1
|
Kozicka D, Krześniak M, Grymel M, Adamek J, Łasut-Szyszka B, Cichoń T, Kuźnik A. Ultrasound-assisted synthesis of new bisphosphonate-betulin conjugates and preliminary evaluation of their cytotoxic activity. RSC Adv 2025; 15:4086-4094. [PMID: 39926228 PMCID: PMC11800102 DOI: 10.1039/d4ra07782b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Bisphosphonates (BPs) are a well-established group of drugs that have been used for decades in the prevention and treatment of osteoporosis and cancer treatment-induced bone loss. Their unique properties such as high bone affinity, enzymatic stability as well as a multidirectional biological activity prompt the creation of BP conjugates. In this study, we designed and synthesized three new bisphosphonate conjugates with betulin, a natural product with a high safety profile and a broad spectrum of biological activity. The designed conjugates differed in the type of linker used and the number of bisphosphonate moieties attached (mono- or disubstituted derivatives). The proposed method for their synthesis proceeds under mild reaction conditions and gives good yields of products. In addition, as we have shown, the reaction can be assisted by ultrasound, which significantly reduced the reaction time (from 48 hours to 2 hours) and improved the overall product yield (up to 92%). The cytotoxicity of the new conjugates was evaluated against osteosarcoma (U-2 OS), lung adenocarcinoma (A549) and gastric adenocarcinoma (AGS) cell lines. The results of preliminary biological studies showed that the obtained conjugates had improved solubility compared to that of betulin and exhibited a cytotoxic effect on all three tested cell lines at the micromolar level. The betulin analog having two bisphosphonate groups 6 demonstrated the highest cytotoxic activity against tested cell lines (IC50 between 5.16 and 6.21 μM).
Collapse
Affiliation(s)
- Dominika Kozicka
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
- Biotechnology Center, Silesian University of Technology B. Krzywoustego 8 44-100 Gliwice Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch Wybrzeże Armii Krajowej 15 44-102 Gliwice Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
- Biotechnology Center, Silesian University of Technology B. Krzywoustego 8 44-100 Gliwice Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
- Biotechnology Center, Silesian University of Technology B. Krzywoustego 8 44-100 Gliwice Poland
| | - Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch Wybrzeże Armii Krajowej 15 44-102 Gliwice Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch Wybrzeże Armii Krajowej 15 44-102 Gliwice Poland
| | - Anna Kuźnik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
- Biotechnology Center, Silesian University of Technology B. Krzywoustego 8 44-100 Gliwice Poland
| |
Collapse
|
2
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
3
|
Socaciu C, Fetea F, Socaciu MA. Synthesis and Characterization of PEGylated Liposomes and Nanostructured Lipid Carriers with Entrapped Bioactive Triterpenoids: Comparative Fingerprints and Quantification by UHPLC-QTOF-ESI +-MS, ATR-FTIR Spectroscopy, and HPLC-DAD. Pharmaceuticals (Basel) 2024; 18:33. [PMID: 39861096 PMCID: PMC11768173 DOI: 10.3390/ph18010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Pentacyclic triterpenoids, as bioactive phytochemicals, have proven to exhibit significant bioactivity (antioxidant, anti-inflammatory, hypoglycemic, and anticancer) and low cytotoxicity. This study developed convenient methods for extracting and characterizing a birch bark extract enriched in pentacyclic triterpenoids (betulin, betulinic acid, and lupeol) and entrapped in two bioavailable nanoformulations. The performance of ATR-FTIR spectroscopy as a cost-effective and non-destructive method was evaluated comparatively with accurate HPLC-based methods. Methods: The bark extract and pure betulin or betulinic acid were used to obtain PEGylated liposomes and nano lipid carriers (NLCs). Their size was characterized by light scattering diffraction. UV-Vis spectrometry was applied as a preliminary evaluation (1), as well as UHPLC-QTOF-ESI+-MS for structure identification (2), ATR-FTIR spectroscopy (for semi-quantitative evaluation) (3), and HPLC-DAD for an accurate quantification of each component, either in the organic solvents or in the nanoformulations (4). Results: The PEGylated liposomes had smaller sizes, and higher entrapment efficiency, significantly correlated between the three analytical methods. The performance of ATR-FTIR spectroscopy was positively correlated with HPLC-DAD data and confirmed the potential of this cheaper and reliable semi-quantitative method to evaluate the entrapment efficiency of TTs in liposome and NLC nanoformulations. Conclusions: The results recommend using liposomal nanoformulations for the entrapment of bioactive terpenoids and their characterization by ATR-FTIR after validation by HPLC-DAD. The ATR-FTIR spectroscopy also offers the possibility of screening in a short time different recipes of nanoformulations as well as their stability and bioavailability, which is useful for investigations in vitro and in vivo, which may confirm their efficacy as therapeutic agents.
Collapse
Affiliation(s)
- Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Florinela Fetea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Rugină D, Socaciu MA, Nistor M, Diaconeasa Z, Cenariu M, Tabaran FA, Socaciu C. Liposomal and Nanostructured Lipid Nanoformulations of a Pentacyclic Triterpenoid Birch Bark Extract: Structural Characterization and In Vitro Effects on Melanoma B16-F10 and Walker 256 Tumor Cells Apoptosis. Pharmaceuticals (Basel) 2024; 17:1630. [PMID: 39770472 PMCID: PMC11728790 DOI: 10.3390/ph17121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch (Betula pendula) outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. Methods: Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions. The composition, morphology, and sizes of all nanoformulations were checked by high-performance liquid chromatography/mass spectrometry, Transmission Electronic Microscopy, and Diffraction Light Scattering. The entrapment efficiency and its impact on cell viability, cell cycle arrest, and apoptosis by flow cytometry was also measured on both cancer cell lines. Conclusions: The standardized TTs, including betulin, lupeol, and betulinic acid, showed good stability and superior activity compared to pure betulinic acid. According to experimental data, TTs showed good entrapment in liposomal and NLC nanoformulations, both delivery systems including natural, biodegradable ingredients and enhanced bioavailability. The apoptosis and necrosis effects were more pronounced for TTs liposomal formulations in both types of cancer cells, with lower cytotoxicity compared to Doxorubicin, and can be correlated with their increased bioavailability.
