1
|
Gabr MM, El-Halawani SM, Refaie AF, Khater SM, Ismail AM, Karras MS, Magar RW, Sayed SE, Kloc M, Uosef A, Sabek OM, Ghoneim MA. Modulation of naïve mesenchymal stromal cells by extracellular vesicles derived from insulin-producing cells: an in vitro study. Sci Rep 2024; 14:17844. [PMID: 39090166 PMCID: PMC11294623 DOI: 10.1038/s41598-024-68104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.
Collapse
Affiliation(s)
- Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Shorouk El Sayed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Omaima M Sabek
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
2
|
Moriyama H, Moriyama M, Ozawa T, Tsuruta D, Hayakawa T. Differentiation of Human Adipose-Derived Mesenchymal Stromal/Stem Cells into Insulin-Producing Cells with A Single Tet-Off Lentiviral Vector System. CELL JOURNAL 2022; 24:705-714. [PMID: 36527342 PMCID: PMC9790068 DOI: 10.22074/cellj.2022.557533.1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Human adipose-derived mesenchymal stromal/stem cells (hASC) constitute an attractive source of stem cells for cell-based therapies in regenerative medicine and tissue engineering as they are easy to acquire from lipoaspirate, expansion, and genetic modification ex vivo. The combination of Pdx-1, MafA, and NeuroD1 has been indicated to possess the ability to reprogram various types of cells into insulin-producing cells. The aim of this study is to investigate whether MafA and NeuroD1 would cooperate with Pdx-1 in the differentiation of hASC into insulin-producing cells. MATERIALS AND METHODS In this experimental study, we generated polycistronic expression vectors expressing Pdx1 and MafA/NeuroD1 with a reporter from a human EF-1α promoter using 2A peptides in a single tet-off lentiviral vector system. Briefly, hASC were transduced with the lentiviral vectors and allowed to differentiate into insulin-producing cells in vitro and in vivo. Thereafter, RNA expression, dithizone staining, and immunofluorescent analysis were conducted. RESULTS Cleaved transcriptional factors from a single tet-off lentiviral vector were functionally equivalent to their native proteins and strictly regulated by doxycycline (Dox). Insulin gene expression in hASC transduced with Pdx1, Pdx1/ MafA, and Pdx1/NeuroD1 in differentiation medium were successfully increased by 1.89 ± 0.39, 4.81 ± 0.98, 5.51 ± 0.63, respectively, compared to venus-transduced, control hASC. These cells could form dithizone-positive cell clusters in vitro and were found to express insulin in vivo. CONCLUSION Using our single tet-off lentiviral vector system, Pdx-1 and MafA/NeuroD1 could be simultaneously expressed in the absence of Dox. Further, this system allowed the differentiation of hASC into insulin-producing cells.
Collapse
Affiliation(s)
- Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan,Pharmaceutical Research and Technology InstituteKindai University3-4-1 KowakaeHigashi-OsakaOsaka 577-8502Japan
| | - Mariko Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolita University, 1-4-3 Asahimachi, Abeno-Ku,
Osaka 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolita University, 1-4-3 Asahimachi, Abeno-Ku,
Osaka 545-8585, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
3
|
Ghoneim MA, Gabr MM, Refaie AF, El-Halawani SM, Al-Issawi MM, Elbassiouny BL, Kader MAAE, Ismail AM, Zidan MF, Karras MS, Magar RW, Khater SM, Ashamallah SA, Zakaria MM, Kloc M. Transplantation of insulin-producing cells derived from human mesenchymal stromal/stem cells into diabetic humanized mice. Stem Cell Res Ther 2022; 13:350. [PMID: 35883190 PMCID: PMC9327173 DOI: 10.1186/s13287-022-03048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this study was to investigate allogenic immune responses following the transplantation of insulin-producing cells (IPCs) differentiated from human adipose tissue-derived stem cells (hAT-MSCs) into humanized mice. Methods hAT-MSCs were isolated from liposuction aspirates obtained from HLA-A2-negative healthy donors. These cells were expanded and differentiated into IPCs. HLA-A2-positive humanized mice (NOG-EXL) were divided into 4 groups: diabetic mice transplanted with IPCs, diabetic but nontransplanted mice, nondiabetic mice transplanted with IPCs and normal untreated mice. Three million differentiated