1
|
Lu W, Yang X, Wang B. Carbon monoxide potentiates the effect of corticosteroids in suppressing inflammatory responses in cell culture. Bioorg Med Chem 2025; 120:118092. [PMID: 39904198 DOI: 10.1016/j.bmc.2025.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Inflammation is a pathology implicated in a wide range of human diseases. Recent years have seen tremendous progress in developing new types of anti-inflammatory agents for the treatment of inflammation of various origins. However, each has its own strengths and weaknesses. The very fact that there needs to have multiple types of anti-inflammatory agents underlines the complexity of inflammatory diseases and conditions, their molecular origins, and their treatment. Such complexity dictates the need to search for new approaches with improved potency and efficacy as well as reduced side effects. For these reasons, we are interested in exploring the possibility of generating synergy between carbon monoxide (CO), an endogenously produced cytoprotective agent, and known anti-inflammatory agents. Herein, we report the potentiating actions of CO on the anti-inflammatory effects of cortisone and dexamethasone as demonstrated in their ability to suppress the expression of TNF-α and IL-6 induced by either LPS or the S protein of SARS-CoV-2. Such effects are reflected in the substantially increased potency as well efficacy, when the efficacy of the corticosteroid alone does not allow for complete suppression of the expression of these cytokines. Further, increased attenuation of p65 phosphorylation is at least part of the molecular mechanism for the observed potentiating effects. We hope our work will stimulate a high level of activity along the same direction, leading to anti-inflammatory strategies with improved potency and efficacy and reduced side effects.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
3
|
Zhou Y, Yang M, Yan X, Zhang L, Lu N, Ma Y, Zhang Y, Cui M, Zhang M, Zhang M. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36061-36075. [PMID: 37463480 DOI: 10.1021/acsami.3c09342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology affecting the colon and rectum. Current therapeutics are focused on suppressing inflammation but are ineffective. Combining anti-inflammatory therapeutic approaches with pro-resolution might be a superior strategy for UC treatment. Andrographolide (AG), an active compound from the plant Andrographis paniculata, presented anti-inflammatory effects in various inflammatory diseases. Gaseous mediators, such as carbon monoxide (CO), have a role in inflammatory resolution. Herein, we developed a dextran-functionalized PLGA nanocarrier for efficient delivery of AG and a carbon monoxide donor (CORM-2) for synergistically anti-inflammatory/pro-resolving treatment of UC (AG/CORM-2@NP-Dex) based on PLGA with good biocompatibility, slow drug release, efficient targeting, and biodegradability. The resulting nanocarrier had a nano-scaled diameter of ∼200 nm and a spherical shape. After being coated with dextran (Dex), the resulting AG/CORM-2@NP-Dex could be efficiently internalized by Colon-26 and Raw 264.7 cells in vitro and preferentially localized to the inflamed colon with chitosan/alginate hydrogel protection by gavage. AG/CORM-2@NP-Dex performed anti-inflammatory effects by eliminating the over-production of pro-inflammatory mediator, nitric oxide (NO), and down-regulating the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), while it showed pro-resolving function by accelerating M1 to M2 macrophage conversion and up-regulating resolution-related genes (IL-10, TGF-β, and HO-1). In the colitis model, oral administration of AG/CORM-2@NP-Dex in a chitosan/alginate hydrogel also showed synergistically anti-inflammatory/pro-resolving effects, therefore relieving UC effectively. Without appreciable systemic toxicity, this bifunctional nanocarrier represents a novel therapeutic approach for UC and is expected to achieve long-term inflammatory remission.