Collapse
Affiliation(s)
- Dumitriţa Rugină
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Mihai Adrian Socaciu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania;
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Madalina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| | - Mihai Cenariu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Flaviu Alexandru Tabaran
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Carmen Socaciu
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| |
Collapse
|
5
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
6
|
Nemli E, Saricaoglu B, Kirkin C, Ozkan G, Capanoglu E, Habtemariam S, Sharifi‐Rad J, Calina D. Chemopreventive and Chemotherapeutic Potential of Betulin and Betulinic Acid: Mechanistic Insights From In Vitro, In Vivo and Clinical Studies. Food Sci Nutr 2024; 12:10059-10069. [PMID: 39723067 PMCID: PMC11666818 DOI: 10.1002/fsn3.4639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
Betulin is a bioactive compound found in large quantities in birch bark and has a triterpene pentacyclic structure. Through the oxidation of betulin, betulinic acid is obtained, which is found in large quantities in nature. Betulin and betulinic acid have multiple pharmacological properties such as antiviral, anti-inflammatory, and anticancer properties. This comprehensive review aims to deepen the knowledge of the chemopreventive and chemotherapeutic effects of betulin and betulinic acid by presenting in vitro, in vivo, and clinical studies evaluating the anticancer mechanisms of betulin, betulinic acid, and their derivatives. The databases searched using specific MESh terms to conduct this review were PubMed/MEDLINE, Web of Science, TRIP database, Wiley, and Scopus. The anticancer properties of betulin and betulinic acid have been reported in a variety of experimental pharmacological studies using different types of cancer cell lines. It has been indicated that induction of apoptosis is the primary anticancer activity of these compounds by selectively affecting cancer cells. As shown by various research, the apoptotic cell death by these compounds is mainly related to factors such as type of cancer and cancer cell line, tumor size, source of betulin/betulinic acid, dose, treatment time, and the type of the drug delivery system employed. Numerous preclinical pharmacological studies and clinical trials on the chemopreventive and antitumour effects of betulin, betulinic acid, and their derivatives have been published. Future translational pharmacological studies establishing the exact anticancer dose effective in humans are needed.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Celale Kirkin
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham‐MaritimeKentUK
| | - Javad Sharifi‐Rad
- Universidad Espíritu SantoSamborondónEcuador
- Centro de Estudios Tecnológicos y Universitarios del GolfoVeracruzMexico
- Department of Medicine, College of MedicineKorea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
7
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
8
|
Seglab F, Abou Assali M, AlYafei T, Hassan H, Pinto DCGA, Baydoun S, Al Thani AA, Shaito AA. Chemical Composition, Antioxidant Capacity, and Anticancerous Effects against Human Lung Cancer Cells of a Terpenoid-Rich Fraction of Inula viscosa. BIOLOGY 2024; 13:687. [PMID: 39336114 PMCID: PMC11429348 DOI: 10.3390/biology13090687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various cancers, but its effects against lung cancer have been under limited investigation. At the same time, I. viscosa is rich in terpenoids whose anti-lung cancer effects have been poorly investigated. This study aimed to examine the potential anticancer properties of methanolic and aqueous extracts of stems and leaves of I. viscosa and its terpenoid-rich fraction against human lung cancer A549 cells. Results showed that the methanolic extracts of I. viscosa had significantly higher polyphenol and flavonoid content and radical scavenging capacity than the aqueous extracts. In addition, leaves methanolic extracts (IVLM) caused the highest reduction in viability of A549 cells among all the extracts. IVLM also reduced the viability of human ovarian SK-OV-3, breast MCF-7, liver HepG2, and colorectal HCT116 cancer cells. A terpenoid-rich I. viscosa fraction (IVL DCM), prepared by liquid-liquid separation of IVLM in dichloromethane (DCM), displayed a substantial reduction in the viability of A549 cells (IC50 = 27.8 ± 1.5 µg/mL at 48 h) and the panel of tested cancerous cell lines but was not cytotoxic to normal human embryonic fibroblasts (HDFn). The assessment of IVL DCM phytochemical constituents using GC-MS analysis revealed 21 metabolites, highlighting an enrichment in terpenoids, such as lupeol and its derivatives, caryophyllene oxide, betulin, and isopulegol, known to exhibit proapoptotic and antimetastatic functions. IVL DCM also showed robust antioxidant capacity and decent polyphenol and flavonoid contents. Furthermore, Western blotting analysis indicated that IVL DCM reduced proliferation (reduction of proliferation marker Ki67 and induction of proliferation inhibitor proteins P21 and P27), contaminant with P38 MAP kinase activation, and induced the intrinsic apoptotic pathway (P53/BCL2/BAX/Caspase3/PARP) in A549 cells. IVL DCM also reduced the migration of A549 cells, potentially by reducing FAK activation. Future identification of anticancer metabolites of IVL DCM, especially terpenoids, is recommended. These data place I. viscosa as a new resource of herbal anticancer agents.
Collapse
Affiliation(s)
- Fatiha Seglab
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mazen Abou Assali
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Thoraya AlYafei
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hassan Hassan
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Safaa Baydoun
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abdullah A Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences and Basic Medical Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Camilleri E, Blundell R, Baral B, Karpinski TM, Aruci E, Atrooz OM. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 2024; 10:e35638. [PMID: 39170453 PMCID: PMC11336990 DOI: 10.1016/j.heliyon.2024.e35638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This literature review offers an extensive exploration of Chaga mushrooms (Inonotus obliquus), focusing on their phytochemical composition, health-promoting attributes, and mechanisms of action. The aim was to provide an up-to-date overview of Chaga's significance in the medicinal sector, emphasizing its potential role in diverse health benefits. The review highlights Chaga's remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and immunomodulating properties. By synthesizing recent findings, this work underscores Chaga's importance in the medicinal industries and provides valuable insights into its pharmacological potential.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- University of Helsinki, Helsinki, Finland
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M. Karpinski
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
10
|
Namuga C, Muwonge H, Nasifu K, Sekandi P, Sekulima T, Kirabira JB. Hoslundia opposita vahl; a potential source of bioactive compounds with antioxidant and antibiofilm activity for wound healing. BMC Complement Med Ther 2024; 24:236. [PMID: 38886717 PMCID: PMC11181642 DOI: 10.1186/s12906-024-04540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Biofilms and oxidative stress retard wound healing. The resistance of biofilms to antibiotics has led to a search for alternative approaches in biofilm elimination. Antioxidants work synergistically with antibacterial agents against biofilms. Hence recent research has suggested plants as candidates in the development of new alternatives in biofilm treatments and as antioxidants due to the presence of phytocompounds which are responsible for their bioactivities. Hoslundia opposita Vahl is one of the plants used by traditional healers to treat wounds and other infections, this makes it a potential candidate for drug discovery hence, in this study, we investigate the antibiofilm and antioxidant activity of methanolic extract of hoslundia opposita Vahl from Uganda. We also identify phytochemicals responsible for its bioactivity. METHOD the plant was extracted by maceration using methanol, and the extract was investigated for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. The antibiofilm activity using microtiter plate assay (MTP) assay where the Minimum biofilm inhibitory concentration required to inhibit 50% or 90% of the biofilm (MBIC50 and MBIC90) and Minimum biofilm eradication concentration required to remove 50% or 90% of the biofilm (MBEC50 and MBEC90) were measured. It was further analysed for its phytochemical composition using quantitative screening, as well as Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography mass-spectrometry (LC-MS). RESULTS H. Opposita Vahl extract showed good antioxidant activity with of 249.6 mg/mL. It inhibited the growth of P. aeruginosa and S. aureus biofilms with MBIC50 of 28.37 mg/mL and 10 mg/mL, respectively. It showed the ability to eradicate P. aeruginosa and S. aureus biofilms with MBEC50 of 23.85 and 39.01 mg/mL respectively. Phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, and phenols. GC-MS analysis revealed 122 compounds in the extract of which, 23 have evidence of antioxidant or antibiofilm activity in literature. The most abundant compounds were; 1,4- Citric acid, Tetracontane-1,40-diol (43.43.3%, 1, Olean-12-en-28-oic acid, 3-hydroxy-, methyl ester, (3.beta) (15.36%) 9-Octadecenamide (12.50%), Squalene (11.85%) Palmitic Acid 4TMS (11.28%), and alpha Amyrin (11.27%). The LC-MS identified 115 and 57 compounds in multiple reaction mode (MRM) and scan modes respectively. CONCLUSION H. opposita Vahl showed antibiofilm and antioxidant activity due to bioactive compounds identified, hence the study justifies its use for wound healing. It can be utilised in further development of new drugs as antibiofilm and antioxidants.