cells were transplanted under the renal capsule. Animals were followed-up to determine their weight, glucose levels (2-h postprandial), and human and mouse insulin levels. The mice were euthanized 6–8 weeks posttransplant. The kidneys were explanted for immunohistochemical studies. Blood, spleen and bone marrow samples were obtained to determine the proportion of immune cell subsets (CD4+, CD8+, CD16+, CD19+ and CD69+), and the expression levels of HLA-ABC and HLA-DR. Results Following STZ induction, blood glucose levels increased sharply and were then normalized within 2 weeks after cell transplantation. In these animals, human insulin levels were measurable while mouse insulin levels were negligible throughout the observation period. Immunostaining of cell-bearing kidneys revealed sparse CD45+ cells. Immunolabeling and flow cytometry of blood, bone marrow and splenic samples obtained from the 3 groups of animals did not reveal a significant difference in the proportions of immune cell subsets or in the expression levels of HLA-ABC and HLA-DR. Conclusion Transplantation of IPCs derived from allogenic hAT-MSCs into humanized mice was followed by a muted allogenic immune response that did not interfere with the functionality of the engrafted cells. Our findings suggest that such allogenic cells could offer an opportunity for cell therapy for insulin-dependent diabetes without immunosuppression, encapsulation or gene manipulations. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03048-y.
Collapse
Affiliation(s)
| | - Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Mohga M Al-Issawi
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Mai A Abd El Kader
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mona F Zidan
- Microbiology and Immunology Research Program, Children's Hospital 57357, Cairo, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Mahmoud M Zakaria
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.,The Houston Methodist Hospital, Houston, TX, USA.,The University of Texas, M.D. Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
4
|
Abd El Kader MA, Gabr MM, Khater SM, Ghanem RA, Abou El Naga AM. Impact of insulin producing cells derived from adipose tissue mesenchymal stem cells on testicular dysfunction of diabetic rats. Heliyon 2021; 7:e08316. [PMID: 34820536 PMCID: PMC8601995 DOI: 10.1016/j.heliyon.2021.e08316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
The present study is to clarify the effect of insulin-producing cells (IPCs) derived from adipose tissue mesenchymal stem cells (AT-MSCs) on diabetic-induced impairments as the abnormalities of testicular tissues, oxidative stress of testes, and defects of spermatogenesis. Diabetes was stimulated by streptozotocin (STZ) injection in male adult Sprague Dawley (SD) rats. Diabetes was confirmed by taking two highly consecutive fasting blood sugar readings; more than 300 mg/dl; within one week. Five million of IPCs derived from AT-MSCs; encased in TheraCyte capsule; were then directly transplanted (one implant for each rat) subcutaneously in diabetic rats. Implants were maintained for 3 months and the fasting blood sugar of the transplanted rats was observed every month. At the end of the experiment; serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also estimated. The sperm parameters (count, motility, and abnormality) were recorded. In testicular tissue; GPX4, Bcl2, and Bax levels were evaluated, while oxidative stress and antioxidant enzymes activities were measured in the testes homogenate. Also, histopathological alterations were examined in the testes cross-section. In the results, it was found that IPCs treatment enhanced the serum testosterone, FSH, and LH levels. Diabetic-induced impairments in the sperm parameters were noticeably improved post-IPCs transplantation in the diabetic rats. Moreover, the treatment improved the diabetic-associated testicular oxidative stress. Also, it was recognized that the Bax expression decreased, while, GPX4 and Bcl2 expression increased in the treated rats. Meanwhile, the abnormalities showed in the histopathological studies of the hyperglycemic rat's testes were attenuated post-treatment. So, IPCs transplantation improved diabetes and consequently protected against hyperglycemia-induced testicular damages.