Collapse
Affiliation(s)
- Ying Zhou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
4
|
Ghajar-Rahimi G, Traylor AM, Mathew B, Bostwick JR, Nebane NM, Zmijewska AA, Esman SK, Thukral S, Zhai L, Sambandam V, Cowell RM, Suto MJ, George JF, Augelli-Szafran CE, Agarwal A. Identification of Cytoprotective Small-Molecule Inducers of Heme-Oxygenase-1. Antioxidants (Basel) 2022; 11:1888. [PMID: 36290611 PMCID: PMC9598442 DOI: 10.3390/antiox11101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amie M. Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bini Mathew
- Southern Research, Birmingham, AL 35205, USA
| | | | | | - Anna A. Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stephanie K. Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Saakshi Thukral
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ling Zhai
- Southern Research, Birmingham, AL 35205, USA
| | | | - Rita M. Cowell
- Southern Research, Birmingham, AL 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - James F. George
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Veterans Affairs, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Kundu S, Hossain KS, Moni A, Zahan MS, Rahman MM, Uddin MJ. Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects. Mol Biol Rep 2022; 49:9749-9758. [PMID: 35441940 DOI: 10.1007/s11033-022-07460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide public health concern. Nutritional interventions become a primary concern in managing various diseases, including CKD. Ketogenic diets (KD) are a popular diet and an increasingly used diet for weight loss. MAIN BODY With the increasing cases of CKD, KD has been proposed as a treatment by many scientists. Several studies have shown that KD can slow down the progression rate of renal abnormalities. Also, this diet is regarded as a safe route for managing CKD. CKD is generally associated with increased inflammation, oxidative stress, fibrosis, autophagy dysfunction, and mitochondrial dysfunction, while all of these can be attenuated by KD. The protective effect of KD is mainly mediated through inhibition of ROS, NF-κB, and p62 signaling. CONCLUSIONS It is suggested that KD could be considered a new strategy for managing and treating CKD more carefully. This review explores the potential of KD on CKD and the mechanism involved in KD-mediated kidney protection.
Collapse
Affiliation(s)
- Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh. .,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
6
|
Niu Q, Liu F, Zhang J, Yang X, Wang X. Carbon monoxide-releasing molecule-2 protects intestinal mucosal barrier function by reducing epithelial tight-junction damage in rats undergoing cardiopulmonary resuscitation. JOURNAL OF INTENSIVE MEDICINE 2022; 2:118-126. [PMID: 36789186 PMCID: PMC9923997 DOI: 10.1016/j.jointm.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Background Ischemia-reperfusion injury (IRI) to the small intestine is associated with the development of systemic inflammation and multiple organ failure after cardiopulmonary resuscitation (CPR). It has been reported that exogenous carbon monoxide (CO) reduces IRI. This study aimed to assess the effects of carbon monoxide-releasing molecule-2 (CORM-2) on intestinal mucosal barrier function in rats undergoing CPR. Methods We established a rat model of asphyxiation-induced cardiac arrest (CA) and resuscitation to study intestinal IRI, and measured the serum levels of intestinal fatty acid-binding protein. Morphological changes were investigated using light and electron microscopes. The expression levels of claudin 3 (CLDN3), occludin (OCLN), zonula occludens 1 (ZO-1), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by western blotting. Results Compared with the sham-operated group, histological changes and transmission electron microscopy revealed severe intestinal mucosal injury in the CPR and inactive CORM-2 (iCORM-2) groups. In contrast, CORM-2 alleviated intestinal IRI. CORM-2, unlike iCORM-2, markedly decreased the Chiu's scores (2.38 ± 0.38 vs. 4.59 ± 0.34; P < 0.05) and serum intestinal fatty acid-binding protein level (306.10 ± 19.22 vs. 585.64 ± 119.84 pg/mL; P < 0.05) compared with the CPR group. In addition, CORM-2 upregulated the expression levels of tight junction proteins (CLDN3, OCLN, and ZO-1) (P < 0.05) and downregulated those of IL-10, TNF-α, and NF-кB p65 (P < 0.05) in the ileum tissue of rats that received CPR. Conclusions CORM-2 prevented intestinal mucosal damage as a result of IRI during CPR. The underlying protective mechanism was associated with inhibition of ischemia-reperfusion-induced changes in intestinal epithelial permeability and inflammation in intestinal tissue.