Collapse
Affiliation(s)
- Catherine Namuga
- Depatment of Polymer, Textile, and Industrial Engineering, Busitema University, P. O. Box 256, Tororo, Uganda.
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Haruna Muwonge
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Kerebba Nasifu
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Peter Sekandi
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Tahalu Sekulima
- Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, Kampala, Uganda
| | - John Baptist Kirabira
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
11
|
Torres-Sanchez A, Torres G, Estrada S, Perez D, Garcia C, Milian M, Velazquez E, Molina V, Delgado Y. Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals (Basel) 2024; 17:694. [PMID: 38931361 PMCID: PMC11206507 DOI: 10.3390/ph17060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, there has been great interest in plant-derived compounds known as phytochemicals. The pentacyclic oleanane-, ursane-, and lupane-type triterpenes are phytochemicals that exert significant activity against diseases like cancer. Lung cancer is the leading cause of cancer-related death worldwide. Although chemotherapy is the treatment of choice for lung cancer, its effectiveness is hampered by the dose-limiting toxic effects and chemoresistance. Herein, we investigated six pentacyclic triterpenes, oleanolic acid, ursolic acid, asiatic acid, betulinic acid, betulin, and lupeol, on NSCLC A549 cells. These triterpenes have several structural variations that can influence the activation/inactivation of key cellular pathways. From our results, we determined that most of these triterpenes induced apoptosis, S-phase and G2/M-phase cycle arrest, the downregulation of ribonucleotide reductase (RR), reactive oxygen species, and caspase 3 activation. For chemoresistance markers, we found that most triterpenes downregulated the expression of MAPK/PI3K, STAT3, and PDL1. In contrast, UrA and AsA also induced DNA damage and autophagy. Then, we theoretically determined other possible molecular targets of these triterpenes using the online database ChEMBL. The results showed that even slight structural changes in these triterpenes can influence the cellular response. This study opens up promising perspectives for further research on the pharmaceutical role of phytochemical triterpenoids.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA;
- Biochemistry Department, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736, USA;
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Carlos Garcia
- Medical Program, Ponce Health Science University, Ponce, PR 00716, USA
| | - Melissa Milian
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Eddian Velazquez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Valerie Molina
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| |
Collapse
|
12
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
13
|
Ossowicz-Rupniewska P, Klebeko J, Georgieva I, Apostolova S, Struk Ł, Todinova S, Tzoneva RD, Guncheva M. Tuning of the Anti-Breast Cancer Activity of Betulinic Acid via Its Conversion to Ionic Liquids. Pharmaceutics 2024; 16:496. [PMID: 38675157 PMCID: PMC11053683 DOI: 10.3390/pharmaceutics16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Rumiana Dimitrova Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
15
|
Miao L, Lu C, Zhang B, Li H, Zhao X, Chen H, Liu Y, Cui X. Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J Transl Med 2024; 22:229. [PMID: 38433193 PMCID: PMC10909296 DOI: 10.1186/s12967-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells are unique from other immune cells in that they can rapidly kill multiple neighboring cells without the need for antigenic pre-sensitization once the cells display surface markers associated with oncogenic transformation. Given the dynamic role of NK cells in tumor surveillance, NK cell-based immunotherapy is rapidly becoming a "new force" in tumor immunotherapy. However, challenges remain in the use of NK cell immunotherapy in the treatment of solid tumors. Many metabolic features of the tumor microenvironment (TME) of solid tumors, including oxygen and nutrient (e.g., glucose, amino acids) deprivation, accumulation of specific metabolites (e.g., lactate, adenosine), and limited availability of signaling molecules that allow for metabolic reorganization, multifactorial shaping of the immune-suppressing TME impairs tumor-infiltrating NK cell function. This becomes a key barrier limiting the success of NK cell immunotherapy in solid tumors. Restoration of endogenous NK cells in the TME or overt transfer of functionally improved NK cells holds great promise in cancer therapy. In this paper, we summarize the metabolic biology of NK cells, discuss the effects of TME on NK cell metabolism and effector functions, and review emerging strategies for targeting metabolism-improved NK cell immunotherapy in the TME to circumvent these barriers to achieve superior efficacy of NK cell immunotherapy.
Collapse
Affiliation(s)
- Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Huili Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Xu Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Haoran Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|
16
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
17
|
Kubica S, Szota-Czyż J, Strzałka-Mrozik B, Adamska J, Bębenek E, Chrobak E, Gola JM. The Influence of Betulin Derivatives EB5 and ECH147 on the Expression of Selected TGFβ Superfamily Genes, TGFβ1, GDF15 and BMP2, in Renal Proximal Tubule Epithelial Cells. Curr Issues Mol Biol 2023; 45:9961-9975. [PMID: 38132468 PMCID: PMC10741875 DOI: 10.3390/cimb45120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Betulin derivatives are proposed to serve as an alternative to the drugs already established in oncologic treatment. Drug-induced nephrotoxicity leading to acute kidney injury frequently accompanies cancer treatment, and thus there is a need to research the effects of betulin derivatives on renal cells. The objective of our study was to assess the influence of the betulin derivatives 28-propynylobetulin (EB5) and 29-diethoxyphosphoryl-28-propynylobetulin (ECH147) on the expression of TGFβ1, BMP2 and GDF15 in renal proximal tubule epithelial cells (RPTECs) cultured in vitro. The changes in mRNA expression and copy numbers were assessed using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and the standard curve method, respectively. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the effect of the betulin derivatives on the protein concentration in the culture media's supernatant. The assessment of the betulin derivatives' influence on gene expression demonstrated that the mRNA level and protein concentration did not always correlate with each other. Each of the tested compounds affected the mRNA expression. The RT-qPCR analyses showed that EB5 and ECH147 induced effects similar to those of betulin or cisplatin and resulted in a decrease in the mRNA copy number of all the analyzed genes. The ELISA demonstrated that EB5 and ECH147 elevated the protein concentration of TGFβ1 and GDF15, while the level of BMP2 decreased. The concentration of the derivatives used in the treatment was crucial, but the effects did not always exhibit a simple linear dose-dependent relationship. Betulin and its derivatives, EB5 and ECH147, influenced the gene expression of TGFβ1, BMP2 and GDF15 in the renal proximal tubule epithelial cells. The observed effects raise the question of whether treatment with these compounds could promote the development of renal fibrosis.
Collapse
Affiliation(s)
- Sebastian Kubica
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Justyna Szota-Czyż
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.B.); (E.C.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.B.); (E.C.)