Collapse
Affiliation(s)
- Mai A Abd El Kader
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Mahmoud M Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Department of Pathology, Urology and Nephrology Center, Mansoura, Egypt
| | - Reham A Ghanem
- Division of Molecular Biology, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | | |
Collapse
|
5
|
Zhang S, Wang Q, Ji H, Lu H, Yang Q, Yin J, Guan W. Porcine pancreas mesenchymal cell characterization and functional differentiation into insulin‑producing cells in vitro. Mol Med Rep 2021; 24:737. [PMID: 34414446 PMCID: PMC8404098 DOI: 10.3892/mmr.2021.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is a promising treatment strategy for patients with type 1 diabetes. Porcine pancreas-derived mesenchymal stromal cells (PMSCs) have emerged as one of the most widely used cell resources owing to their high proliferative capacity and multi-lineage differentiation potential. Although the induction efficiency and insulin production of induced insulin-producing cells (IPCs) derived from PMSCs have been estimated, these have primarily focused on the function of induced cells and alterations in related gene expression levels. However, morphological analyses and biological characterization of PMSCs and induced IPCs have not been conducted. Therefore, the present study aimed to optimize an induction protocol, resulting in a 78.92% induction rate. The present study investigated the biological characteristics of PMSCs and optimized a simple but functional three-step protocol to transform PMSCs into IPCs. PMSCs were isolated from 2–3-month-old Bama miniature pig embryos, which were then subcultured to passage 16. The surface markers pancreatic and duodenal homeobox 1, NK6 homeobox 1, Vimentin, Nestin, CD73, CD90, neurogenin 3, CD45 and CD34 were detected by immunofluorescence staining or flow cytometry. Proliferative capacity was evaluated by constructing growth curves of cells at three different passages. Functional differentiation was assessed by morphological observation, dithizone staining, and immunofluorescence staining of C-peptide, insulin, NK6 homeobox 1 and glucagon. The production of insulin by differentiated cells was also analyzed by performing ELISAs. The results demonstrated that differentiated cells were distributed with an islet-like structure, expressed specific markers C-peptide and insulin, and displayed glucose responsiveness. The results of the present study demonstrated that PMSCs were functionally induced into IPCs with the optimized three-step protocol, which may serve as a potential cell therapy strategy to widen the availability and promote the clinical application of cell therapy.
Collapse
Affiliation(s)
- Shang Zhang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qi Wang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hongbing Ji
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Huidi Lu
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qin Yang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jiahui Yin
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
6
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
7
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Huang Q, Huang Y, Liu J. Mesenchymal Stem Cells: An Excellent Candidate for the Treatment of Diabetes Mellitus. Int J Endocrinol 2021; 2021:9938658. [PMID: 34135959 PMCID: PMC8178013 DOI: 10.1155/2021/9938658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells (ASCs) known for repairing damaged cells, exerting anti-inflammatory responses and producing immunoregulatory effects that can be significantly induced into insulin-producing cells (IPCs), providing an inexhaustible supply of functional β cells for cell replacement therapy and disease modeling for diabetes. MSC therapy may be the most promising strategy for diabetes mellitus because of these significant merits. In this paper, we focused on MSC therapy for diabetes.
Collapse
Affiliation(s)
- Qiulan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanting Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
10
|
Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site. Heliyon 2020; 6:e03914. [PMID: 32395661 PMCID: PMC7210428 DOI: 10.1016/j.heliyon.2020.e03914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background/aim Diabetes mellitus (DM) is a serious, chronic and epidemic disease. Its effective therapy with exogenous insulin places an overwhelming burden on the patient's lifestyle. Moreover, pancreatic islet transplantation is limited by the scarceness of donors and the need for chronic immunosuppression. Cell-based therapy is considered an alternative source of insulin-producing cells (IPCs); encapsulating such cellular grafts in immunoisolating devices would protect the graft from immune attack without the need for immunosuppression. Herein, we investigate the ability of TheraCyte capsule as an immunoisolating device to promote the maturation of differentiated rat bone marrow derived mesenchymal stem cells (BM-MSCs), transplanted subcutaneously to treat diabetic rats in comparison with intratesticular transplantation. Main methods Rat BM-MSC were differentiated into IPCs, and either encapsulated in TheraCyte capsules for subcutaneous transplantation or transplanted intratesticular into diabetic rats. Serum insulin, C-peptide & blood glucose levels of transplanted animals were monitored. Retrieved cells were further characterized by immunofluorescence staining and gene expression analysis. Key findings Differentiated rat BM-MSC were able to produce insulin in vitro, ameliorate hyperglycemia in vivo and survive for 6 months post transplantation. Transplanted cells induced higher levels of insulin and C-peptide, lower levels of blood glucose in the cured animals of both experimental groups. Gene expression revealed a further in vivo maturation of the implanted cells. Significance These data suggest that TheraCyte encapsulation of allogeneic differentiated stem cells are capable of reversing hyperglycemia, which holds a great promise as a new cell based, clinically applicable therapies for diabetes.
