.24.sup9.s33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the biggest challenges faced by healthcare providers is the treatment of chronic, non-healing wounds. This paper reports for the first time in the UK the results of five case studies in which a novel regenerating matrix-based therapy, CACIPLIQ20, was used. CACIPLIQ20 is a heparan sulphate mimetic designed to replace the destroyed heparan sulphate in the extracellular matrix of wound cells. All five patients in this case series had chronic, non-healing ulcers that had not improved with conventional care. Treatment included two applications of CACIPLIQ20 per week, for a maximum of 12 weeks. Three of the five wounds healed completely, and the remaining two showed significant improvements in size and quality. The treatment was well tolerated by the patients and also led to a significant reduction in pain. Moreover, CACIPLIQ20 treatment was found to be highly cost-effective when compared to conventional care, with the potential to save healthcare systems significant resources. Further studies are needed to build a strong evidence base on the use of this product, but these preliminary findings are certainly promising.
Collapse
Affiliation(s)
- Sally Irving
- Tissue Viability Service Manager at Somerset Partnership NHS Trust, at the time of the study now, Independent Tissue Viability Nurse Consultant at Specialist Wound Care (Boocare Ltd)
| |
Collapse
|
44
|
Im J, Lindsay S, Wang X, Zhang P. Single Molecule Identification and Quantification of Glycosaminoglycans Using Solid-State Nanopores. ACS NANO 2019; 13:6308-6318. [PMID: 31121093 DOI: 10.1021/acsnano.9b00618] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of polysaccharides with potent biological activities. Due to their complex and heterogeneous composition, varied charge, polydispersity, and presence of isobaric stereoisomers, the analysis of GAG samples poses considerable challenges to current analytical techniques. In the present study, we combined solid-state nanopores-a single molecule sensor with a support vector machine (SVM)-a machine learning algorithm for the analysis of GAGs. Our results indicate that the nanopore/SVM technique could distinguish between monodisperse fragments of heparin and chondroitin sulfate with high accuracy (>90%), allowing as low as 0.8% (w/w) of chondroitin sulfate impurities in a heparin sample to be detected. In addition, the nanopore/SVM technique distinguished between unfractionated heparin (UFH) and enoxaparin (low molecular weight heparin) with an accuracy of ∼94% on average. With a reference sample for calibration, a nanopore could achieve nanomolar sensitivity and a 5-Log dynamic range. We were able to quantify heparin with reasonable accuracy using multiple nanopores. Our studies demonstrate the potential of the nanopore/SVM technique to quantify and identify GAGs.
Collapse
|
45
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
46
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
47
|
Heparin Contamination and Issues Related to Raw Materials and Controls. THE SCIENCE AND REGULATIONS OF NATURALLY DERIVED COMPLEX DRUGS 2019. [DOI: 10.1007/978-3-030-11751-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Gurnani P, Bray CP, Richardson RAE, Peltier R, Perrier S. Heparin-Mimicking Sulfonated Polymer Nanoparticles via RAFT Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2019; 40:e1800314. [PMID: 29999558 DOI: 10.1002/marc.201800314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/28/2018] [Indexed: 12/24/2022]
Abstract
Heparin plays a significant role in wound healing and tissue regeneration applications, through stabilization of fibroblast growth factors (FGF). Risks associated with batch-to-batch variability and contamination from its biological sources have led to the development of synthetic, highly sulfonated polymers as promising heparin mimics. In this work, a systematic study of an aqueous polymerization-induced self-assembly (PISA) of styrene from poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) macro reversible addition-fragmentation chain transfer (macro-RAFT) agents produced a variety of spherical heparin-mimicking nanoparticles, which were further characterized with light scattering and electron microscopy techniques. None of the nanoparticles tested showed toxicity against mammalian cells; however, significant hemolytic activity was observed. Nonetheless, the heparin-mimicking nanoparticles outperformed both heparin and linear P(AMPS) in cellular proliferation assays, suggesting increased bFGF stabilization efficiencies, possibly due to the high density of sulfonated moieties at the particle surface.
Collapse
Affiliation(s)
- Pratik Gurnani
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Caroline P Bray
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Robert A E Richardson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
49
|
Dao DT, Anez-Bustillos L, Ourieff J, Pan A, Mitchell PD, Kishikawa H, Fell GL, Baker MA, Watnick RS, Chen H, Hamilton TE, Rogers MS, Bielenberg DR, Puder M. Heparin impairs angiogenic signaling and compensatory lung growth after left pneumonectomy. Angiogenesis 2018; 21:837-848. [PMID: 29956017 DOI: 10.1007/s10456-018-9628-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022]
Abstract
Children with hypoplastic lung diseases, such as congenital diaphragmatic hernia, can require life support via extracorporeal membrane oxygenation and systemic anticoagulation, usually in the form of heparin. The role of heparin in angiogenesis and organ growth is inconclusive, with conflicting data reported in the literature. This study aimed to investigate the effects of heparin on lung growth in a model of compensatory lung growth (CLG). Compared to the absence of heparin, treatment with heparin decreased the vascular endothelial growth factor (VEGF)-mediated activation of VEGFR2 and mitogenic effect on human lung microvascular endothelial cells in vitro. Compared to non-heparinized controls, heparinized mice demonstrated impaired pulmonary mechanics, decreased respiratory volumes and flows, and reduced activity levels after left pneumonectomy. They also had lower lung volume, pulmonary septal surface area and alveolar density on morphometric analyses. Lungs of heparinized mice displayed decreased phosphorylation of VEGFR2 compared to the control group, with consequential downstream reduction in markers of cellular proliferation and survival. The use of bivalirudin, an alternative anticoagulant that does not interact with VEGF, preserved lung growth and pulmonary mechanics. These results demonstrated that heparin impairs CLG by reducing VEGFR2 activation. These findings raise concern for the clinical use of heparin in the setting of organ growth or regeneration.
Collapse
Affiliation(s)
- Duy T Dao
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Jared Ourieff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Gillian L Fell
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Meredith A Baker
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Randolph S Watnick
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Thomas E Hamilton
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Takeda Y, Honda Y, Kakinoki S, Yamaoka T, Baba S. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model. Dent Mater J 2018; 37:575-581. [PMID: 29491202 DOI: 10.4012/dmj.2017-305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heparin binds to and modulates various growth factors, potentially augmenting the bone-forming capability of biomaterials. Here, α-tricalcium phosphate (α-TCP) granules were modified with peptide containing the marine mussel-derived adhesive sequence, which reacts with α-TCP surface, and cationic sequence, which binds to heparin (α-Ph). α-Ph retained the α-TCP phase and intergranule spaces after the surface modification. The existence of heparin on α-Ph granules was confirmed using X-ray photoelectron spectroscopy. Granules of α-TCP and α-Ph were implanted into critical-size defects in rat calvaria for 4 weeks. Micro-computed tomography, histological evaluation, and Alcian blue staining revealed that α-Ph induced superior bone formation compared with α-TCP. Newly formed bone on α-Ph was preferentially in contact with the Alcian blue-stained surfaces of granules. These results suggested that heparinization enhanced the early osteogenic capacity of α-TCP, possibly by modulating the secretion of Alcian blue-stained extracellular matrixes.
Collapse
Affiliation(s)
| | | | - Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University
| |
Collapse
|