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.); (J.S.-C.); (J.A.); (J.M.G.)
| |
Collapse
|
18
|
Chodurek E, Orchel A, Gwiazdoń P, Kaps A, Paduszyński P, Jaworska-Kik M, Chrobak E, Bębenek E, Boryczka S, Kasperczyk J. Antiproliferative and Cytotoxic Properties of Propynoyl Betulin Derivatives against Human Ovarian Cancer Cells: In Vitro Studies. Int J Mol Sci 2023; 24:16487. [PMID: 38003677 PMCID: PMC10671498 DOI: 10.3390/ijms242216487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Due to the incidence of ovarian cancer (OC) and the limitations of available therapeutic strategies, it is necessary to search for novel therapeutic solutions. The aim of this study was to evaluate the cytotoxic effect of betulin 1 and its propynoyl derivatives 2-6 against ovarian cancer cells (SK-OV-3, OVCAR-3) and normal myofibroblasts (18Co). Paclitaxel was used as the reference compound. The propynoyl derivatives 2-6 exhibited stronger antiproliferative and cytotoxic activities compared to betulin 1. In both ovarian cancer cell lines, the most potent compound was 28-propynoylbetulin 2. In the case of compound 2, the calculated IC50 values were 0.2 µM for the SK-OV-3 cells and 0.19 µM for the OVCAR-3 cells. Under the same culture conditions, the calculated IC50 values for compound 6 were 0.26 µM and 0.59 µM, respectively. It was observed that cells treated with compounds 2 and 6 caused a decrease in the potential of the mitochondrial membrane and a significant change in cell morphology. Betulin 1, a diol from the group of pentacyclic triterpenes, has a confirmed wide spectrum of biological effects, including a significant anticancer effect. It is characterized by low bioavailability, which can be improved by introducing changes to its structure. The results showed that chemical modifications of betulin 1 only at position C-28 with the propynoyl group (compound 2) and additionally at position C-3 with the phosphate group (compound 3) or at C-29 with the phosphonate group (compound 6) allowed us to obtain compounds with greater cytotoxic activity than their parent compounds, which could be used to develop novel therapeutic systems effective in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Arkadiusz Orchel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Paweł Gwiazdoń
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Anna Kaps
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Piotr Paduszyński
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Marzena Jaworska-Kik
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (E.C.); (E.B.); (S.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (E.C.); (E.B.); (S.B.)
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (E.C.); (E.B.); (S.B.)
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.O.); (P.G.); (A.K.); (P.P.); (M.J.-K.); (J.K.)
| |
Collapse
|
19
|
Gu D, Zhou F, You H, Gao J, Kang T, Dixit D, Wu Q, Yang K, Ci S, Shan D, Fan X, Yuan W, Zhang Q, Lu C, Li D, Zhao N, Shi Z, Gao W, Lin F, Man J, Wang Q, Qian X, Mack SC, Tao W, Agnihotri S, Zhang N, You Y, Rich JN, Zhang J, Wang X. Sterol regulatory element-binding protein 2 maintains glioblastoma stem cells by keeping the balance between cholesterol biosynthesis and uptake. Neuro Oncol 2023; 25:1578-1591. [PMID: 36934350 PMCID: PMC10651206 DOI: 10.1093/neuonc/noad060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.
Collapse
Affiliation(s)
- Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fengqi Zhou
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, United States
| | - Shusheng Ci
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Yuan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, Jiangsu, China
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical analysis, Beijing, China
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Weiwei Tao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sameer Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Nistor M, Rugina D, Diaconeasa Z, Socaciu C, Socaciu MA. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int J Mol Sci 2023; 24:12923. [PMID: 37629103 PMCID: PMC10455110 DOI: 10.3390/ijms241612923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Department of Radiology, Imaging & Nuclear Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Takibayeva AT, Zhumabayeva GK, Bakibaev AA, Demets OV, Lyapunova MV, Mamaeva EA, Yerkassov RS, Kassenov RZ, Ibrayev MK. Methods of Analysis and Identification of Betulin and Its Derivatives. Molecules 2023; 28:5946. [PMID: 37630198 PMCID: PMC10458966 DOI: 10.3390/molecules28165946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency to form dimers, polymorphism and isomerization, are considered. This article outlines ways to improve not only the bioavailability but also the solubility of triterpenoids, as well as any hydrophobic drug substances, through chemical transformations by introducing various functional groups, such as carboxyl, hydroxyl, amino, phosphate/phosphonate and carbonyl. The authors of this article summarized the physicochemical characteristics of betulin and its compounds, systematized the literature data on IR and NMR spectroscopy and gave the melting temperatures of key acids and aldehydes based on betulin.
Collapse
Affiliation(s)
- Altynaray T. Takibayeva
- Department of Chemistry and Chemical Technologies, NJSC Karaganda Technical University Named after Abylkas Saginov, Karaganda 100027, Kazakhstan;
| | - Gulistan K. Zhumabayeva
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (G.K.Z.); (R.S.Y.)
| | - Abdigali A. Bakibaev
- Chemical Faculty, National Research Tomsk State University, 634028 Tomsk, Russia; (A.A.B.); (M.V.L.)
| | - Olga V. Demets
- Department of Chemistry and Chemical Technologies, NJSC Karaganda Technical University Named after Abylkas Saginov, Karaganda 100027, Kazakhstan;
| | - Maria V. Lyapunova
- Chemical Faculty, National Research Tomsk State University, 634028 Tomsk, Russia; (A.A.B.); (M.V.L.)
| | - Elena A. Mamaeva
- Chemical Faculty, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Rakhmetulla Sh. Yerkassov
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (G.K.Z.); (R.S.Y.)
| | - Rymchan Z. Kassenov
- Department of Organic Chemistry and Polymers, Chemistry Faculty, NJSC Karaganda University Named after Y.A. Buketov, Karaganda 100024, Kazakhstan; (R.Z.K.); (M.K.I.)
| | - Marat K. Ibrayev
- Department of Organic Chemistry and Polymers, Chemistry Faculty, NJSC Karaganda University Named after Y.A. Buketov, Karaganda 100024, Kazakhstan; (R.Z.K.); (M.K.I.)
| |
Collapse
|
22
|
Liang Y, Zhu M, Xu T, Ding W, Chen M, Wang Y, Zheng J. A Novel Betulinic Acid Analogue: Synthesis, Solubility, Antitumor Activity and Pharmacokinetic Study in Rats. Molecules 2023; 28:5715. [PMID: 37570685 PMCID: PMC10419975 DOI: 10.3390/molecules28155715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Betulinic acid (BA) and betulin (BE) are naturally pentacyclic triterpenes with documented biological activities, especially antitumor and anti-inflammatory activity. However, their bioavailability in vivo is not satisfactory in terms of medical applications. Thus, to improve the solubility and bioavailability so as to improve the efficacy, 28-O-succinyl betulin (SBE), a succinyl derivative of BE, was synthesized and its solubility, in vitro and in vivo anti-tumor activities, the apoptosis pathway as well as the pharmacokinetic properties were investigated. The results showed that SBE exhibited significantly higher solubility in most of the tested solvents, and showed a maximum solubility of 7.19 ± 0.66 g/L in n-butanol. In vitro and in vivo anti-tumor activity assays indicated both BA and SBE exhibited good anti-tumor activities, and SBE demonstrated better potential compared to BA. An increase in the ratio of Bad/Bcl-xL and activation of caspase 9 was found in SBE treated Hela cells, suggesting that the intrinsic mitochondrial pathway is involved in SBE induced apoptosis. Compared with BA, SBE showed much-improved absorption and bioavailability in pharmacokinetic studies.