Collapse
|
11
|
PRDX6 Promotes the Differentiation of Human Mesenchymal Stem (Stromal) Cells to Insulin-Producing Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7103053. [PMID: 32051828 PMCID: PMC6995490 DOI: 10.1155/2020/7103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated in vitro to form insulin-producing cells (IPCs). However, the proportion of induced cells is modest. Extracts from injured pancreata of rodents promoted this differentiation, and three upregulated proteins were identified in these extracts. The aim of this study was to evaluate the potential benefits of adding these proteins to the differentiation medium alone or in combination. Our results indicate that the proportion of IPCs among the protein(s)-supplemented samples was significantly higher than that in the samples with no added proteins. The yield from samples supplemented with PRDX6 alone was 4-fold higher than that from samples without added protein. These findings were also supported by the results of fluorophotometry. Gene expression profiles revealed higher levels among protein-supplemented samples. Significantly higher levels of GGT, SST, Glut-2, and MafB expression were noted among PRDX6-treated samples. There was a stepwise increase in the release of insulin and c-peptide, as a function of increasing glucose concentrations, indicating that the differentiated cells were glucose sensitive and insulin responsive. PRDX6 exerts its beneficial effects as a result of its biological antioxidant properties. Considering its ease of use as a single protein, PRDX6 is now routinely used in our differentiation protocols.
Collapse
|
12
|
A simple method for the generation of insulin producing cells from bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2019; 55:462-471. [PMID: 31111346 DOI: 10.1007/s11626-019-00358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
To produce insulin-producing cells (IPCs) from bone marrow mesenchymal stem cells (BM-MSCs) using a simple and cost effective method. During the initial 7 days of three-dimensional (3D) culture, BM-MSCs were cultured on 1% agar or agarose to form multicellular spheroids. Spheroids and spheroid-derived single cells (SS and SSC, respectively) were cultured in the absence of any proteinaceous growth factor in a simple specific medium for a further 7 d. The insulin content of the differentiated cells was evaluated at the mRNA and protein levels. Furthermore, the expression of pancreatic beta cells-related genes other than INS as well as the in vitro responses of IPCs to different glucose concentrations were investigated. Cellular clusters generated on agar and SS conditions (agar+SS-IPCs) stained better with beta cell specific stains and were more reactive to serum-containing insulin reactive antibodies compared with agarose-SS-IPCs. Gene expression analysis revealed that in comparison to agarose + SS-IPCs, agar+SS-IPCs expressed significantly higher levels of INS-1, INS-2, PDX-1, NKX6.1, and XBP-1. Of interest, agar+SS-IPCs expressed 2215.3 ± 120.8-fold more INS-1 gene compared to BM-MSCs. The expression of β-cell associated genes was also higher in agar+SS-IPCs compared to the agar+SSC-IPCs. Moreover, the expression of INS-1 gene was significantly higher in agar+SS-IPCs compared with agar+SSC-IPCs after culture in media with high concentration of glucose. Compared to the most expensive and time-consuming protocols, 3D culture of MSCs on agar followed by 2D culture of cellular clusters in a minimally supplemented high glucose media produced highly potent IPCs which may pay the way to the treatment of diabetic patients.