Collapse
Affiliation(s)
- Qingsheng Niu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China,Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Fang Liu
- Department of Critical Care Medicine, Heze Second People's Hospital, Heze, Shandong 274000, China
| | - Jun Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaojun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaohong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China,Corresponding author: Xiaohong Wang, Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
7
|
Meijer MT, de Vos AF, Peters Sengers H, Scicluna BP, Roelofs JJ, Abou Fayçal C, Uhel F, Orend G, van der Poll T. Tenascin C Has a Modest Protective Effect on Acute Lung Pathology during Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia in Mice. Microbiol Spectr 2021; 9:e0020721. [PMID: 34319124 PMCID: PMC8552697 DOI: 10.1128/spectrum.00207-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Tenascin C (TNC) is an extracellular matrix protein with immunomodulatory properties that plays a major role during tissue injury and repair. TNC levels are increased in patients with pneumonia and pneumosepsis, and they are associated with worse outcomes. Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive bacterium that is a major causative pathogen in nosocomial pneumonia and a rising cause of community-acquired pneumonia. To study the role of TNC during MRSA-induced pneumonia, TNC sufficient (TNC+/+) and TNC-deficient (TNC-/-) mice were infected with MRSA via the airways and euthanized after 6, 24, and 48 h for analysis. Pulmonary transcription of TNC peaked at 6 h, while immunohistochemistry revealed higher protein levels at later time points. Although TNC deficiency was not associated with changes in bacterial clearance, TNC-/- mice showed increased levels of TNF-α and IL-6 in bronchoalveolar lavage fluid during the acute phase of infection when compared with TNC+/+ mice. In addition, TNC-/- mice showed more severe pulmonary pathology at 6, but not at 24 or 48 h, after infection. Together, these data suggest that TNC plays a moderate protective role against tissue pathology during the acute inflammatory phase, but not during the bacterial clearance phase, of MRSA-induced pneumonia. These results argue against an important role of TNC on disease outcome during MRSA-induced pneumonia. IMPORTANCE Recently, the immunomodulatory properties of TNC have drawn substantial interest. However, to date most studies made use of sterile models of inflammation. In this study, we examine the pathobiology of MRSA-induced pneumonia in a model of TNC-sufficient and TNC-deficient mice. We have studied the immune response and tissue pathology both during the initial insult and also during the resolution phase. We demonstrate that MRSA-induced pneumonia upregulates pulmonary TNC expression at the mRNA and protein levels. However, the immunomodulatory role of TNC during bacterial pneumonia is distinct from models of sterile inflammation, indicating that the function of TNC is context dependent. Contrary to previous descriptions of TNC as a proinflammatory mediator, TNC-deficient mice seem to suffer from enhanced tissue pathology during the acute phase of infection. Nonetheless, besides its role during the acute phase response, TNC does not seem to play a major role in disease outcome during MRSA-induced pneumonia.
Collapse
Affiliation(s)
- Mariska T. Meijer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Hessel Peters Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris J. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Chérine Abou Fayçal
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Zhang D, Liu Z, Liu Q, Lan H, Peng J, Liu X, Liu W. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 2021; 45:222-233. [PMID: 34463846 DOI: 10.1007/s10753-021-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Di Zhang
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Zhi Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Qianqian Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Honghai Lan
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Jinjin Peng