Collapse
Affiliation(s)
- Yucen Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
| | - Meixuan Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
- Changchun Institute of Biological Products Co., Ltd., Changchun 130011, China
| | - Tao Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
| | - Weimin Ding
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Min Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
| | - Yang Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
| | - Jian Zheng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.L.); (Y.W.)
| |
Collapse
|
23
|
Carcache de Blanco EJ, Addo EM, Rakotondraibe HL, Soejarto DD, Kinghorn AD. Strategies for the discovery of potential anticancer agents from plants collected from Southeast Asian tropical rainforests as a case study. Nat Prod Rep 2023; 40:1181-1197. [PMID: 37194649 PMCID: PMC10524867 DOI: 10.1039/d2np00080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covering up to early 2023The present review summarizes recent accomplishments made as part of a multidisciplinary, multi-institutional anticancer drug discovery project, wherein samples comprising higher plants were collected primarily from Southeast Asia, and also from Central America, and the West Indies. In the introductory paragraphs, a short perspective is provided on the current importance of plants in the discovery of cancer therapeutic agents, and the contributions of other groups working towards this objective are mentioned. For our own investigations, following their collection, tropical plants have been subjected to solvent extraction and biological evaluation for their antitumor potential. Several examples of purified plant lead bioactive compounds were obtained and characterized, and found to exhibit diverse structures, including those of the alkaloid, cardiac glycoside, coumarin, cucurbitacin, cyclobenzofuran (rocaglate), flavonoid, lignan, and terpenoid types. In order to maximize the efficiency of work on drug discovery from tropical plant species, strategies to optimize various research components have been developed, including those for the plant collections and taxonomic identification, in accordance with the requirements of contemporary international treaties and with a focus on species conservation. A major component of this aspect of the work is the development of collaborative research agreements with representatives of the source countries of tropical rainforest plants. The phytochemical aspects have included the preparation of plant extracts for initial screening and the selection of promising extracts for activity-guided fractionation. In an attempt to facilitate this process, a TOCSY-based NMR procedure has been applied for the determination of bioactive rocaglate derivatives in samples of Aglaia species (Meliaceae) collected for the project. Preliminary in vitro and in vivo mechanistic studies carried out by the authors are described for two tropical plant-derived bioactive lead compounds, corchorusoside C and (+)-betulin, including work conducted with a zebrafish (Danio rerio) model. In the concluding remarks, a number of lessons are summarized that our group has learned as a result of working on anticancer drug discovery using tropical plants, which we hope will be of interest to future workers.
Collapse
Affiliation(s)
- Esperanza J Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - H Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Djaja D Soejarto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Science and Education, Field Museum, Chicago, IL 60605, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
24
|
Ünal N, Kahraman O, Dögen A, Binzet R. Investigation of the Chemical Composition, Antimicrobial, and Antioxidant Activity of Endemic Onosma halophila Boiss. & Heldr. Curr Microbiol 2023; 80:247. [PMID: 37338619 DOI: 10.1007/s00284-023-03363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
The Onosma halophila Boiss. & Heldr. belongs to the Boraginaceae family and it is endemic species from Turkey that distributes in Salt Lake (Tuz Gölü) and the surrounding salty steppes. In this study, the chemical content, antimicrobial, and antioxidant activity of endemic O. halophila were determined for the first time. Thirty-one components were identified by GC-MS analysis in O. halophila. Antimicrobial activity was tested against a total of eight microorganisms, including three Gram-positive, three Gram-negative bacterial strains, and two fungal strains, using the Micro dilution technique. The obtained extracts showed strong antifungal and antibacterial activity. The MIC value of extracts samples against the tested strains ranged from 15.625 to 125 μg/mL. In addition, it was determined that the extracts had different levels of antioxidant activity. The IC50 values were determined 45.20-1760 µg/mL for DPPH radical scavenging assay, 3.125-1016 µg/mL for H2O2 radical scavenging assay, and 147.12-1837 µg/mL for superoxide radical scavenging assay, respectively. As a result, it has been determined that O. halophila has the potential to be used in complementary medicine and various ethnobotanical fields in future due to the important components it contains.
Collapse
Affiliation(s)
- Neva Ünal
- Natural Sciences Institute, Mersin Üniversity, 33343, Mersin, Turkey
| | - Oskay Kahraman
- Natural Sciences Institute, Mersin Üniversity, 33343, Mersin, Turkey
| | - Aylin Dögen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Riza Binzet
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
25
|
Szlasa W, Ślusarczyk S, Nawrot-Hadzik I, Abel R, Zalesińska A, Szewczyk A, Sauer N, Preissner R, Saczko J, Drąg M, Poręba M, Daczewska M, Kulbacka J, Drąg-Zalesińska M. Betulin and Its Derivatives Reduce Inflammation and COX-2 Activity in Macrophages. Inflammation 2023; 46:573-583. [PMID: 36282372 PMCID: PMC10024662 DOI: 10.1007/s10753-022-01756-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Betulin is a heavily studied natural compound for its use as an anticancer or pro-regenerative agent. The structural similarity between betulin to steroids gives rise to the idea that the substance may as well act as an anti-inflammatory drug. This study is the first to describe the anti-inflammatory properties of betulinic acid, betulin, and its derivatives with amino acids 1,4-diaminebutane (Dab), 1,3-diaminepropane (Dap), Ornithine (Orn), and lysine (Lys) on murine macrophages from lymphoma site. The compounds were compared to dexamethasone. To establish the response of the macrophages to the natural compounds, we tested the viability as well as sensitivity to the inflammatory signaling (IFNγR). IL-6 secretory properties and HSP-70 content in the cells were examined. Furthermore, we characterized the effects of compounds on the inhibition of cyclooxygenase-2 (COX-2) activity both in the enzymatic assays and molecular docking studies. Then, the changes in COX-2 expression after betulin treatment were assessed. Betulin and betulinic acid are the low-cytotoxicity compounds with the highest potential to decrease inflammation via reduced IL-6 secretion. To some extent, they induce the reorganization of IFNγR with nearly no effect on COX-2 activity. Conversely, Bet-Orn and Bet-Lys are highly cytotoxic and induce the aggregation of IFNγR. Besides, Bet-Lys reduces the activity of COX-2 to a higher degree than dexamethasone. Bet-Orn is the only one to increase the HSP-70 content in the macrophages. In case of IL-6 reduction, all compounds were more potent than dexamethasone.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Renata Abel
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany, Philippstrasse 12, 10115, Berlin, Germany
| | | | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wrocław Medical University, Wroclaw, Poland
| | - Robert Preissner
- Science-IT and Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | | |
Collapse
|
26
|
Suri GS, Kaur G, Carbone GM, Shinde D. Metabolomics in oncology. Cancer Rep (Hoboken) 2023; 6:e1795. [PMID: 36811317 PMCID: PMC10026298 DOI: 10.1002/cnr2.1795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Oncogenic transformation alters intracellular metabolism and contributes to the growth of malignant cells. Metabolomics, or the study of small molecules, can reveal insight about cancer progression that other biomarker studies cannot. Number of metabolites involved in this process have been in spotlight for cancer detection, monitoring, and therapy. RECENT FINDINGS In this review, the "Metabolomics" is defined in terms of current technology having both clinical and translational applications. Researchers have shown metabolomics can be used to discern metabolic indicators non-invasively using different analytical methods like positron emission tomography, magnetic resonance spectroscopic imaging etc. Metabolomic profiling is a powerful and technically feasible way to track changes in tumor metabolism and gauge treatment response across time. Recent studies have shown metabolomics can also predict individual metabolic changes in response to cancer treatment, measure medication efficacy, and monitor drug resistance. Its significance in cancer development and treatment is summarized in this review. CONCLUSION Although in infancy, metabolomics can be used to identify treatment options and/or predict responsiveness to cancer treatments. Technical challenges like database management, cost and methodical knowhow still persist. Overcoming these challenges in near further can help in designing new treatment régimes with increased sensitivity and specificity.