Collapse
|
13
|
Kim HJ, Li Q, Song WJ, Yang HM, Kim SY, Park SC, Ahn JO, Youn HY. Fibroblast growth factor-1 as a mediator of paracrine effects of canine adipose tissue-derived mesenchymal stem cells on in vitro-induced insulin resistance models. BMC Vet Res 2018; 14:351. [PMID: 30445954 PMCID: PMC6240186 DOI: 10.1186/s12917-018-1671-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Background In the field of diabetes research, many studies on cell therapy have been conducted using mesenchymal stem cells. This research was intended to shed light on the influence of canine adipose-tissue-derived mesenchymal stem cell conditioned medium (cAT-MSC CM) on in vitro insulin resistance models that were induced in differentiated 3T3-L1 adipocytes and the possible mechanisms involved in the phenomenon. Results Gene expression levels of insulin receptor substrate-1 (IRS-1) and glucose transporter type 4 (GLUT4) were used as indicators of insulin resistance. Relative protein expression levels of IRS-1 and GLUT4 were augmented in the cAT-MSC CM treatment group compared to insulin resistance models, indicating beneficial effects of cAT-MSC to DM, probably by actions of secreting factors. With reference to previous studies on fibroblast growth factor-1 (FGF1), we proposed FGF1 as a key contributing factor to the mechanism of action. We added anti-FGF1 neutralizing antibody to the CM-treated insulin resistance models. As a result, significantly diminished protein levels of IRS-1 and GLUT4 were observed, supporting our assumption. Similar results were observed in glucose uptake assay. Conclusions Accordingly, this study advocated the potential of FGF-1 from cAT-MSC CM as an alternative insulin sensitizer and discovered a signalling factor associated with the paracrine effects of cAT-MSC. Electronic supplementary material The online version of this article (10.1186/s12917-018-1671-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyeon-Jin Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Mi Yang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su-Yeon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Chul Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Current Address: Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Gangwondo, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Anjum MS, Mehmood A, Mahmood F, Ali M, Tarrar MN, Khan SN, Riazuddin S. In vitro preconditioning of insulin-producing cells with growth factors improves their survival and ability to release insulin. J Biosci 2018; 43:649-659. [PMID: 30207311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glucose-induced oxidative stress in the diabetic pancreas directly affects viability and the consequent therapeutic outcome of transplanted stem cells. Pretreatment of stem cells with growth factors induces tolerance in them against various stresses (hypoxia, thermal or hyperglycaemic). This study investigated the effect of pretreatment on insulin-producing cells (IPCs) differentiated from adipose-derived mesenchymal stem cells (ADMSCs), with a combination of stromal cell-derived factor 1 alpha (SDF1 α) and basic fibroblast growth factor (bFGF) against hyperglycaemic stress (17 or 33 mM glucose). The results showed that IPCs pretreated with a combination of SDF1α and bFGF exhibited maximally alleviated apoptosis, senescence and cell damage with a concomitantly increased release of insulin, enhanced cell proliferation and greater upregulation of Insulin 1, Insulin 2, Ngn3, Pdx1 and Nkx6.2 when stressed with 33 mM glucose. These findings may offer an improved therapeutic outcome for the treatment of diabetes.
Collapse
Affiliation(s)
- Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | | | | | | | | | | | | |
Collapse
|
15
|
In vitro preconditioning of insulin-producing cells with growth factors improves their survival and ability to release insulin. J Biosci 2018. [DOI: 10.1007/s12038-018-9796-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Wang R, Zhang D, Zhang T, Zhao F, Lang H, Lin X, Pang X. The differentiation of human MSCs derived from adipose and amniotic tissues into insulin-producing cells, induced by PEI@Fe3O4 nanoparticles-mediated NRSF and SHH silencing. Int J Mol Med 2018; 42:2831-2838. [PMID: 30132574 DOI: 10.3892/ijmm.2018.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/06/2018] [Indexed: 11/05/2022] Open
Abstract
Type 1 diabetes involves the immunologically mediated destruction of insulin‑producing cells (IPCs) in the pancreatic islet. Mesenchymal stem cells (MSCs) have the ability to differentiate into IPCs and have become the most promising means for diabetes therapy. The present study demonstrated that human adipose‑derived stem cells (hADSCs) and human amniotic MSCs (hAMSCs) are able to differentiate into functional IPCs by knocking down neuronal restrictive silencing factor (NRSF) and Sonic hedgehog (SHH). In the current study, PEI@Fe3O4 nanoparticles (NPs) were used to deliver NRSF small interfering (si)RNA and SHH siRNA to hADSCs and hAMSCs. Following infection with PEI@Fe3O4 NPs containing NRSF siRNA and SHH siRNA, the MSCs were induced to differentiate into IPCs. Four specific genes for islet cells were expressed in the differentiated cells. These cells also produced and released insulin in a glucose‑responsive manner. These findings indicated that hADSCs and hAMSCs may be induced to differentiate into IPCs via PEI@Fe3O4 NP‑mediated NRSF and SHH silencing.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dianbao Zhang
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Tao Zhang
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Feng Zhao
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hongxin Lang
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuewen Lin
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xining Pang
- Key Laboratory of Cell Biology and Medical Cell Biology, Department of Stem Cells and Regenerative Medicine, National Health Commission of China, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
17
|
Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Khater SM, Ashamallah SA, Azzam MM, Ghoneim MA. Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study. Cell Transplant 2018; 27:937-947. [PMID: 29860900 PMCID: PMC6050912 DOI: 10.1177/0963689718759913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow-derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.