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China. .,Emergency Department, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
10
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Biswas C, Chu N, Burn TN, Kreiger PA, Behrens EM. Amelioration of Murine Macrophage Activation Syndrome by Monomethyl Fumarate in Both a Heme Oxygenase 1-Dependent and Heme Oxygenase 1-Independent Manner. Arthritis Rheumatol 2021; 73:885-895. [PMID: 33191652 DOI: 10.1002/art.41591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is characterized by increased serum levels of ferritin and heme oxygenase 1 (HO-1), and yet no known function is ascribed to these molecules in MAS. Because HO-1 is antiinflammatory, we hypothesized that pharmacologic activation of HO-1 could ameliorate MAS disease activity. Dimethyl fumarate (DMF), a treatment approved by the US Food and Drug Administration for multiple sclerosis, activates HO-1. Monomethyl fumarate (MMF) is the active metabolite of DMF. We therefore evaluated whether MMF could elicit HO-1-dependent therapeutic improvements in a murine model of MAS. METHODS We induced MAS by repeated activation of Toll-like receptor 9 (TLR-9) in wild-type and myeloid-specific HO-1-deficient mice. MMF was administered twice daily to test its efficacy. We assessed organ weights, serum cytokine levels, histologic features of the spleen and liver tissue, and complete blood cell counts to evaluate disease activity. Statistical testing was performed using Student's t-test or by 2-way analysis of variance as appropriate. RESULTS The presence of HO-1 was required for the majority of TLR-9-induced interleukin-10 (IL-10). IL-10 production in TLR-9-induced MAS was found to correlate with the myeloid-HO-1 gene dose in myeloid cells (P < 0.001). MMF treatment increased the levels of HO-1 in splenic macrophages by ~2-fold (P < 0.01), increased serum levels of IL-10 in an HO-1-dependent manner in mice with TLR-9-induced MAS (P < 0.005), and improved multiple disease parameters in both an HO-1-dependent and HO-1-independent manner. CONCLUSION TLR-9-induced production of IL-10 is regulated by HO-1 activity both in vitro and in vivo. Therapeutic enhancement of the HO-1/IL-10 axis in a murine model was able to significantly ameliorate MAS disease activity. These results suggest that HO-1 may be viable as a MAS therapeutic target, and treatment with DMF and MMF should be considered in future investigations of MAS therapy.
Collapse
Affiliation(s)
- Chhanda Biswas
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Niansheng Chu
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thomas N Burn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
12
|
Meijer MT, de Vos AF, Scicluna BP, Roelofs JJ, Abou Fayçal C, Orend G, Uhel F, van der Poll T. Tenascin-C Deficiency Is Associated With Reduced Bacterial Outgrowth During Klebsiella pneumoniae-Evoked Pneumosepsis in Mice. Front Immunol 2021; 12:600979. [PMID: 33776992 PMCID: PMC7990887 DOI: 10.3389/fimmu.2021.600979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tenascin C (TNC) is an extracellular matrix glycoprotein that recently emerged as an immunomodulator. TNC-deficient (TNC−/−) mice were reported to have a reduced inflammatory response upon systemic administration of lipopolysaccharide, the toxic component of gram-negative bacteria. Here, we investigated the role of TNC during gram-negative pneumonia derived sepsis. TNC+/+ and TNC−/− mice were infected with Klebsiella pneumoniae via the airways and sacrificed 24 and 42 h thereafter for further analysis. Pulmonary TNC protein levels were elevated 42 h after infection in TNC+/+ mice and remained undetectable in TNC−/− mice. TNC−/− mice showed modestly lower bacterial loads in lungs and blood, and a somewhat reduced local—but not systemic—inflammatory response. Moreover, TNC−/− and TNC+/+ mice did not differ with regard to neutrophil recruitment, lung pathology or plasma markers of distal organ injury. These results suggest that while TNC shapes the immune response during lipopolysaccharide-induced inflammation, this role may be superseded during pneumosepsis caused by a common gram-negative pathogen.