Collapse
Affiliation(s)
- Gurparsad Singh Suri
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Gurleen Kaur
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
27
|
Mikhailovskaya AV, Myz SA, Gerasimov KB, Kuznetsova SA, Shakhtshneider TP. Synthesis of Cocrystals of Betulin with Suberic Acid and Study of Their Properties. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Burkhanova TM, Krysantieva AI, Babashkina MG, Konyaeva IA, Monina LN, Goncharenko AN, Safin DA. In silico analyses of betulin: DFT studies, corrosion inhibition properties, ADMET prediction, and molecular docking with a series of SARS-CoV-2 and monkeypox proteins. Struct Chem 2022; 34:1-12. [PMID: 36320318 PMCID: PMC9607775 DOI: 10.1007/s11224-022-02079-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
Abstract
We report detailed computational studies of betulin - a pentacyclic naturally occuring triterpene, which is a precursor for a broad family of biologically active derivatives. The structure, electronic, and optical properties of betulin were studied by the density functional theory (DFT) calculations in gas phase. The reactivity and the reactive centers of betulin were revealed through its global reactivity descriptors and molecular electrostatic potential (MEP). The DFT calculations were also applied to probe betulin as a potential corrosion inhibitor for some important metals used in implants. Electron charge transfer from the molecule of betulin to the surface of all the examined metals (Ti, Fe, Zr, Co, Cu, Cr, Ni, Mn, Mo, Zn, Al, W, Ag, Au) was revealed, of which the best results were obtained for Ni, Au and Co. Bioavailability, druggability as well as absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of betulin were evaluated using the SwissADME, BOILED-Egg and ProTox-II tools. Molecular docking was applied to examine the influence of the title compound on a series of the SARS-CoV-2 proteins as well as one of the monkeypox proteins. It was established that betulin is active against all the applied proteins with the best binding affinity with papain-like protease (PLpro) and spike protein (native) of SARS-CoV-2. The title compound is also active against the studied monkeypox protein. Interaction of betulin with papain-like protease (PLpro) was studied using molecular dynamics simulations.
Collapse
Affiliation(s)
- Tatyana M. Burkhanova
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
- Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Str. 19, Ekaterinburg, 620002 Russian Federation
| | - Alena I. Krysantieva
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
| | - Maria G. Babashkina
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
| | - Irina A. Konyaeva
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
| | - Lyudmila N. Monina
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
| | - Anastasiya N. Goncharenko
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
| | - Damir A. Safin
- Advanced Materials for Industry and Biomedicine Laboratory, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020 Russian Federation
- Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Str. 19, Ekaterinburg, 620002 Russian Federation
| |
Collapse
|
29
|
New Betulin Derivatives with Nitrogen Heterocyclic Moiety-Synthesis and Anticancer Activity In Vitro. Biomolecules 2022; 12:biom12101540. [PMID: 36291749 PMCID: PMC9599051 DOI: 10.3390/biom12101540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022] Open
Abstract
As part of the search for new medicinal substances with potential application in oncology, the synthesis of new compounds combining the betulin molecule and the indole system was carried out. The structure of the ester derivatives obtained in the Steglich reaction was confirmed by spectroscopic methods (1H and 13C NMR, HR-MS). The obtained new 3-indolyl betulin derivatives were evaluated for anticancer activity against several human cancer cell lines (melanomas, breast cancers, colorectal adenocarcinomas, lung cancer) as well as normal human fibroblasts. The significant reduction in MCF-7 cells viability for 28-hydroxy-(lup-20(29)-ene)-3-yl 2-(1H-indol-3-yl)acetate was observed at a concentration of 10 µg/mL (17 µM). In addition, cytometric analysis showed that this compound strongly reduces the proliferation rate of breast cancer cells. For this, the derivative showing the promising cytotoxic effect on MCF-7 breast cancer cells, the pharmacokinetic profile prediction was performed using in silico methods. Based on the results obtained in the study, it can be concluded that indole-functionalized triterpene EB367 is a promising starting point for further research in the field of breast cancer therapy or the synthesis of new derivatives.
Collapse
|
30
|
Antioxidant Activity of New Copolymer Conjugates of Methoxyoligo(Ethylene Glycol)Methacrylate and Betulin Methacrylate with Cerium Oxide Nanoparticles In Vitro. Molecules 2022; 27:molecules27185894. [PMID: 36144630 PMCID: PMC9506406 DOI: 10.3390/molecules27185894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
The synthesis of two new copolymer conjugates of methoxyoligo(ethylene glycol)methacrylate MPEGMA and betulin methacrylate BM was developed via RAFT polymerization. The molar content of BM units was equal to 9–10 and 13–16 mol%, respectively (HPLC, 1H and 13C NMR); molar weights were equal to 75000–115000. CeO2 NPs as a component of the hybrid material were synthesized for the preparation of the composition with copolymer conjugates of MPEGMA and BM. We showed a significant increase in G6PDH and GR activities by 21–51% and 9–132%, respectively, which was due to the increase in NADPH concentration under the action of copolymers in vitro. The actions of copolymers and CeO2 NPs combination were stronger than those of the individual components: the SOD activity increased by more than 30%, the catalase activity increased dose-dependently from 13 to 45%, and the GR activity increased to 49%. The maximum increase in enzyme activity was observed for the G6PDH from 54% to 151%. The MDA level dose-dependently increased by 3–15% under the action of copolymers compared with the control, and dose-dependently decreased by 3–12% in samples containing CeO2 NPs only. CeO2 NP–copolymer compositions can be used for the design of new biomimetic medical products with controlled antioxidant properties.
Collapse
|
31
|
Ouyang T, Yin H, Yang J, Liu Y, Ma S. Tissue regeneration effect of betulin via inhibition of ROS/MAPKs/NF-ĸB axis using zebrafish model. Biomed Pharmacother 2022; 153:113420. [DOI: 10.1016/j.biopha.2022.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
32
|
Guo H, Wang H, Chen T, Guo L, Blank LM, Ebert BE, Huo YX. Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2685-2696. [PMID: 35921601 DOI: 10.1021/acssynbio.2c00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Huiyang Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Tongtong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Lars M Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University Worringer Weg 1, 52074 Aachen, Germany
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Cnr College Rd & Cooper Rd, St Luci a, QLD 4072, Australia
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| |
Collapse
|
33
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
34
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
35
|
Wang P, Long F, Lin H, Wang T. Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Food Funct 2022; 13:4273-4285. [PMID: 35373233 DOI: 10.1039/d2fo00186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer accounts for 11.7% of all newly diagnosed cancer cases and has become the leading cause of cancer worldwide. Currently, more effective and less toxic chemopreventive strategies for breast cancer are urgently needed. Notably, naturally occurring dietary phytochemical compounds, such as curcumin and resveratrol, are generally considered to be the most promising breast cancer preventive agents. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a key regulatory role in the expression of multiple antioxidant and anti-inflammatory enzymes, which can effectively suppress the excessive accumulation of carcinogens and their metabolites. Therefore, modulation of Nrf2 by dietary phytochemicals appears to be a promising approach for breast cancer prevention, which further removes excessive carcinogenic metabolites by inducing Phase II cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). In this review, we summarize recently published findings on the prevention of breast cancer with potential natural phytochemical compounds targeting Nrf2, as well as a mechanistic discussion of Nrf2 activation and its contribution in inhibiting breast cancer carcinogenesis. The epigenetic regulation of Nrf2 by phytochemicals is also explored.