Collapse
|
18
|
From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3854232. [PMID: 28584815 PMCID: PMC5444016 DOI: 10.1155/2017/3854232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.
Collapse
|
19
|
Ramadan BK, Schaalan MF, Tolba AM. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:37. [PMID: 28077129 PMCID: PMC5225634 DOI: 10.1186/s12906-016-1530-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes is a major public health concern. In spite of continuous new drug development to treat diabetes, herbal remedies remain a potential adjunct therapy to maintain better glycemic control while also imparting few side-effects. Portulaca oleracea has been traditionally used to manage several diseases due to the anti-oxidant and anti-atherogenic effects it imparts. To better understand the mechanisms associated with potential protective effect of P. oleracea extract against diabetes, alloxan-induced diabetic rats were used in this study. METHODS Forty Wistar rats (male, 7-8-wk-old, 140-160 g) were divided into four groups (n = 10/group): Group I (control), Group II (P. oleracea-treated; gavaged with P. oleracea extract daily [at 250 mg/kg] for 4 weeks), Group III (diabetic control; daily IP injection of alloxan [at 75 mg/kg] for 5 days) and Group IV (P. oleracea-pre-treated diabetic; gavaged with P. oleracea extract daily [at 250 mg/kg] for 4 weeks and then daily IP injection of alloxan [at 75 mg/kg] for 5 days). Body weight, food consumption, blood (serum) levels of glucose, C peptide, Hb A1C, insulin, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined for all groups. RESULTS The results indicated that while Hb A1C, serum levels of glucose, TNF-α and IL-6 were all significantly decreased in the P. oleracea-pre-treated diabetic rats, these hosts also had significant increases in C peptide and insulin compared to levels in the counterpart diabetic rats. These results were confirmed by the histopathological assessments which showed marked improvement of the destructive effect on pancreatic islet cells induced by alloxan. CONCLUSION P. oleracea extract is a general tissue protective and regeneartive agent, as evidenced by increasing β-cell mass and therefore improved the glucose metabolism. Thus, stimulation of Portulaca oleracea signaling in β- cells may be a novel therapeutic strategy for diabetes prevention.
Collapse
Affiliation(s)
- Basma K Ramadan
- Department of Physiology, Faculty of Medicine for Girls (Cairo), Al-Azhar University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Biochemistry Faculty of Pharmacy, Misr International University, Km 28, Cairo-Ismailia road, Cairo PO Box 1, Heliopolis, Cairo, Egypt.
| | - Amina M Tolba
- Department of Anatomy, Faculty of Medicine for Girls (Cairo), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Zang L, Hao H, Liu J, Li Y, Han W, Mu Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9:36. [PMID: 28515792 PMCID: PMC5433043 DOI: 10.1186/s13098-017-0233-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), which is characterized by the combination of relative insulin deficiency and insulin resistance, cannot be reversed with existing therapeutic strategies. Transplantation of insulin-producing cells (IPCs) was once thought to be the most promising strategy for treating diabetes, but the pace from the laboratory to clinical application has been obstructed due to its drawbacks. Mesenchymal stem cells (MSCs) harbor differentiation potential, immunosuppressive properties, and anti-inflammatory effects, and they are considered an ideal candidate cell type for treatment of DM. MSC-related research has demonstrated exciting therapeutic effects in glycemic control both in vivo and in vitro, and these results now have been translated into clinical practice. However, some critical potential problems have emerged from current clinical trials. Multi-center, large-scale, double-blind, and placebo-controlled studies with strict supervision are required before MSC transplantation can become a routine therapeutic approach for T2DM. We briefly review the molecular mechanism of MSC treatment for T2DM as well as the merits and drawbacks identified in current clinical trials.