Collapse
Affiliation(s)
- Mariska T Meijer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J Roelofs
- Department of Pathology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Chérine Abou Fayçal
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020258. [PMID: 33562389 PMCID: PMC7915495 DOI: 10.3390/antiox10020258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) intertwined with cardiovascular disease has become a major health problem. Oxidative stress (OS) plays an important role in the pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in regulating OS and is protective in a variety of human and animal models of kidney disease. Thus, activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic agents for kidney diseases. In this review, we have discussed the association between OS and the pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial effects of small molecule natural products that may provide protection against CKD.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- Correspondence: ; Tel.: +82-2-3277-4075
| |
Collapse
|
14
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2020. [PMID: 31820474 DOI: 10.1012/med.21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
17
|
Carbon monoxide releasing molecule-2 protects against particulate matter-induced lung inflammation by inhibiting TLR2 and 4/ROS/NLRP3 inflammasome activation. Mol Immunol 2019; 112:163-174. [PMID: 31153046 DOI: 10.1016/j.molimm.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Exposure to airborne particulate matter (PM) not only causes lung inflammation and chronic respiratory diseases, but also increases the incidence and mortality of cardiopulmonary diseases. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome activation has been shown to play a critical role in the formation of many chronic disorders. On the other hand, carbon monoxide (CO) has been shown to possess anti-inflammatory and antioxidant effects in many tissues and organs. Here, we investigated the effects and mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on PM-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs). We found that PM induced C-reactive protein (CRP) expression, NLRP3 inflammasome activation, IL-1β secretion, and caspase-1 activation, which were inhibited by pretreatment with CORM-2. In addition, transfection with siRNA of Toll-like receptor 2 (TLR2) or TLR4 and pretreatment with an antioxidant (N-acetyl-cysteine, NAC), the inhibitor of NADPH oxidase (diphenyleneiodonium, DPI), or a mitochondria-specific superoxide scavenger (MitoTEMPO) reduced PM-induced inflammatory responses. CORM-2 also inhibited PM-induced NADPH oxidase activity and NADPH oxidase- and mitochondria-derived ROS generation. However, pretreatment with inactivate CORM-2 (iCORM-2) had no effects on PM-induced inflammatory responses. Finally, we showed that CORM-2 inhibited PM-induced CRP, NLRP3 inflammasome, and ASC protein expression in the lung tissues of mice and IL-1β levels in the serum of mice. PM-enhanced leukocyte count in bronchoalveolar lavage fluid in mice was reduced by CORM-2. The results of this study suggested a protective role of CORM-2 in PM-induced lung inflammation by inhibiting the TLR2 and TLR4/ROS-NLRP3 inflammasome-CRP axial.
Collapse
|
18
|
Yuan W, Zhang W, Yang X, Zhou L, Hanghua Z, Xu K. Clinical significance and prognosis of serum tenascin-C in patients with sepsis. BMC Anesthesiol 2018; 18:170. [PMID: 30442110 PMCID: PMC6238343 DOI: 10.1186/s12871-018-0634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tenascin-C is a pro-inflammatory glycoprotein with various biological functions. High expression of tenascin-C is found in inflammation, tissue remodeling, and autoimmune diseases. However, its expression and clinical significance in sepsis remain unclear. This study was designed to investigate the relationship between serum tenascin-C levels and disease severity and prognosis in patients with sepsis. Methods A total of 167 patients with sepsis admitted to the ICU were enrolled. Lood samples were collected within 24 h of admission. Serum tenascin-C levels were measured by enzyme-linked immunosorbent assay (ELISA). Follow-up was performed to observe 30-day mortality. Results Serum tenascin-C levels were significantly elevated in patients with sepsis compared with non-sepsis controls (P < 0.001). Serum tenascin-C levels were higher in nonsurvivors (58 cases) who died within 30 days (34.5%) compared to survivors (109 cases) (P < 0.001). In patients with sepsis, serum tenascin-C levels were significantly positively correlated with SOFA scores (P = 0.011), serum creatinine (P = 0.006), C-reactive protein (CRP) (P = 0.001), interleukin-6 (IL-6) (P < 0.001), and tumor necrosis factor α (TNF-α) (P = 0.026). Logistic multivariate regression models showed that serum tenascin-C levels were independent contributor of 30-day mortality. Kaplan-Meier curves showed that septic patients with high levels of serum tenascin-C (≥56.9 pg/mL) had significantly higher 30-day mortality than those with lower serum tenascin-C (< 56.9 pg/mL) (P < 0.001). Conclusion Elevated serum tenascin-C was found in septic patients and associated with severity and poor prognosis.
Collapse
Affiliation(s)
- Weifang Yuan
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Wei Zhang
- Department of Emergency Surgery, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Xiaofang Yang
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Liyuan Zhou
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Ziwei Hanghua
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Kailiang Xu
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China.