Collapse
Affiliation(s)
- Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Hong Lin
- b. Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ting Wang
- b. Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
36
|
Siddiqui R, Boghossian A, Khatoon B, Kawish M, Alharbi AM, Shah MR, Alfahemi H, Khan NA. Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris. Antibiotics (Basel) 2022; 11:antibiotics11050539. [PMID: 35625183 PMCID: PMC9138048 DOI: 10.3390/antibiotics11050539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are free-living, opportunistic protists, distributed widely in the environment. They are responsible for primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE), the fatal central nervous infections with mortality rates exceeding 90%. With the rise of global warming and water shortages resulting in water storage in tanks (where these amoebae may reside), the risk of infection is increasing. Currently, as a result of a lack of awareness, many cases may be misdiagnosed. Furthermore, the high mortality rate indicates the lack of effective drugs available. In this study, secondary metabolites from the plants Rinorea vaundensis and Salvia triloba were tested for their anti-amoebic properties against N. fowleri and B. mandrillaris. Three of the nine compounds showed potent and significant anti-amoebic activities against both N. fowleri and B. mandrillaris: ursolic acid, betulinic acid, and betulin. Additionally, all compounds depicted limited or minimal toxicity to human cells and were capable of reducing amoeba-mediated host cell death. Moreover, the minimum inhibitory concentration required to inhibit 50% of amoebae growth, the half-maximal effective concentration, and the maximum non-toxic dose against human cells of the compounds were determined. These effective plant-derived compounds should be utilized as potential therapies against infections due to free-living amoebae, but future research is needed to realize these expectations.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (R.S.); (A.B.)
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (R.S.); (A.B.)
| | - Bushra Khatoon
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.K.); (M.K.); (M.R.S.)
| | - Muhammad Kawish
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.K.); (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.K.); (M.K.); (M.R.S.)
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65731, Saudi Arabia;
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
37
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
38
|
Ogasawara M, Yamasaki-Yashiki S, Hamada M, Yamaguchi-Miyamoto T, Kawasuji T, Honda H, Yanagibashi T, Ikutani M, Watanabe Y, Fujimoto R, Matsunaga T, Nakajima N, Nagai Y, Takatsu K. Betulin Attenuates TGF-β1- and PGE 2-Mediated Inhibition of NK Cell Activity to Suppress Tumor Progression and Metastasis in Mice. Biol Pharm Bull 2022; 45:339-353. [PMID: 35228400 DOI: 10.1248/bpb.b21-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor (TGF)-β1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-β1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-β1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-β1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-β1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Masaru Ogasawara
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Toru Kawasuji
- Toyama Prefectural Institute for Pharmaceutical Research
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Graduate School of Integrated Sciences for Life, Hiroshima University.,Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Ryota Fujimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
39
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
40
|
Rajendrasozhan S, Ads EN, Abouzied AS, Humaidi JR. In vitro cytotoxicity analysis of Zizyphus spina-christi stem bark extract on human cancer cell lines. Bioinformation 2022; 17:583-592. [PMID: 35095232 PMCID: PMC8770409 DOI: 10.6026/97320630017583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022] Open
Abstract
Zizyphus spina-christi (Rhamnaceae family) is an edible plant used in folk medicine. Therefore, it is of interest to report the cytotoxic effects of Z. spina-christi bark crude extract on human cell lines. Crude ethanol extract of Z. spina-christi bark was fractionated with increasing polarity (diethyl ether, chloroform, ethyl acetate and butanol fractions). The fractions were examined for their cytotoxicity against human colon cancer (HCT-116 and CACO-2), cervical cancer (HeLa and HEp-2), lung carcinoma (A-549), hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and prostate cancer (PC-3) cell lines using viability assay. Diethyl ether fraction of Z. spina-christi showed the highest cytotoxic effects among the four extracts of Z. spina-christi. The IC50 of diethyl ether fraction was 7.14, 11.2, 11.6, 15.4, 39.8, 42.2, 84.2 and 153.8 µg/ml on HepG-2, A-549, CACO-2, HCT-116, MCF-7, PC-3, HeLa, and HEp-2 cell lines, respectively. Data shows that the diethyl ether fraction of Z. spina-christi showed effective cytotoxic effects in colon, lung and hepatocellular cancer cell lines.
Collapse
Affiliation(s)
- Saravanan Rajendrasozhan
- Department of Chemistry, College of Sciences, University of Haail, Haail 55476, Kingdom of Saudi Arabia
| | - Essam N Ads
- Faculty of Science, Zagazig University, El Mansoura 35522, Egypt
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 55476, Kingdom of Saudi Arabia.,Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research, Giza 35521, Egypt
| | - Jamal R Humaidi
- Department of Chemistry, College of Sciences, University of Haail, Haail 55476, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022. [DOI: doi.org/10.3390/ijms23031602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835–841 cm−1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10–6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
|
42
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022; 23:1602. [PMID: 35163526 PMCID: PMC8836291 DOI: 10.3390/ijms23031602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey;
| | - Natalya Yu. Vasilieva
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| | - Yuriy N. Malyar
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Aleksandr A. Kondrasenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Valentina S. Borovkova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Angelina V. Miroshnikova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Marek J. Wojcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland;
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
- Institute of Chemical Technologies, Siberian State University of Science and Technology, pr. Mira 82, 660049 Krasnoyarsk, Russia
| | - Evgeniy V. Elsuf’ev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| |
Collapse
|
43
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
44
|
Hoenke S, Serbian I, Csuk R. A Malaprade cleavage, a McMurry ring closure and an intramolecular aldol contraction of maslinic acid’s ring A. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Sharipova GM, Gerchikov AY, Safarova IV, Safarov EF, Petrova AV. Kinetics and mechanism of antioxidant action of triterpenoids in the liquid-phase oxidation reaction of 1,4-dioxane. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02103-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
47
|
Król SK, Bębenek E, Dmoszyńska-Graniczka M, Sławińska-Brych A, Boryczka S, Stepulak A. Acetylenic Synthetic Betulin Derivatives Inhibit Akt and Erk Kinases Activity, Trigger Apoptosis and Suppress Proliferation of Neuroblastoma and Rhabdomyosarcoma Cell Lines. Int J Mol Sci 2021; 22:12299. [PMID: 34830180 PMCID: PMC8624615 DOI: 10.3390/ijms222212299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) and rhabdomyosarcoma (RMS), the most common pediatric extracranial solid tumors, still represent an important clinical challenge since no effective treatment is available for metastatic and recurrent disease. Hence, there is an urgent need for the development of new chemotherapeutics to improve the outcome of patients. Betulin (Bet), a triterpenoid from the bark of birches, demonstrated interesting anti-cancer potential. The modification of natural phytochemicals with evidenced anti-tumor activity, including Bet, is one of the methods of receiving new compounds for potential implementation in oncological treatment. Here, we showed that two acetylenic synthetic Bet derivatives (ASBDs), EB5 and EB25/1, reduced the viability and proliferation of SK-N-AS and TE671 cells, as measured by MTT and BrdU tests, respectively. Moreover, ASBDs were also more cytotoxic than temozolomide (TMZ) and cisplatin (cis-diaminedichloroplatinum [II], CDDP) in vitro, and the combination of EB5 with CDDP enhanced anti-cancer effects. We also showed the slowdown of cell cycle progression at S/G2 phases mediated by EB5 using FACS flow cytometry. The decreased viability and proliferation of pediatric cancers cells after treatment with ASBDs was linked to the reduced activity of kinases Akt, Erk1/2 and p38 and the induction of apoptosis, as investigated using Western blotting and FACS. In addition, in silico analyses of the ADMET profile found EB5 to be a promising anti-cancer drug candidate that would benefit from further investigation.