Collapse
Affiliation(s)
- Li Zang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yijun Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
21
|
Infusion with Human Bone Marrow-derived Mesenchymal Stem Cells Improves β-cell Function in Patients and Non-obese Mice with Severe Diabetes. Sci Rep 2016; 6:37894. [PMID: 27905403 PMCID: PMC5131346 DOI: 10.1038/srep37894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for type 1 diabetes (T1D). However, little is known on whether MSC transplantation can benefit T1D patients with ketoacidosis and its potential actions. Here, we show that infusion with bone marrow MSCs preserves β-cell function in some T1D patients with ketoacidosis by decreasing exogenous insulin requirement and increasing plasma C-peptide levels up to 1–2 years. MSC transplantation increased plasma and islet insulin contents in non-obese diabetic (NOD) mice with severe diabetes. In comparison with severe diabetes controls, MSC infusion reduced insulitis, decreased pancreatic TNF-α, and increased IL-10 and TGF-β1 expression in NOD mice. MSC infusion increased the percentages of splenic Tregs and levels of plasma IL-4, IL-10 and TGF-β1, but reduced the percentages of splenic CD8+ T and levels of plasma IFN-γ, TNF-α and IL-17A in NOD mice. Finally, infused MSCs predominantly accumulated in pancreatic tissues at 28 days post infusion. The effects of MSCs on preserving β-cell function and modulating inflammation tended to be dose-dependent and multiple doses of MSCs held longer effects in NOD mice. Hence, MSC transplantation preserved β-cell function in T1D patients and NOD mice with severe diabetes by enhancing Treg responses.
Collapse
|
22
|
Rekittke NE, Ang M, Rawat D, Khatri R, Linn T. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3764681. [PMID: 27047547 PMCID: PMC4800095 DOI: 10.1155/2016/3764681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy.
Collapse
Affiliation(s)
- Nadine E. Rekittke
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Meidjie Ang
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Divya Rawat
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Rahul Khatri
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| |
Collapse
|
23
|
Khorsandi L, Saremy S, Khodadadi A, Dehbashi F. Effects of Exendine-4 on The Differentiation of Insulin Producing Cells from Rat Adipose-Derived Mesenchymal Stem Cells. CELL JOURNAL 2016; 17:720-9. [PMID: 26862531 PMCID: PMC4746422 DOI: 10.22074/cellj.2016.3844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effect of Exendine-4 (EX-4), a Glucagon-like peptide 1 (GLP-1) receptor agonist, on the differentiation of insulin-secreting cells (IPCs) from rat adipose-derived mesenchymal stem cells(ADMSCs). MATERIALS AND METHODS In this experimental study, ADMSCs were isolated from rat adi- pose tissue and exposed to induction media with or without EX-4. After induction, the existence of IPCs was confirmed by morphology analysis, expression pattern analysis of islet-specific genes (Pdx-1, Glut-2 and Insulin) and insulin synthesis and secretion. RESULTS IPCs induced in presence of EX-4 were morphologically similar to pancre- atic islet-like cells. Expression of Pdx-1, Glut-2 and Insulin genes in EX-4 treated cells was significantly higher than the cells exposed to differentiation media without EX-4. Compared to EX-4 untreated ADMSCs, insulin release from EX-4 treated ADMSCs showed a nearly 2.5 fold (P<0.05) increase when exposed to a high glucose (25 mM) medium. The percentage of insulin positive cells in the EX-4 treated group was ap- proximately 4-fold higher than in the EX-4 untreated ADMSCs. CONCLUSION The present study has demonstrated that EX-4 enhances the differen- tiation of ADMSCs into IPCs. Improvement of this method may help the formation of an unlimited source of cells for transplantation.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Saremy
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Dehbashi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|