| |
Collapse
|
19
|
Chen X, Liu Q, Huang W, Cai C, Xia W, Peng Y, Zheng S, Li G, Xu Y, Wang J, Liu C, Zhang X, Huang L, Xiang AP, Zhang Q. Stanniocalcin-2 contributes to mesenchymal stromal cells attenuating murine contact hypersensitivity mainly via reducing CD8 + Tc1 cells. Cell Death Dis 2018; 9:548. [PMID: 29748538 PMCID: PMC5945630 DOI: 10.1038/s41419-018-0614-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been demonstrated to ameliorate allergic contact dermatitis (ACD), a typical T-cell-mediated disorder. However, the underlying mechanisms behind the MSC-based treatment for ACD have not yet been fully elucidated. The stanniocalcins (STCs) comprise a family of secreted glycoprotein hormones that act as important anti-inflammatory proteins. Here, we investigated the roles of STCs in MSC-mediated T-cell suppression and their potential role in the MSC-based treatment for ACD. Gene expression profiling revealed that STC2, but not STC1, was highly expressed in MSCs. STC2 knockdown in MSCs significantly impaired their effects in reducing TNF-α- and IFN-γ-producing CD8+ T cells. Importantly, silencing the STC2 expression in MSCs abated their therapeutic effect on contact hypersensitivity (CHS) in mice, mainly restoring the generation and infiltration of IFN-γ-producing CD8+ T cells (Tc1 cells). Mechanistically, STC2 co-localized with heme oxygenase 1 (HO-1) in MSCs, and contributed to MSC-mediated reduction of CD8+ Tc1 cells via regulating HO-1 activity. Together, these findings newly identify STC2 as the first stanniocalcin responsible for mediating the immunomodulatory effects of MSCs on allogeneic T cells and STC2 contribute to MSC-based treatment for ACD mainly via reducing the CD8+ Tc1 cells.
Collapse
Affiliation(s)
- Xiaoyong Chen
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Chuang Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Wenjie Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, 510095, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Shuwei Zheng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Yan Xu
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Chang Liu
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Li Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Andy Peng Xiang
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China.
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Qi Zhang
- The Biotherapy Center, the Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
20
|
Yoon YE, Lee KS, Lee YJ, Lee HH, Han WK. Renoprotective Effects of Carbon Monoxide-Releasing Molecule 3 in Ischemia-Reperfusion Injury and Cisplatin-Induced Toxicity. Transplant Proc 2018; 49:1175-1182. [PMID: 28583551 DOI: 10.1016/j.transproceed.2017.03.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the effects of a soluble carbon monoxide-releasing molecule (CORM) in cisplatin-induced cytotoxicity and ischemia-reperfusion injury (IRI) in vitro. METHODS The effects of CORM-3 (12.5-200 μM) were assessed in normal kidney epithelial cells (HK-2, LLC-PK1) and renal cancer cells (Caki-1, Caki-2) subjected to cisplatin (50-200 μM) or IRI. To induce IRI, cells were placed in an anaerobic chamber (37°C, 95% nitrogen, 5% carbon dioxide) for 48 hours. Cells were transferred to complete medium and incubated at 37°C, 5% carbon dioxide for 6 hours. Cell viability (CCK assays), tumor necrosis factor (TNF)-α messenger RNA (mRNA) levels (quantitative reverse-transcriptase polymerase chain reaction), and protein expression of cleaved-caspase 3 and oxidative stress markers (including Erk1/2, JNK, and P38; Western blot) were assessed. RESULTS Viability after IRI was approximately 40% of control. Protective effects of CORM-3 in the IRI model were dose-dependent. Cell viability was 40% recovered in 200-μM CORM-3-pretreated cells compared with control. The protective effects of CORM-3 in cells exposed to cisplatin for 24 hours were weaker than in the IRI model. TNF-α mRNA was induced by stimulated IRI or cisplatin exposure; CORM-3 pretreatment attenuated the rise in TNF-α mRNA. IRI or cisplatin-induced activated oxidative stress markers decreased in CORM-3-pretreated cells. CORM-3 reduced expression of the apoptotic marker cleaved-caspase 3. CONCLUSION Our data demonstrate the protective effects of CORM-3 in cisplatin cytotoxicity and IRI in both normal kidney cells and renal cancer cells in vitro. CORM-3 exerts these effects by ameliorating inflammatory and oxidative stress pathways.
Collapse
Affiliation(s)
- Y E Yoon
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - K S Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Y J Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - H H Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - W K Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|