Collapse
Affiliation(s)
- Sylwia K. Król
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (E.B.); (S.B.)
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (E.B.); (S.B.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| |
Collapse
|
48
|
Wang YY, Kang H, Xu T, Hao L, Bao Y, Jia P. CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res 2021; 50:D1164-D1171. [PMID: 34634794 PMCID: PMC8728137 DOI: 10.1093/nar/gkab897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Drug response to many diseases varies dramatically due to the complex genomics and functional features and contexts. Cellular diversity of human tissues, especially tumors, is one of the major contributing factors to the different drug response in different samples. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is now possible to study the drug response to different treatments at the single cell resolution. Here, we present CeDR Atlas (available at https://ngdc.cncb.ac.cn/cedr), a knowledgebase reporting computational inference of cellular drug response for hundreds of cell types from various tissues. We took advantage of the high-throughput profiling of drug-induced gene expression available through the Connectivity Map resource (CMap) as well as hundreds of scRNA-seq data covering cells from a wide variety of organs/tissues, diseases, and conditions. Currently, CeDR maintains the results for more than 582 single cell data objects for human, mouse and cell lines, including about 140 phenotypes and 1250 tissue-cell combination types. All the results can be explored and searched by keywords for drugs, cell types, tissues, diseases, and signature genes. Overall, CeDR fine maps drug response at cellular resolution and sheds lights on the design of combinatorial treatments, drug resistance and even drug side effects.
Collapse
Affiliation(s)
- Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Bao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
49
|
Eisa NH, El-Sherbiny M, Abo El-Magd NF. Betulin alleviates cisplatin-induced hepatic injury in rats: Targeting apoptosis and Nek7-independent NLRP3 inflammasome pathways. Int Immunopharmacol 2021; 99:107925. [PMID: 34217992 DOI: 10.1016/j.intimp.2021.107925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Cisplatin is a chemotherapeutic agent that induces multiorgan toxicity side effect due to induction of inflammation, apoptosis and disruption of intracellular antioxidant pathways. Betulin is a natural triterpenoid that has been shown to counteract cisplatin-induced nephrotoxicity. In this study, we investigated the ameliorative effect of betulin against cisplatin-promoted hepatotoxicity in rats. Moreover, we studied the molecular mechanism underlying betulin's effect. Single intraperitoneal injection (i.p.) of 10 mg/kg of cisplatin, was used to induce acute liver injury in rats. To assess betulin effect, a dose of 8 mg/kg (i.p.) was daily administered for 10 days. Betulin significantly improved serum Aspartate transaminase (AST), Alanine transaminase (ALT), albumin and total bilirubin levels in comparison with cisplatin group. Histopathologically, betulin restored cisplatin-deteriorated liver structural features and hepatic fibrosis. Mechanistically, betulin reduced hepatic oxidative stress as indicated by increased total antioxidant capacity and decreased malondialdehyde levels compared to cisplatin group. In addition, betulin reduced hepatic inflammation via significant inhibition of NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1 and interleukin-1β (IL-1β) levels. Intriguingly, betulin did not affect the expression levels of the mitotic kinase NIMA-related kinase 7 (Nek7), an NLRP3 interacting/activating protein. Last, Betulin induced anti-apoptotic effects as denoted by significant downregulation of P53 and Bax apoptotic proteins, upregulation of the anti-apoptotic protein, BCL2 and reduction of caspases 8, -9 and -3. This study is the first to provide evidence that betulin might be beneficial as a safe therapeutic approach to manage cisplatin-induced hepatotoxicity via targeting inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
50
|
Ahmadu AA, Delehouzé C, Haruna A, Mustapha L, Lawal BA, Udobre A, Baratte B, Triscornia C, Autret A, Robert T, Bulinski JC, Rousselot M, Simoes Eugénio M, Dimanche-Boitrel MT, Petzer JP, Legoabe LJ, Bach S. Betulin, a Newly Characterized Compound in Acacia auriculiformis Bark, Is a Multi-Target Protein Kinase Inhibitor. Molecules 2021; 26:molecules26154599. [PMID: 34361750 PMCID: PMC8347092 DOI: 10.3390/molecules26154599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023] Open
Abstract
The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/β (GSK-3 α/β), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.
Collapse
Affiliation(s)
- Augustine A. Ahmadu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna 800241, Nigeria; (A.H.); (L.M.)
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Calabar, Calabar 540271, Nigeria
- Correspondence: (A.A.A.); (S.B.); Tel.: +234-80-37-03-35-05 (A.A.A.); +33-2-98-29-23-91 (S.B.)
| | - Claire Delehouzé
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
- Place Georges Teissier, SeaBeLife Biotech, 29680 Roscoff, France; (A.A.); (M.R.); (M.S.E.)
| | - Anas Haruna
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna 800241, Nigeria; (A.H.); (L.M.)
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna 800241, Nigeria; (A.H.); (L.M.)
| | - Bilqis A. Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240003, Nigeria;
| | - Aniefiok Udobre
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Uyo, Uyo 520003, Nigeria;
| | - Blandine Baratte
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
- CNRS, FR2424, Station Biologique de Roscoff, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Sorbonne Université, 29680 Roscoff, France
| | - Camilla Triscornia
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
| | - Axelle Autret
- Place Georges Teissier, SeaBeLife Biotech, 29680 Roscoff, France; (A.A.); (M.R.); (M.S.E.)
| | - Thomas Robert
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
- CNRS, FR2424, Station Biologique de Roscoff, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Sorbonne Université, 29680 Roscoff, France
| | - Jeannette Chloë Bulinski
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Morgane Rousselot
- Place Georges Teissier, SeaBeLife Biotech, 29680 Roscoff, France; (A.A.); (M.R.); (M.S.E.)
| | - Mélanie Simoes Eugénio
- Place Georges Teissier, SeaBeLife Biotech, 29680 Roscoff, France; (A.A.); (M.R.); (M.S.E.)
- Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), INSERM UMR 1085, F-35043 Rennes, France;
| | - Marie-Thérèse Dimanche-Boitrel
- Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), INSERM UMR 1085, F-35043 Rennes, France;
- Biosit UMS 3080, Université de Rennes 1, F-35043 Rennes, France
| | - Jacobus P. Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (J.P.P.); (L.J.L.)
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (J.P.P.); (L.J.L.)
| | - Stéphane Bach
- Station Biologique de Roscoff, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Sorbonne Université, 29680 Roscoff, France; (C.D.); (B.B.); (C.T.); (T.R.); (J.C.B.)
- CNRS, FR2424, Station Biologique de Roscoff, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Sorbonne Université, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (J.P.P.); (L.J.L.)
- Correspondence: (A.A.A.); (S.B.); Tel.: +234-80-37-03-35-05 (A.A.A.); +33-2-98-29-23-91 (S.B.)
| |
Collapse
|